高聚偉 徐凱 冉冉 應吟吟
[關鍵詞] 龍葵堿;肝癌;免疫逃逸;Treg細胞
[中圖分類號] R285.5? ? ? ? ? [文獻標識碼] A? ? ? ? ? [文章編號] 1673-9701(2021)18-0035-04
Impacts of solanine on tumor immune escape mediated by Treg cells in hepatocellular carcinoma
GAO Juwei? ?XU Kai? ?RAN Ran? ?YING Yinyin
Department of Oncology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou? ?310012, China
[Abstract] Objective To research the impacts of solanine on hepatoma cells immune escape mediated by regulatory T cells (Treg cells) in hepatocarcinoma bearing mice and its action mechanism. Methods The mice model of H22 cell transplantation tumor was established and they were divided into the control group, the solanine group, the transforming growth factor-β1 (TGF-β1) inhibitor group and the solanine combined with TGF-β1 inhibitor group. After 14 days of treatment, the weight of transplanted tumor in each group was measured, and the level changes of immune inhibitory cytokines such as IL-2, IL-10 and TGF-β1 in the peripheral blood of mice in each group were detected by the enzyme linked immunosorbent assay (ELISA) method. The expression levels of CD4+, CD4+CD25+Foxp3+Treg in spleen lymphocyte culture medium of mice in each group were detected by the flow cytometry method, and the immunofluorescence intensity of Foxp3+ in spleen lymphocyte culture medium of mice was detected by the immunofluorescence method. Results After 14 days, compared with the control group, the tumor weights of the hepatocarcinoma bearing mice in the solanine group, the TGF-β1 inhibitor group and the combined group were all significantly lower than that in the control group, with statistically significant differences (P<0.05). The levels of immunosuppressive cytokines such as IL-2, IL-10 and TGF-β1 in the peripheral blood of mice in the solanine group, the TGF-β1 inhibitor group and the combined group were all significantly decreased (P<0.05). The expression levels of CD4+ in the solanine group, the TGF-β1 inhibitor group and the combined group were higher than those in the control group, while the proportion of CD4+CD25+Treg decreased significantly (P<0.05). Immunofluorescence staining showed that the expressions of Foxp3+ in Treg cells of hepatocarcinoma bearing mice in the solanine group, the TGF-β1 inhibitor group and the combined group were significantly lower than those in the control group (P<0.05). Conclusion Solanine may play an anti-tumor role by reducing the content of Treg cells in hepatocarcinoma bearing mice to improve immune escape.
[Key words] Solanine; Hepatocellular carcinoma; Immune escape; Treg cells
原發(fā)性肝癌(Hepatocellular carcinoma,HCC)的發(fā)生發(fā)展機制復雜,免疫逃逸是其重要特征之一[1]。腫瘤免疫治療,包括過繼細胞療法、腫瘤疫苗及細胞因子治療等,尤其是近年來針對免疫檢查點的免疫治療在肝癌臨床中取得了較好的療效,成為肝癌治療的重要手段之一[2-3],但目前仍面臨療效不確定、客觀緩解率低等問題。研究表明,調(diào)節(jié)性T(regulatory T,Treg)細胞在腫瘤的免疫逃逸中發(fā)揮重要作用,腫瘤內(nèi)高密度的Treg細胞常提示了較差的臨床預后,如腎癌、肝癌和胃癌等的研究中證明了不良預后與瘤內(nèi)Treg細胞密度增加相關[4-5]。龍葵堿是一種弱堿性糖苷,研究表明,龍葵堿在肝癌、胰腺癌、乳腺癌、結(jié)腸癌等多種腫瘤中具有廣泛抗癌作用,其通過抑制細胞增殖,誘導細胞凋亡,阻斷細胞周期等,發(fā)揮顯著抗腫瘤效應[6-8]。但是,關于龍葵堿對腫瘤免疫功能影響的研究較少。本課題組前期研究發(fā)現(xiàn)[9-10],龍葵堿可恢復荷瘤小鼠抗腫瘤的免疫性反應,但對免疫逃逸的影響未明確。
1 材料與方法
1.1材料來源
實驗動物SPF級雄性昆明種小鼠,6周齡,體重18-22 g,由浙江中醫(yī)藥大學實驗動物中心提供,合格證號:SYXK(浙)2013-0184。H22肝癌細胞株購自中國科學院上海生科院細胞資源中心。龍葵堿(Solanine,HPLC≥95%)及TGF-β1抑制劑(SB-431542)均購自美國Sigma公司。
1.2 方法
1.2.1 H22荷瘤小鼠模型建立? 選用1只實驗小鼠,將正常傳代的H22肝癌細胞株接種于小鼠腹腔,接種后第7天無菌抽取腹水,用生理鹽水稀釋成1.0×106個/mL瘤細胞懸液。取40只小鼠,每只小鼠右上肢腋部皮下接種0.2 mL瘤細胞懸液。
1.2.2 動物分組及給藥? 接種24 h后將小鼠隨機分四組,分別為對照組(Control):生理鹽水0.2 mL/d腹腔注射;龍葵堿組(Solanine):龍葵堿按37.5 mg/kg劑量每日0.2 mL腹腔注射;TGF-β1抑制劑組(SB-431542):生理鹽水0.2 mL/d腹腔注射,用藥第6、7天及第13、14天加用TGF-β1抑制劑SB-431542,按10 mg/Kg劑量0.2 mL腹腔注射;龍葵堿組聯(lián)合TGF-β1抑制劑組(solanine +SB-431542):龍葵堿按37.5 mg/kg劑量每日0.2 mL腹腔注射,用藥第6、7天及第13、14天加用TGF-β1抑制劑SB-431542,按10 mg/Kg劑量0.2 mL腹腔注射。
1.3 觀察指標
1.3.1 抑瘤作用檢測? 末次用藥24 h后,斷頸犧牲小鼠,剝?nèi)×鰤K稱重,按如下公式計算腫瘤抑制率:腫瘤抑制率(%)=[(對照組平均瘤重g-給藥組平均瘤重g)/對照組平均瘤重g]×100。
1.3.2 ELISA檢測小鼠外周血中IL-2、IL-10、TGF-β1水平? 在斷頸犧牲小鼠前先摘眼球取血,4℃靜置1 h,3000 rpm離心10 min,收集上層血清,置-20℃冰箱中凍存?zhèn)溆?。細胞因子IL-2、IL-10、TGF-β1和ELISA檢測試劑盒均購自武漢賽培生物科技有限公司。按ELISA檢測試劑盒說明書推薦方法測定各組小鼠血清中IL-2、IL-10、TGF-β1的含量。
1.3.3 FCM測定小鼠脾細胞中CD4+、CD4+CD25+Foxp3+Treg的表達水平? 實驗結(jié)束后,將無菌分離的脾臟研磨勻漿制作細胞懸液,200目細胞篩過濾后移至新離心管,800×g離心5 min后去上清。細胞經(jīng)PBS溶液洗滌2次后,離心棄上清。加適量細胞培養(yǎng)基,調(diào)整細胞密度為1×107個/mL。用淋巴細胞分離液處理使細胞分層為分層液和上清液之間的云霧層,用注射針吸取至新的離心管。同樣PBS溶液洗滌2次,離心去上清,即得脾臟組織單個核細胞。分別取100 μL的細胞懸液于兩個流式細胞管中,第1管加入PERCP標記的CD4抗體,第2管中加入PERCP標記的CD4抗體、CD25抗體。室溫下避光孵育20? min后,加入500 μL細胞內(nèi)膜阻斷劑10 min后,離心去上清。加入PE標記的Foxp3抗體,室溫下避光孵育20 min后,PBS溶液洗滌1次后懸浮。流式細胞儀測定各組小鼠脾淋巴細胞中CD4+CD25+Foxp3+/CD4+(Treg)的比例。
1.3.4 免疫熒光檢測小鼠脾細胞中Foxp3+免疫熒光強度? 脾細胞懸液玻片用4%的多聚甲醛固定爬片15 min,PBS浸洗玻片3次,每次3 min。0.5%Tritonx-100(PBS配置)室溫通透20 min,PBS浸洗玻片3次,每次3 min,吸水紙吸干PBS,玻片上加入山羊血清,室溫封閉30 min。每片玻片滴入一抗(FOXP3,Abcam,1∶100),放入濕盒,4℃孵育過夜。加入熒光二抗,濕盒中孵育1 h后,回收二抗,PBST洗滌3次,每次5 min。玻片上滴加DAPI,避光孵育5 min,對標本進行染核,吸水紙吸干玻片上液體,用含抗熒光淬滅劑的封片液封片,在熒光顯微鏡下觀察和收集圖像(日本尼康)。
1.4 統(tǒng)計學方法
應用SPSS 20.0統(tǒng)計軟件進行相關數(shù)據(jù)分析,計量資料均用(x±s)表示,兩組間的比較用t檢驗,多個樣本率的比較用χ2檢驗,多組間比較采用單因素方差分析(one-way ANOVA)。以P<0.05或P<0.01表示差異有統(tǒng)計學意義。
2 結(jié)果
2.1龍葵堿可抑制小鼠肝癌移植瘤的生長
龍葵堿組(Solanine)、TGF-β1抑制劑組(SB-431542)、聯(lián)合組(Solanine+SB-431542)的移植瘤重量均明顯低于對照組(Control),差異有統(tǒng)計學意義(P<0.01),見表1。
2.2龍葵堿可降低小鼠外周血中IL-2、IL-10、TGF-β1水平
與對照組(Control)相比,龍葵堿組(Solanine)、TGF-β1抑制劑組(SB-431542)、聯(lián)合組(Solanine+SB-431542)3組小鼠外周血中IL-2、IL-10、TGF-β1水平明顯降低,差異有統(tǒng)計學意義(P<0.05),見圖1。
2.3龍葵堿可降低脾臟中CD4+CD25+Foxp3+Treg表達水平
為觀察龍葵堿對肝癌荷瘤小鼠Treg的影響,本研究以CD4+CD25+Foxp3+作為Treg標記。結(jié)果顯示,龍葵堿組(Solanine)、TGF-β1抑制劑組(SB-431542)、聯(lián)合組(Solanine +SB-431542)三組CD4+表達水平均高于對照組(control),相應的,CD4+CD25+Treg在CD4+T細胞中的比例則明顯下降,尤其是聯(lián)合組(Solanine +SB-431542)下降更為明顯,差異具有統(tǒng)計學意義(P<0.01)。見圖2。
2.4小鼠脾細胞中Foxp3+免疫熒光強度
免疫熒光染色結(jié)果顯示,龍葵堿組(Solanine)、TGF-β1抑制劑組(SB-431542)、聯(lián)合組(Solanine+SB-431542)三組荷瘤小鼠Treg細胞中Foxp3+的表達明顯低于對照組(Control),差異有統(tǒng)計學意義(P<0.05)。見圖3,封三圖3。
3 討論
腫瘤免疫逃逸(Tumor immune escape,TIE)是腫瘤形成的重要特征之一,是腫瘤細胞通過多種機制逃避機體免疫系統(tǒng)識別和攻擊,從而得以在體內(nèi)生存和增殖的現(xiàn)象。Weinberg教授和Hanahan教授在2011年的“The Hallmarks of Cancer”將免疫逃逸作為腫瘤發(fā)生發(fā)展十大特征之一,其涉及基因、炎癥、血管、代謝等多環(huán)節(jié)參與。免疫療法通過逆轉(zhuǎn)免疫逃逸、恢復機體免疫識別和清除腫瘤細胞,日益成為研究熱門[11]。肝癌的免疫治療主要有過繼細胞療法、腫瘤疫苗、細胞因子治療以及新近熱門免疫檢查點療法,但因腫瘤免疫逃逸機制處于一個復雜的免疫網(wǎng)絡中,故目前免疫治療效果也因此受到一定限制[2-3]。肝癌的微環(huán)境中包含大量巨噬細胞及固有免疫和適應性免疫細胞,形成了復雜的免疫耐受微環(huán)境[12]。研究發(fā)現(xiàn)[13-14],肝癌腫瘤微環(huán)境中CD4+CD25+Treg大量增加,這些CD4+CD25+Treg能夠抑制肝癌中DC的免疫應答,高密度的腫瘤浸潤性CD4+CD25+Foxp3+Treg與不良預后相關。抑制Treg可能是誘導肝癌免疫應答的重要途徑,對腫瘤免疫治療具有重要意義。
Treg細胞占正常人外周血中CD4+T淋巴細胞亞群的5%~10%,分為天然產(chǎn)生的自然調(diào)節(jié)性T細胞(nTreg)和誘導產(chǎn)生的適應性調(diào)節(jié)性T細胞(iTreg),腫瘤微環(huán)境中的Treg細胞主要是誘導產(chǎn)生iTreg[15]。Treg的表面標志物是CD4、CD25,胞核標志物Foxp3。在腫瘤微環(huán)境中,由腫瘤細胞分泌的TGF-β1與IL-2一起誘導初始CD4+CD25-細胞轉(zhuǎn)化為CD4+CD25+細胞并表達FoxP3,使其具備CD4+CD25+細胞的特性(即CD4+CD25+FoxP3+Treg細胞)[16]。CD4+CD25+FoxP3+Treg細胞與腫瘤免疫逃逸密切相關,具有抑制CD4+細胞和CD8+T細胞活化、增殖的作用。叉頭翼狀螺旋轉(zhuǎn)錄因子(Foxp3)與免疫調(diào)節(jié)相關,在細胞的分化和功能維持方面具有重要作用,是Treg細胞的特異性標記物。研究表明[17],TGF-β1/Smad通路在腫瘤微環(huán)境中Treg的生成中發(fā)揮重要作用,其通過誘導Treg細胞表達其特異轉(zhuǎn)錄因子Foxp3,促進腫瘤免疫逃逸。而SB-431542為特異性的TGF-β1抑制劑,可以抑制下游信號分子Smad2/3的磷酸化,從而阻斷依賴 Smad 途徑[18]。研究表明[19-20],CD4+CD25+FoxP3+Treg主要通過兩條途徑調(diào)控腫瘤免疫:一是通過分泌白介素-2(Interleukin-2,IL-2)、白介素-10(Interleukin-10,IL-10)及轉(zhuǎn)化生長因子-β1(Transforming growth factor-beta,TGF-β1)等抑制性細胞因子,抑制細胞毒性T細胞(CD8+)和自然殺傷細胞(NK)的活化、增殖而發(fā)揮其負性免疫調(diào)控作用;另一個是通過細胞與細胞間的直接接觸發(fā)揮細胞抑制作用。龍葵(Solanum nigrum L.)是我國常用抗癌中藥,為茄科茄屬草本植物,其抗腫瘤藥理活性成分為龍葵生物堿(Solanine),通過抑制細胞增殖、誘導細胞凋亡、阻斷細胞周期等機制發(fā)揮抗癌作用,具有良好的藥用前景[6-8]。本研究從龍葵堿影響肝癌荷瘤小鼠免疫逃逸的角度探討了龍葵堿抗腫瘤的可能機制,結(jié)果表明,龍葵堿作用后肝癌荷瘤小鼠脾細胞中Foxp3+免疫熒光強度明顯減低,Treg細胞表達水平明顯下降,外周血中抑制性細胞因子IL-2、IL-10、TGF-β1的水平也明顯下降,推測龍葵堿可能改善了細胞毒性T細胞(CD8+)和自然殺傷細胞(NK)的抗腫瘤活性,從而發(fā)揮抗腫瘤作用。
在本研究中,通過H22肝癌荷瘤小鼠動物實驗驗證了龍葵堿對肝癌的抑制作用。龍葵堿和TGF-β1抑制劑可顯著降低荷瘤小鼠Treg細胞含量,降低免疫性抑制細胞因子IL-2、IL-10及TGF-β1的分泌。龍葵堿可能通過抑制Treg細胞中關鍵轉(zhuǎn)錄因子Foxp3的表達而發(fā)揮免疫調(diào)節(jié)作用。具體機制有待于進一步實驗驗證。
[參考文獻]
[1] Ringelhan M,Pfister D,OConnor T,et al.The immunology of hepatocellular carcinoma[J].Nat Immunol,2018,19(3):222-232.
[2] JMichael P Johnston,Salim I Khakoo.Immunotherapy for hepatocellular carcinoma: Current and future[J].World J Gastroenterol,2019,25(24):2977-2989.
[3] Liu X,Qin S.Immune Checkpoint Inhibitorsin Hepatocellular Carcinoma:Opportunities and Challenges[J].Oncologist,2019,24(Suppl 1):S3-S10.
[4] Nicholas Arpaia,Jesse A Green,Bruno Moltedo,et al.A Distinct Function of Regulatory T Cells in Tissue Protection[J].Cell,2015,162(5):1078-1089.
[5] Tanaka A,Sakaguchi S.Regulatory T cells in cancer immunotherapy[J].Cell Res,2017,27(1):109-118.
[6] 黃苗苗,劉美英,李保環(huán),等.龍葵堿通過調(diào)節(jié)miR-140和結(jié)腸癌轉(zhuǎn)移相關基因1調(diào)控胃癌細胞增殖和凋亡[J].中國臨床藥理學雜志,2020,36(16),2440-2443.
[7] Mohsenikia M,Alizadeh AM,Khodayari S,et al.The protective and therapeutic effects of alpha-solanine on mice breast cancer[J].Eur J Pharmacol.2013,718(1-3):1-9.
[8] Wei-Feng Zhong,Si-Ping Liu,Bin Pan,et al.Solanine inhibits prostate cancer Du145 xenograft growth in nude mice by inducing cell cycle arrest in G1/S phase[J].Nan Fang Yi Ke Da Xue Xue Bao,2016,36(5):665-670.
[9] 陳培豐,潘磊,高聚偉,等.龍葵正丁醇萃取物對肝癌H22荷瘤小鼠的抑瘤作用及其免疫功能的影響[J].中國中醫(yī)藥科技,2013,20(2):141-142.
[10] 陳培豐,高聚偉,潘磊.龍葵氯仿及正丁醇提取物對lewis肺癌移植瘤增殖及其血清IFN-γ、IL-2和IL-4含量的影響[J].中華中醫(yī)藥學刊,2014,32(8):1799-1802.
[11] Vasquez L,Castro D,León J,et al.Cancer immunotherapy:from inception to Nobel Prize[J].Rev Peru Med Exp Salud Publica,2020,37(1):115-121.
[12] Kurebayashi Y,Ojima H,Tsujikawa H,et al. Landscape of immune microenvironment in hepatocellular carcinoma and its additional impact on histological and molecular classification[J].Hepatology,2018,68(3):1025-1041.
[13] Lee WC,Wu TJ,Chou HS,et al.The impact of CD4+CD25+T cells in the tumor microenvironment of hepatocellular carcinoma[J].Surgery,2012,151(2):213-222.
[14] Huang Y,Wang FM,Wang T,et al.Tumor-infiltrating FoxP3+Tregs and CD8+T cells affect the prognosis of hepatocellular carcinoma patients[J].Digestion,2012,86(4):329-337.
[15] Bluestone,J.A,A.K. Abbas.Natural versus adaptive regulatory T cells[J].Nat Rev Immunol,2003,3(3):253-257.
[16] Greten T F,Ormandy L A,F(xiàn)ikuart A,et al.Low-dose cyclophosphamide treatment impairs regulatory T cells and unmasks AFP-specific CD4+ T-cell responses in patients with advanced HCC[J].J Immunother,2010,33(2): 211-218.
[17] Chu C S,Boyer J,Schullery D S,et al.Phase I/II randomized trial of dendritic cell vaccination with or without cyclophosphamide for consolidation therapy of advanced ovarian cancer in first or second remission[J]Cancer Immunol Immunother,2012,61(5):629-641.
[18] Gu AD,Wang Y,Lin L,et al.Requirements of transcription factor Smad-dependent and independent TGF-β signaling to control discrete T-cell functions[J].Proc Natl Acad Sci USA,2012,109(3):905-910.
[19] Wolf D,Sopper S,Pircher A,et al.Treg(s) in Cancer: Friends or Foe?[J].Cell Physiol,2015,230(11):2598-2605.
[20] Zhang H,Podojil JR,Chang J,et al.TGF-beta-induced myelin peptide-specific regulatory T cells mediate antigen-specific suppression of induction of experimental autoimmune encephalomyelitis[J].J Immunol,2010,184(12):6629-6636.
(收稿日期:2021-01-11)