• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Memory Analysis for Memristors and Memristive Recurrent Neural Networks

    2020-02-29 14:16:46GangBaoYideZhangStudentandZhigangZeng
    IEEE/CAA Journal of Automatica Sinica 2020年1期

    Gang Bao,, Yide Zhang, Student, and Zhigang Zeng,

    Abstract—Traditional recurrent neural networks are composed of capacitors, inductors, resistors, and operational amplifiers.Memristive neural networks are constructed by replacing resistors with memristors. This paper focuses on the memory analysis,i.e. the initial value computation, of memristors. Firstly, we present the memory analysis for a single memristor based on memristors' mathematical models with linear and nonlinear drift.Secondly, we present the memory analysis for two memristors in series and parallel. Thirdly, we point out the difference between traditional neural networks and those that are memristive. Based on the current and voltage relationship of memristors, we use mathematical analysis and SPICE simulations to demonstrate the validity of our methods.

    I. INTRODUCTION

    THE memristor was first defined by Chua [1] and can be described by the following mathematical model [2]

    whereu(t),y(t) are input and output of memristive systems,respectively.x(t) is the state variable,f(x(t),u(t),t) is an-dimensional vector function andg(x(t),u(t),t) is the generalized system response. Williams and his colleagues transform the concept of memristors into the physical devices [3], whose structure diagram is shown in Fig. 1. The memristor is composed of a two-layer TiO2thin film, two platinum contacts, a doped regionRon, and an undoped regionRoff.D,ware the thickness of the film and the width of the doped region, respectively. Later, Chua points out that all two-terminal nonvolatile memory devices based on resistance switching are memristors, regardless of the device material and physical operating mechanisms [4].

    Fig. 1. The schematic diagram of the HP memristor. (a) The diagram of the HP memristor model. (b) The circuit symbol of the memristor, showing the positive and negative polarities.

    The memristor has various applications for its nano-scale size and memory property. For example, it is used to implement chaotic circuits [5], [6], memristor oscillators [7],and neural synapses [8]. Snideret al. adopt memristors in neuromorphic applications to simulate learning, adaptive and spontaneous behaviors and to implement synaptic weights in artificial neural networks [9], [10]. Pershin and Di Ventra give an experimental demonstration for associative memory with memristive neural networks [11]. Then the memristor is employed as a nonvolatile memory storage device [12], [13].Furthermore, it has also been used to simulate the human brain’s hierarchical temporal memory, short-term, long-term memory [14], [15] and memristive recurrent neural networks.Meanwhile, memristors have also been harnessed for image processing, adaptive filters, digital logic, neuromophic engineering, digital and quantum computation [16], [17], etc.

    The dynamic properties of memristors are the foundation for its applications; thus memristors with different materials and configurations are made for dynamic analysis experiments [18],[19]. Williamset al. [3] present the mathematical model for memristors and show its fingerprint characteristic with a pinched hysteresis currenti-voltagevloop. Based on Williams’mathematical model of memristors, Wang [20] derives the formula of the internal statex(t) and obtains the analytical expression of the currenti(t) and the voltagev(t). Considering the doped materials’ nonlinear drift, Bioleket al. [21] introduce window functions and give the SPICE model of memristors.Using Bernoulli dynamics, Drakakiset al. [22]derive the analytic description,Imres=f(Vmres) which defines the relation between the currentImresand the voltageVmresunder the assumption of nonlinear dopant drift. Wanget al. [23]and Zhanget al. [24] propose a piecewise linear (PWL)memristance model for studying dynamic properties of memristors. For single memristors, Bioleket al. [25], [26].demonstrate a methodology to obtain the analytical solution of a memristor’s voltage/current response under the current/voltage excitation. For the properties of multiple memristors,Baoet al. [27] give the voltage-current relationship of parallel memristors. Kimet al. [28], [29] analyze the composite behavior of multiple connected memristors under the assumption that all memristors should reach a stable state. Then they construct a memristor emulator which could be connected in serial, parallel, or hybrid, simplifying the study of multiple memristors.

    The memristive recurrent neural networks (MRNNs) are presented by replacing linear resistors with memristors in classical recurrent neural networks circuits. There are some compound results about the dynamical characteristics of the MRNNs [30]-[33]. Furthermore, we found that the MRNNs are a family of neural networks [34]. The MRNNs can be region stable and convergent to a sub neural network in the family of neural networks. Such a convergent result is dependent on the initial values of memristive synapses and network states. Hence,it is important to locate the initial states of memristive synapses and analyze the memory property of memristors. Although memory analysis has been discussed in the existing literature,determining how to locate the state of a memristor is scarcely discussed. With this motivation, we investigate the memory property of a memristor based on the relation between its voltagev(t) and currenti(t) and give the method to locate the initial states of the memristive synapses. Our analysis comprehensively includes memristors under the assumptions of both linear and nonlinear dopant drift. We also extend the methods to obtain the initial states of two memristors connected in series and parallel, whose initial states can be obtained simultaneously with only a few measurements and one integration. SPICE simulations have been conducted for each presented method. The simulation results convincingly confirm the viability of our approaches. The rest of this paper is organized as follows: in Section II, we analyze the memory property of the memristor with linear and nonlinear dopant drift under a current and a voltage source, respectively. Further discussion on the memory property of two series- or parallelconnected memristors, as well as the algorithm to locate the initial states of memristive synapses, are provided in Section III.Finally, Section IV concludes the paper.

    II. MEMORY ANALYSIS FOR ONE MEMRISTOR

    In this section, we discuss a method to compute the initial value of a single memristor under voltage and current sources by using the memristor models with linear and nonlinear dopant drift.

    A. Linear Dopant Drift With Current Excitation

    In this section, we consider the memory of single memristive synapses based on Williams’s memristor model[3] as follows:

    wherei(t), μVare the current through the device and the average ionic mobility, respectively;v(t) is the applied voltage source. Letx(t)=w(t)/Dbe the state variable of the memristor, as in (1); then, (2) can be rewritten as

    withx(t)∈[0,1]. LetM(t)=Ronx(t)+Roff(1-x(t)). A pinched hysteresis loop figure, the fingerprint characteristic of the memristor, can be obtained by applying a sinusoidal current sourcei(t)=i0sin(ωt) to the memristor. An HSPICE simulation is conducted and the result is shown in Fig. 2. The simulation parameters are set as following:i0= 200 μA,ω=2π rad/s,x(t0)=0.1,t0=0 s,Ron=100Ω,r=Roff/Ron=160,D=10-6cm , μV=10-10cm2/sV.

    Fig. 2. The dynamical characteristics of the linear HP memristor. (a) The linear memristor’s fingerprint characteristic: pinched hysteresis loop figure.(b) The change of the state x(t) , applied current source i(t) and the corresponding voltage v(t) of the memristor.

    Remark 1:From (2) and (3), the memristance is variable in the interval [Ron,Roff]. The memristance will be changed when the voltage or the current source is applied to the device. The initial value of the memristor is the memristancebefore the voltage or the current source is applied. The initial value can be memorized by the memristor and it affects memristance variation. This point, however, has not been discussed in the literature. The simulation parameters are chosen by using those in [3]. We compute the initial state of the memristor with the voltmeterammeter method and consider two cases, i.e., current excitation and voltage excitation, as shown in Fig. 3. The developed methods are for linear and nonlinear dopant drift.

    Fig. 3. Circuits for measuring the initial state of a memristor, under the excitation of (a) a current source and (b) a voltage source. V and I are voltmeter and ammeter, respectively.

    Let

    and

    We apply a current source at timet=t0and let

    and

    Substituting (7) into (3),

    and then

    Next we verify this method with an HSPICE simulation.Predeterminingx(t0) to be 0.28, we run the circuit in Fig. 3(a)for 2.73 s, while other parameters are the same with those in Fig. 2. The simulation process is presented in Fig. 4. After 2.73 s, the currenti(2.73) and voltagev(2.73) across the memristor are -198.4229 μA and -1.16128 V, respectively.Since the current source is sinusoidal, we getq(2.73)=3.582×10-5C by integratingi(t) fromt=0 tot= 2.73 s. Therefore we can apply the mathematical method and getx(t0)=0.28 which matches the value we predetermined. The result verifies that our method of applying current excitation to determine the initial state of a linear memristor is feasible.

    Fig. 4. Simulation process of a linear memristor under the current source for 2.73 s.

    B. Linear Dopant Drift With Voltage Excitationthe formula forx(t0) . In (3), let β =D2/μV, and then

    In this section, we consider the voltage excitation and drive

    where

    It is easy to find that the constantcof the integration is dependent on initial value ofx(t) att=t0. Therefore the memory effect of memristors is attributed to the integration constantc. Next we deduce the analytic expression ofi(t) andv(t). Sincex(t)∈[0,1], from (11), we get

    Differentiating (13) with respect to timet, then we obtain

    in which constantcis not removed. Based on (3), we have

    From (15), we can obtaincby solving (15) withas

    Then by (12), the initial statex(t0) can be obtained

    Fig. 5. Simulation process of a linear memristor under the voltage source for 4.21 s.

    The result can be easily examined with a simulation. We simulate the circuit Fig. 3(b) on HSPICE. The initial state of the linear memristor is predetermined as 0.37. The applied voltage is a simple sinusoidal voltage sourcev(t)=v0sin(ωt),wherev0=1V, ω =2π rad/s. The other simulation parameters are set as following:t0=0 s,Ron=100Ω,r=160,D=10-6cm, μV=10-10cm2/sV. We run the simulation for 4.21 s. At the end of the simulation, we getv(4.21)=968.5832 mV andi(4.21)=120.7629 μA. Because the applied voltage source is sinusoidal, φ(t) can be calculated from the integration fromt=0 tot=4.21 s: φ(4.21)=0.1196 Wb.Thus we can apply the mathematical method in (17) and obtain

    which is the same with what we predetermined forx(t0). From the result, the viability of our method has been examined by the simulation.

    C. Nonlinear Dopant Drift With Current Excitation

    In this section, we will show the methods to determine the initial statex(t0) of the memristor under the assumption of nonlinear dopant drift. For the nonlinear memristor, the descriptive model should be adjusted from (3) to

    wheref(x(t)) is a window function such thatf(0)=f(1)=0 ensures no drift at boundaries. The window function in model(18) is

    in whichpis a positive integer.f(x) is shown in Fig. 6 forp=1,2,5, respectively. Aspincreases, the curve get flatter in the middle and becomes steeper at the boundaries. If not specified, all nonlinear memristors are configured asp=1 in the rest of this paper.

    Fig. 6. Illustration for window function f(x)=1-(2x-1)2p with p=1,2,5.

    Takingp=1 in (19) and combing with (18), we get

    The fingerprint characteristic of the memristor with nonlinear dopant drift, a bow-tie shapei-vfigure, can be generated by applying a sinusoidal current sourcei(t)=i0sin(ωt)to the memristor. Based on (20), an HSPICE simulation is performed and the result is shown in Fig 7. The simulation parameters are set as following:i0=800 μA,ω=2π rad/s,r=160,D=10-6cm, μV=10-10cm2/sV.

    Let ξ =μVRon/D2and simplify (20) as

    then

    Fig. 7. The dynamical characteristics of the nonlinear HP memristor (a)The nonlinear memristor’s fingerprint characteristic: bow-tie shape figure. (b)The change of the state x(t) , applied current source i(t) and corresponding voltage v(t) of a nonlinear memristor.

    For the initial timet0,q(t0)=0, we integrate both sides of(22) for ?t>t0

    Let

    and solve (23) forx(t), we have

    From (24), we can find the determinant relation between the constantcandx(t0). In other words,cincludes the history information ofx(t). Now substitute (25) into (20), and we get

    from whichccan be calculated by

    Therefore the initial statex(t0) of the nonlinear memristor is obtained by solving (24),

    The result of the HSPICE simulation agrees with the method. We presetx(t0)=0.53, and then run the circuit in Fig. 3(a) for 3.67 s. The parameters of the circuit are kept the same with those in Fig. 7. The simulation result is shown in Fig. 8. At the end of the simulation, the currenti(3.67) and voltagev(3.67) of the memristor are - 701.0453 μA and-75.32032 mV, respectively. Because the current source is sinusoidal, we can calculateq(3.67)=1.8866×10-4C by integratingi(t) fromt=0 tot=3.67 s. Therefore

    Fig. 8. Simulation process of a nonlinear memristor under the current source for 3.67 s.

    The simulation result matches the value we predetermined forx(t0). That means the method is applicable for the calculation of initial states of memristors under the nonlinear dopant drift assumption.

    D. Nonlinear Dopant Drift With Voltage Excitation

    For nonlinear memristors, the initial statex(t0) can also be acquired through voltage excitation. From (20), we have

    where β =D2/μV. Substitutei(t) with (29) into (20), and we get

    Let

    then (31) can be simplified to

    The relation betweencandx(t0) in (32) claims that the initial state of a nonlinear memristor can be calculated from the integration constantc. That is to say, the memory effect of nonlinear memristors can be represented by an integration constant. Next we deduce how to calculatec. Change (33) to

    Combining (34) and (35),cis obtained by

    Then from (32),x(t0) can be acquired by solving an equation

    Since (37) isr-order, whereris undetermined, the analytical solution ofx(t0) is not easy to get. So a numerical solution is recommended.

    In order to get the numerical solution ofx(t0), an algorithm is presented as follows. First, construct a functionz(x)according to (37)

    Forx(t0)∈(0,1) , iteratex(t0) from 0 to 1, with a small increment δ (e.g., δ =0.0001) in each iteration. Notice that the precision of the numerical solution is dependent on δ: the smaller δ, the better the accuracy. During the iteration,x(t0) is regarded as the independent variablexto calculatez(x) in(38). Since the derivative ofz(x)

    z(x) is monotonically increasing with the increment ofxin every step. Continue the iteration until obtaining asuch thatthen compare the absolute value ofandto select the smaller one. As a result, the correspondingxto this smallerz(x) is the numerical solution ofx(t0) we are looking for.

    An HSPICE simulation is conducted to verify this approach.The simulation circuit is the same with Fig. 3(b).Predetermining the initial state of the nonlinear memristor as 0.41, we apply a simple sinusoidal voltage sourcev(t)=v0sin(ωt) , wherev0=1.2 V, ω=2π rad/s. The other simulation parameters are set as following:t0=0 s,Ron=100 Ω,r=160,D=10-6cm, μV=10-10cm2/sV. The simulation lasted for 3.73 s and we getv(3.73)=-1.190538 V andi(3.73)=-243.4537 μA. Since the applied voltage source is sinusoidal, φ(t) can be calculated from the integration fromt=0 tot=3.73 s: φ(3.73)=0.2149 Wb. Thus we can apply our mathematical method in (36)-(38) and obtain

    The calculation result ofx(t0) is the same with what we predetermined. The feasibility of our method has been examined from the simulation.Remark 2:From the analysis above, the integration constantcincludes the information of the initial valuex(t0). The memory is attributed to the integration constantc, which means that the initial valuex(t0) can be computed by the integration constantc. For different models of the memristors,the formulas of the integration constantcare different. The accuracy of the initial value computation is dependent on the model of the device.

    E. Memory Analysis for MRNNs

    The model of the MRNNs is obtained by replacing linear resistors with memristors and can be described by the following differential systems

    Fig. 9. Simulation process of a nonlinear memristor under the voltage source for 3.73 s.

    whereui(t),i=1,2,...,n, are the states of the network,Ri,Mij(t),i,j=1,2,...,n, are linear resistances and memristances, respectively;fj(s) andIi,i,j=1,2,...,n,s∈R are activation functions and bias currents, respectively.

    According to the property of memristor, MRNNs are a cluster of neural networks. When the power is off, MRNNs can store their historic state. In order to analyze their memory property, i.e., computing initial values of every memristors,we use Algorithm 1 for the memory analysis for MRNNs.

    Algorithm 1 Memory analysis for MRNNS

    Remark 3:From (39), coefficients of MRNN are variable in the interval [ 1/Roff,1/Ron]. If the MRNN can be convergent to one sub-network, the convergent result is dependent on the initial valueui(t0) of the network state and the initial valueMji(t0)of memristive synapses. It is necessary for us to locate the initial state of memristive synapses, i.e., analyzing the memory property of the memristor. It is difficult to obtain an accurate value of the voltage between two terminals of memristors. In future works, we will design suitable observers to obtain the voltage value of memristors. Memristors are nano-scale nonlinear resistors with stationaryRonandRoff. In practical applications, we need to connect two or more memristors in series or parallel to obtain different memristors with different memristances. Therefore, it is necessary to analyze the memory of two or more memristors in series or parallel.

    III. MEMORY PROPERTIES OF TWO MEMRISTORS INTERCONNECTION

    In this section, we will discuss memory properties of two series and parallel memristors. As discussed in Section II, one measurement value (i(t) orv(t)) and one integration value (q(t)or φ(t)) is needed to determine the initial state of the memristor. However, we do not need to conduct two measurements and two integrations for two memristors when they are connected in series or parallel, because the memristors connected in series share the same current, and the ones in parallel share the same voltage. Our approach is valid forn(n>1) memristors connected in series and parallel: for the series connection case,nmeasurements fornindividual voltages and an integration for the common charge are required; for the parallel connection case, we neednmeasurements fornindividual currents and an integration for the shared magnetic flux. For the purpose of simplicity and without loss of generality, we only discuss two series and parallel memristors.

    A. Two Memristors in Series

    Firstly we discuss the memory property of two memristorsM1andM2in series and discuss the method in finding initial states ofM1andM2. Denotex1(t0),x2(t0) as initial states ofM1andM2. Then one can attach a given current sourcei(t) to them and measure the corresponding voltagev1(t),v2(t)ofM1,M2. When two memristors are connected in series, we should consider the memristors’ polarities as shown in Fig. 10. In the situation of Fig. 10(a),M1andM2connected in series share the same polarity with the current source and voltmeters. We can directly apply (28) in Section II to each memristor. In Fig. 10(b), whileM1shares the same polarity with the excitation,M2is opposite to the current source. Hence calculation methods for the initial state ofM2should be adjusted. A negative sign should be added toi(t),v(t) andq(t)to offset the polarity difference ofM2. Since the existence of opposite polarity is more universal for series connected memristors, in this subsection, we only discuss the situation in Fig. 10(b).

    Fig. 10. Two memristors in series with (a) the same polarity and (b) the opposite polarity.

    If the discussed memristors are under the assumption of linear dopant drift, we calculate the integration constantc1and the initial statex1(t0) ofM1. ForM2, the memristor opposite to the one connected,

    An HSPICE simulation is conducted to examine this method for linear memristors in series. We predetermine the initial statesx1(t0),x2(t0) to be 0.15 and 0.75, respectively.The simulation circuit is Fig. 10(b), where the current sourcei(t)=i0sin(ωt),i0=200 μA , and ω=2π rad/s. The other simulation parameters are the same as the ones in Section II:t0=0 s,Ron=100 Ω,r=160,D=10-6cm, μV=10-10cm2/sV.We then run the circuit for 3.13 s.i(3.13)=145.7937 μA,v1(3.13) andv2(3.13) are measured as 1.752215 V and 826.8759 mV, respectively. Since the current source is sinusoidal, we getq(3.13)=1.0041×10-5Cby integratingi(t)fromt=0 tot=3.13 s. With the presence ofi(3.13),vk(3.13)andq(3.13),k=1,2, the initial states ofM1,M2are obtained according to (40),

    The results are coincident with the values we preset forx1(t0),x2(t0), representing the validity of the methods (40).

    For series connected memristors under the assumption of nonlinear dopant drift, the integration constantc1and the initial statex1(t0) ofM1can be calculated from (28). As for the opposite connectedM2, (28) should be adjusted to

    Hencec2andx2(t0)ofM2can be obtained from (41).

    This approach for series connected memristors with the nonlinear dopant drift can also be verified with an HSPICE simulation. We preset the initial statesx1(t0),x2(t0) to be 0.21 and 0.47, respectively. The simulation circuit and parameters are identical to the ones above for linear memristors, except the magnitude of the current source isi0=800 μA. Run the circuit for 4.11 s. At the end of the simulation,i(4.11)=509.9392 μA,v1(4.11) andv2(4.11) are measured as 4.420901 V and 6.407382 V, respectively. Since the current source is sinusoidal, we can getq(4.11)=2.9219×10-5C by integratingi(t) fromt=0 tot=4.11 s. Now we havei(4.11),vk(4.11) andq(4.11),k=1,2, the initial states ofM1,M2can be calculated according to (28) and (41)

    The predetermined values forx1(t0),x2(t0) are obtained from the simulation, showing the feasibility of methods (28)and (41).

    B. Two Memristors in Parallel

    In this subsection, we study the property of two memristors in parallel and give the formulas to calculate the initial states ofM1,M2. A common voltage sourcev(t) is applied to them and the corresponding currentsi1(t),i2(t) ofM1,M2can be measured. When two memristors are connected in parallel, we should consider the memristors’ polarities as shown in Fig. 11.In Fig. 11(a),M1andM2connected in parallel share the same polarity with the voltage source and the ammeters. Equations(17) or (36), and (37) in Section II can be applied to each memristor. In Fig. 11(b) , however,M2is opposite to the voltage excitation, contrary to the regular connection ofM1.Therefore the calculation methods for the initial state ofM2should be adjusted accordingly. A negative sign is added tov(t),i(t) and φ(t) to compensate for the polarity difference ofM2. We only discuss the situation in Fig. 11(b) in this subsection, because the existence of opposite polarity is more general for parallel connected memristors.

    First we discuss the memristors in parallel under the linear dopant drift assumption; the integration constantc1and the initial statex1(t0)ofM1can be calculated from (17). Whilec2andx2(t0) of the opposite connected memristorM2can be obtained

    Fig. 11. Two memristors in parallel with (a) the same polarity and (b) the opposite polarity.

    A parallel memristors circuit simulation is conducted to examine this method. We preset the initial statesx1(t0),x2(t0)to be 0.33 and 0.67, respectively. The simulation circuit is in Fig. 11(b), where the applied voltage is a simple sinusoidal voltage sourcev(t)=v0sin(ωt),v0=1 V, ω=2π rad/s. The other simulation parameters are the same with those in series connection. Run the simulation for 5.21 s. Thenv(5.21)=968.5831 mV,i1(5.21) andi2(5.21) are measured as 109.9511 μA and 118.6726 μA, respectively. We can also get φ(5.21)=0.1196 Wb by integratingv(t) fromt=0 tot=5.21s since the voltage source is sinusoidal. With the existence ofv(5.21),ik(5.21) and φ(5.21),k=1,2, the initial states ofM1,M2are obtained according to (17) and (42),c1=-44.1424,x1(t0)=0.33,c2=-71.5125,x2(t0)=0.67.

    The correctness of our approach is examined from the consistency of the result and preset values.

    Then we should consider the situation when two memristors under the assumption of nonlinear dopant drift are connected in parallel. The integration constantc1ofM1can be calculated from (36), and the initial statex1(t0) can be obtained from solving (37). The numerical algorithm to determine the solution of (37) has been described in Section II-D. As for the opposite connectedM2, (36) should be adjusted to

    to get the integration constantc2ofM2. Andx2(t0), the initial state ofM2, can also be obtained from solving the equation

    We simulate the nonlinear memristors in parallel to test this algorithm. Predetermining the initial statesx1(t0),x2(t0) to be 0.45 and 0.54, respectively. The circuit and parameters are the same with the previous ones, except the magnitude of the voltage sourcev0=1.2 V. The simulation is lasted for 5.77 s.At the end of the simulation,v(5.77)=-1.190538 V,i1(5.77)andi2(5.77) are measured as - 230.0400 μA and-115.2139 μA, respectively. Since the voltage source is sinusoidal, we can calculate φ(5.77)=0.1670 Wb by integratingv(t) fromt=0 tot=5.77 s. Now we getv(5.77),ik(5.77) and φ(5.77),k=1,2, the initial states ofM1,M2can be obtained following the calculation of (36), (43) and the solution of (37), (44),

    The results are in accordance with the predetermined values.

    Remark 4:For two memristors connected in series or parallel, the total initial memristance can be computed if the initial valuesx1(t0),x2(t0) are obtained, respectively. We focus on the memory analysis for two memristors in series or parallel, i.e., the total initial memristance computation. This is difference from the property analysis of two series or paprallel memristors in the existing papers.

    IV. CONCLUDING REMARKS

    In this paper, we discuss the memory property of memristors by deriving the formula for the initial value formula and the voltmeter-ammeter method. Then we analyze two series and parallel memristors' memory. According to the developed memory analysis method, we give the algorithm for locating the initial values of all memristive synapses of the MRNN (39). Our analysis shows that the integration constantcin the expression plays an important role in the memory of the electronic device. The accuracy may be improved for the computation of the initial values if the state observer can be designed for the MRNN. This will be our future work.

    久久久精品免费免费高清| 一本大道久久a久久精品| 精品午夜福利在线看| 天天操日日干夜夜撸| 日韩电影二区| 黄网站色视频无遮挡免费观看| svipshipincom国产片| 久久精品国产亚洲av高清一级| 久久av网站| 97在线人人人人妻| 亚洲精品日本国产第一区| 国产精品 欧美亚洲| 欧美亚洲 丝袜 人妻 在线| 久久久久久久久久久免费av| 亚洲成人免费av在线播放| 日韩 亚洲 欧美在线| 欧美久久黑人一区二区| 69精品国产乱码久久久| 国产av码专区亚洲av| 国产午夜精品一二区理论片| 欧美 日韩 精品 国产| 韩国高清视频一区二区三区| 最近的中文字幕免费完整| 在现免费观看毛片| 婷婷色av中文字幕| 久久毛片免费看一区二区三区| 国产野战对白在线观看| 午夜免费观看性视频| 亚洲成色77777| 男女边摸边吃奶| 少妇被粗大猛烈的视频| 国产成人av激情在线播放| 国产精品嫩草影院av在线观看| 老熟女久久久| 亚洲国产日韩一区二区| 欧美精品一区二区免费开放| 又粗又硬又长又爽又黄的视频| 毛片一级片免费看久久久久| 国产爽快片一区二区三区| 人妻 亚洲 视频| 亚洲成人免费av在线播放| 亚洲四区av| 欧美人与性动交α欧美软件| 黄色毛片三级朝国网站| 成人三级做爰电影| 永久免费av网站大全| 18禁动态无遮挡网站| 午夜免费鲁丝| 欧美日韩成人在线一区二区| 午夜福利在线免费观看网站| 午夜免费男女啪啪视频观看| 免费黄频网站在线观看国产| 亚洲国产欧美日韩在线播放| 亚洲国产精品成人久久小说| 亚洲情色 制服丝袜| 多毛熟女@视频| 婷婷色综合www| 亚洲专区中文字幕在线 | 韩国高清视频一区二区三区| 亚洲成av片中文字幕在线观看| a级毛片在线看网站| 欧美日韩亚洲国产一区二区在线观看 | 汤姆久久久久久久影院中文字幕| 国产视频首页在线观看| 日韩一区二区三区影片| 高清视频免费观看一区二区| 成人黄色视频免费在线看| 国产精品一区二区在线不卡| 国产亚洲一区二区精品| 亚洲在久久综合| 欧美亚洲 丝袜 人妻 在线| 免费久久久久久久精品成人欧美视频| 欧美精品亚洲一区二区| 久久久欧美国产精品| 纵有疾风起免费观看全集完整版| www.精华液| 老司机亚洲免费影院| 天天躁狠狠躁夜夜躁狠狠躁| 国产福利在线免费观看视频| 国产精品三级大全| 秋霞在线观看毛片| 深夜精品福利| 91国产中文字幕| 9色porny在线观看| 中文字幕制服av| 精品人妻熟女毛片av久久网站| 欧美日韩视频精品一区| 卡戴珊不雅视频在线播放| 欧美成人精品欧美一级黄| 深夜精品福利| 亚洲欧美成人综合另类久久久| 卡戴珊不雅视频在线播放| 成年av动漫网址| 日韩,欧美,国产一区二区三区| 91aial.com中文字幕在线观看| 久久ye,这里只有精品| 97人妻天天添夜夜摸| 亚洲国产看品久久| www.自偷自拍.com| 日韩熟女老妇一区二区性免费视频| av免费观看日本| 9色porny在线观看| 18禁观看日本| 老汉色av国产亚洲站长工具| 视频区图区小说| 日日摸夜夜添夜夜爱| 18禁动态无遮挡网站| 性高湖久久久久久久久免费观看| 亚洲成国产人片在线观看| 国产在视频线精品| 精品一品国产午夜福利视频| 国产极品天堂在线| 啦啦啦中文免费视频观看日本| 蜜桃国产av成人99| 午夜福利在线免费观看网站| 一边亲一边摸免费视频| 丰满饥渴人妻一区二区三| 人妻一区二区av| 黄片无遮挡物在线观看| 好男人视频免费观看在线| 伊人久久大香线蕉亚洲五| 欧美最新免费一区二区三区| 又粗又硬又长又爽又黄的视频| 下体分泌物呈黄色| 国产精品二区激情视频| 日韩精品有码人妻一区| 国语对白做爰xxxⅹ性视频网站| 在线观看人妻少妇| 午夜日本视频在线| 一区二区三区四区激情视频| 国产亚洲av片在线观看秒播厂| 欧美日韩一区二区视频在线观看视频在线| 男女高潮啪啪啪动态图| 国产乱来视频区| 深夜精品福利| 最新在线观看一区二区三区 | 国产 精品1| avwww免费| 久久天躁狠狠躁夜夜2o2o | 在线 av 中文字幕| 国产伦理片在线播放av一区| 亚洲美女视频黄频| 国产精品久久久久久精品电影小说| 精品一品国产午夜福利视频| 99精品久久久久人妻精品| 国产成人免费无遮挡视频| 乱人伦中国视频| 久久人妻熟女aⅴ| 一级片'在线观看视频| 女性被躁到高潮视频| 在线观看免费视频网站a站| 欧美亚洲 丝袜 人妻 在线| 亚洲精品久久午夜乱码| 少妇精品久久久久久久| 久久精品亚洲av国产电影网| av电影中文网址| 日韩精品免费视频一区二区三区| 亚洲色图 男人天堂 中文字幕| 男男h啪啪无遮挡| 国产爽快片一区二区三区| 欧美日韩亚洲综合一区二区三区_| 啦啦啦在线观看免费高清www| 亚洲五月色婷婷综合| 中文字幕人妻丝袜一区二区 | 国产免费又黄又爽又色| 国产精品成人在线| 无限看片的www在线观看| 久热这里只有精品99| 免费观看a级毛片全部| 亚洲综合精品二区| 欧美黑人欧美精品刺激| 成人国产av品久久久| 免费观看av网站的网址| 青青草视频在线视频观看| 久久人人97超碰香蕉20202| 免费观看av网站的网址| 久久精品久久精品一区二区三区| 久久狼人影院| 少妇被粗大猛烈的视频| 免费黄色在线免费观看| 国产av码专区亚洲av| 国产片内射在线| 飞空精品影院首页| 亚洲国产欧美一区二区综合| 国产1区2区3区精品| 巨乳人妻的诱惑在线观看| 国产极品天堂在线| 国产精品熟女久久久久浪| 午夜免费男女啪啪视频观看| 各种免费的搞黄视频| 秋霞在线观看毛片| 欧美日韩亚洲综合一区二区三区_| 激情五月婷婷亚洲| 国产亚洲精品第一综合不卡| 国产熟女午夜一区二区三区| 黄色视频在线播放观看不卡| 老司机影院毛片| 欧美日韩亚洲国产一区二区在线观看 | 国产精品久久久久久精品电影小说| 99国产精品免费福利视频| e午夜精品久久久久久久| 秋霞在线观看毛片| 久久99一区二区三区| 久久久久久久久免费视频了| 久久国产精品男人的天堂亚洲| 亚洲精品,欧美精品| 精品久久久精品久久久| 久久亚洲国产成人精品v| 99久久精品国产亚洲精品| 最近2019中文字幕mv第一页| 人体艺术视频欧美日本| 天美传媒精品一区二区| 一区二区日韩欧美中文字幕| 精品国产一区二区久久| 啦啦啦啦在线视频资源| 老鸭窝网址在线观看| 久久国产亚洲av麻豆专区| avwww免费| 国产国语露脸激情在线看| 亚洲国产精品成人久久小说| 人体艺术视频欧美日本| 黄色毛片三级朝国网站| 久久毛片免费看一区二区三区| 日本wwww免费看| 免费黄色在线免费观看| 亚洲国产精品一区二区三区在线| 精品国产国语对白av| 亚洲欧美成人精品一区二区| 国产男人的电影天堂91| 久久久久久人人人人人| av在线观看视频网站免费| 99九九在线精品视频| 亚洲第一青青草原| 亚洲精品国产一区二区精华液| 18禁动态无遮挡网站| 电影成人av| 丝袜美足系列| 亚洲在久久综合| 啦啦啦在线观看免费高清www| 久久久久久久大尺度免费视频| 欧美精品人与动牲交sv欧美| 国产成人a∨麻豆精品| 伊人久久国产一区二区| 街头女战士在线观看网站| 国产精品熟女久久久久浪| av有码第一页| 亚洲国产精品一区三区| 国产淫语在线视频| 精品一区二区免费观看| 国产精品蜜桃在线观看| 久久精品亚洲av国产电影网| 一级a爱视频在线免费观看| 90打野战视频偷拍视频| 欧美日韩视频高清一区二区三区二| 亚洲欧美色中文字幕在线| 最黄视频免费看| 水蜜桃什么品种好| 成年美女黄网站色视频大全免费| 亚洲国产欧美网| 久久天堂一区二区三区四区| 成人三级做爰电影| 亚洲国产毛片av蜜桃av| av片东京热男人的天堂| 中文字幕亚洲精品专区| 91国产中文字幕| a级毛片黄视频| 国产精品.久久久| 成人18禁高潮啪啪吃奶动态图| 午夜影院在线不卡| 日韩一卡2卡3卡4卡2021年| 韩国高清视频一区二区三区| 视频在线观看一区二区三区| 男人爽女人下面视频在线观看| 黄色一级大片看看| 国产精品女同一区二区软件| 亚洲精品一二三| 色综合欧美亚洲国产小说| www.自偷自拍.com| 久久精品久久久久久噜噜老黄| 最近的中文字幕免费完整| av.在线天堂| 国产免费视频播放在线视频| 欧美日本中文国产一区发布| 亚洲精品国产色婷婷电影| videos熟女内射| 国产 一区精品| 午夜激情av网站| 成人亚洲欧美一区二区av| 校园人妻丝袜中文字幕| 亚洲第一青青草原| 国产亚洲午夜精品一区二区久久| 日韩电影二区| 久久久久国产一级毛片高清牌| 亚洲av成人不卡在线观看播放网 | av网站免费在线观看视频| 9191精品国产免费久久| 女人久久www免费人成看片| 久久午夜综合久久蜜桃| 成人午夜精彩视频在线观看| 免费久久久久久久精品成人欧美视频| 欧美在线黄色| 99热网站在线观看| 国产深夜福利视频在线观看| 视频区图区小说| 婷婷成人精品国产| 91国产中文字幕| 97精品久久久久久久久久精品| 国产有黄有色有爽视频| 高清不卡的av网站| av有码第一页| 国产成人a∨麻豆精品| 十八禁网站网址无遮挡| 校园人妻丝袜中文字幕| 久久久久精品人妻al黑| 久久久久久久久免费视频了| 久久毛片免费看一区二区三区| 色吧在线观看| 免费黄网站久久成人精品| 久久久亚洲精品成人影院| 亚洲国产欧美网| 亚洲久久久国产精品| 国产精品三级大全| 国产xxxxx性猛交| 免费在线观看黄色视频的| 欧美成人午夜精品| 一级片免费观看大全| av电影中文网址| 黄色视频不卡| 亚洲情色 制服丝袜| 男女无遮挡免费网站观看| 菩萨蛮人人尽说江南好唐韦庄| 国产乱来视频区| 高清黄色对白视频在线免费看| 大片免费播放器 马上看| 欧美老熟妇乱子伦牲交| 国产男女内射视频| 成年动漫av网址| 少妇人妻 视频| 黄色 视频免费看| 美女大奶头黄色视频| 亚洲综合精品二区| 大陆偷拍与自拍| av在线播放精品| 国产成人一区二区在线| 精品一区在线观看国产| 秋霞伦理黄片| 久久久久视频综合| 高清在线视频一区二区三区| 精品国产一区二区久久| 午夜精品国产一区二区电影| 亚洲色图 男人天堂 中文字幕| 免费日韩欧美在线观看| 满18在线观看网站| 夜夜骑夜夜射夜夜干| 黄色视频不卡| 啦啦啦中文免费视频观看日本| 国产不卡av网站在线观看| 国产成人91sexporn| 在线亚洲精品国产二区图片欧美| 波多野结衣一区麻豆| 亚洲精品成人av观看孕妇| 亚洲国产日韩一区二区| xxxhd国产人妻xxx| 亚洲,欧美,日韩| 多毛熟女@视频| 免费少妇av软件| 如日韩欧美国产精品一区二区三区| 97人妻天天添夜夜摸| 久久人妻熟女aⅴ| 亚洲欧美一区二区三区久久| 久久久久久久久久久免费av| 国产免费视频播放在线视频| 大香蕉久久网| 日本爱情动作片www.在线观看| 国产一卡二卡三卡精品 | 老汉色∧v一级毛片| 婷婷色麻豆天堂久久| av女优亚洲男人天堂| 国产精品av久久久久免费| 啦啦啦视频在线资源免费观看| 亚洲国产精品999| 国产精品人妻久久久影院| 天天躁狠狠躁夜夜躁狠狠躁| 美女扒开内裤让男人捅视频| 国产xxxxx性猛交| xxx大片免费视频| 日韩 欧美 亚洲 中文字幕| 日韩av免费高清视频| 久久精品aⅴ一区二区三区四区| 国产亚洲午夜精品一区二区久久| a级片在线免费高清观看视频| 中文字幕最新亚洲高清| 高清视频免费观看一区二区| 国产成人免费无遮挡视频| 人人妻人人澡人人爽人人夜夜| 嫩草影院入口| 亚洲人成77777在线视频| 免费高清在线观看日韩| 亚洲精品国产av成人精品| 制服丝袜香蕉在线| a 毛片基地| 亚洲精品视频女| 日韩中文字幕欧美一区二区 | 精品少妇久久久久久888优播| 欧美日本中文国产一区发布| 精品国产国语对白av| 免费观看人在逋| 欧美人与性动交α欧美软件| 母亲3免费完整高清在线观看| 一级a爱视频在线免费观看| 超色免费av| 老司机靠b影院| 看非洲黑人一级黄片| 天天躁夜夜躁狠狠躁躁| 成人国语在线视频| 亚洲精品久久成人aⅴ小说| √禁漫天堂资源中文www| 亚洲欧美成人精品一区二区| 啦啦啦中文免费视频观看日本| 久久精品人人爽人人爽视色| 亚洲四区av| 久久久久久久久久久久大奶| 免费看av在线观看网站| 国产极品粉嫩免费观看在线| 少妇精品久久久久久久| www.熟女人妻精品国产| 另类精品久久| 日本wwww免费看| tube8黄色片| 亚洲国产中文字幕在线视频| 欧美黑人欧美精品刺激| 精品卡一卡二卡四卡免费| 成年美女黄网站色视频大全免费| 少妇 在线观看| 成年人午夜在线观看视频| 成人毛片60女人毛片免费| 久热爱精品视频在线9| 欧美精品一区二区免费开放| 丝瓜视频免费看黄片| 国产97色在线日韩免费| 80岁老熟妇乱子伦牲交| 免费观看性生交大片5| 久久国产精品大桥未久av| 热99国产精品久久久久久7| 国产免费福利视频在线观看| 麻豆精品久久久久久蜜桃| 别揉我奶头~嗯~啊~动态视频 | 三上悠亚av全集在线观看| e午夜精品久久久久久久| 搡老岳熟女国产| 国产激情久久老熟女| 1024香蕉在线观看| 亚洲精品av麻豆狂野| 国产成人精品在线电影| 夜夜骑夜夜射夜夜干| 亚洲国产欧美一区二区综合| 飞空精品影院首页| 亚洲一级一片aⅴ在线观看| 一区二区日韩欧美中文字幕| 久久青草综合色| 国产av精品麻豆| 老司机在亚洲福利影院| 香蕉国产在线看| 男人舔女人的私密视频| xxx大片免费视频| 亚洲欧美成人精品一区二区| 嫩草影院入口| 伊人亚洲综合成人网| 建设人人有责人人尽责人人享有的| av免费观看日本| 国产亚洲精品第一综合不卡| 激情五月婷婷亚洲| 伦理电影大哥的女人| 少妇猛男粗大的猛烈进出视频| 男女之事视频高清在线观看 | 99久久人妻综合| 午夜激情久久久久久久| 亚洲成av片中文字幕在线观看| 毛片一级片免费看久久久久| 精品福利永久在线观看| 国产成人欧美| 日韩中文字幕视频在线看片| 欧美黄色片欧美黄色片| 天天躁日日躁夜夜躁夜夜| 国产有黄有色有爽视频| 亚洲欧美日韩另类电影网站| 日本一区二区免费在线视频| 天天影视国产精品| 综合色丁香网| 99国产综合亚洲精品| 9热在线视频观看99| 香蕉国产在线看| 极品少妇高潮喷水抽搐| svipshipincom国产片| 看免费成人av毛片| 国产老妇伦熟女老妇高清| 亚洲人成电影观看| 亚洲国产欧美日韩在线播放| 最新在线观看一区二区三区 | 在线天堂中文资源库| 亚洲欧美一区二区三区久久| 亚洲精品视频女| 免费黄网站久久成人精品| 大片电影免费在线观看免费| 亚洲,欧美,日韩| 咕卡用的链子| 亚洲人成电影观看| 新久久久久国产一级毛片| 男女高潮啪啪啪动态图| 90打野战视频偷拍视频| 最近的中文字幕免费完整| 久久久久精品久久久久真实原创| h视频一区二区三区| 成人漫画全彩无遮挡| 精品酒店卫生间| 99九九在线精品视频| 亚洲精品视频女| 日韩制服丝袜自拍偷拍| 成人三级做爰电影| 91精品三级在线观看| av电影中文网址| 免费高清在线观看视频在线观看| 极品少妇高潮喷水抽搐| 青春草亚洲视频在线观看| 99精国产麻豆久久婷婷| 日韩中文字幕欧美一区二区 | 99久国产av精品国产电影| 黄片无遮挡物在线观看| 在线观看一区二区三区激情| 久久久久久久久免费视频了| 男女之事视频高清在线观看 | 亚洲国产毛片av蜜桃av| 国产成人av激情在线播放| 黄频高清免费视频| 蜜桃国产av成人99| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲成av片中文字幕在线观看| 我要看黄色一级片免费的| 91aial.com中文字幕在线观看| 少妇精品久久久久久久| 校园人妻丝袜中文字幕| 国产成人精品久久二区二区91 | 亚洲人成电影观看| 免费黄频网站在线观看国产| 天堂8中文在线网| 亚洲欧美精品自产自拍| 晚上一个人看的免费电影| xxx大片免费视频| 亚洲精品美女久久av网站| 亚洲一区中文字幕在线| 人人妻人人澡人人看| 精品一区二区三卡| 中文字幕av电影在线播放| 伊人亚洲综合成人网| 日韩制服丝袜自拍偷拍| 久久ye,这里只有精品| 国产熟女欧美一区二区| 性色av一级| 在线观看三级黄色| 国产一区二区激情短视频 | 日本欧美国产在线视频| av福利片在线| 午夜福利一区二区在线看| 男男h啪啪无遮挡| 午夜日本视频在线| 日本91视频免费播放| 校园人妻丝袜中文字幕| 欧美精品一区二区大全| 国产深夜福利视频在线观看| 成人18禁高潮啪啪吃奶动态图| 肉色欧美久久久久久久蜜桃| 热re99久久精品国产66热6| 精品午夜福利在线看| 美女高潮到喷水免费观看| 侵犯人妻中文字幕一二三四区| 99久久精品国产亚洲精品| 亚洲,欧美,日韩| av女优亚洲男人天堂| 国产麻豆69| 尾随美女入室| 五月天丁香电影| 人人妻人人澡人人看| 亚洲视频免费观看视频| 免费在线观看视频国产中文字幕亚洲 | 亚洲国产精品999| 无限看片的www在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 精品人妻在线不人妻| 欧美日韩国产mv在线观看视频| 91国产中文字幕| 精品视频人人做人人爽| 国产av国产精品国产| 国产精品 国内视频| 国产野战对白在线观看| 免费观看性生交大片5| 亚洲激情五月婷婷啪啪| av在线app专区| 久久久久久久久免费视频了| 国产女主播在线喷水免费视频网站| 国产深夜福利视频在线观看| 黑人欧美特级aaaaaa片| 久久99一区二区三区| 久久精品国产a三级三级三级| 国产一区二区 视频在线| 欧美激情高清一区二区三区 | 大码成人一级视频| 久久久久久久久久久免费av| 丰满饥渴人妻一区二区三| 日韩av免费高清视频| 国产av精品麻豆| 国产精品蜜桃在线观看| 亚洲精品国产一区二区精华液| 欧美日韩综合久久久久久| 国产乱来视频区| 高清av免费在线|