• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel Stability Criteria for Sampled-Data Systems With Variable Sampling Periods

    2020-02-29 14:21:26HanyongShaoJianrongZhaoandDanZhang
    IEEE/CAA Journal of Automatica Sinica 2020年1期

    Hanyong Shao, Jianrong Zhao, and Dan Zhang

    Abstract—This paper is concerned with a novel Lyapunovlike functional approach to the stability of sampled-data systems with variable sampling periods. The Lyapunov-like functional has four striking characters compared to usual ones. First, it is time-dependent. Second, it may be discontinuous. Third, not every term of it is required to be positive definite. Fourth, the Lyapunov functional includes not only the state and the sampled state but also the integral of the state. By using a recently reported inequality to estimate the derivative of this Lyapunov functional, a sampled-interval-dependent stability criterion with reduced conservatism is obtained. The stability criterion is further extended to sampled-data systems with polytopic uncertainties.Finally,three examples are given to illustrate the reduced conservatism of the stability criteria.

    I. INTRODUCTION

    SAMPLED-DATA systems have received substantial attention over the last two decades due to their wide applications in digital control systems and networked control systems[1]-[7]. Stability of sampled-data systems is an especially interesting topic for many researchers [8]. In the literature there are mainly four approaches to the stability of sampleddata systems. The first is the discrete-time system method,which transforms sampled-data systems into discrete-time systems and then applies the classical system theory to stability analysis [9]. However, the method encounters difficulties for systems with variable sampling periods or uncertainties. The second approach to stability of sampled-data systems is the impulsive system method [10], [11]. As indicated in [10], the method requires the sampled-data system to be represented in the form of an impulsive model, and stability conditions are derived by constructing a time-dependent discontinuous Lyapunov functional.The third method is the input delay approach[12]-[14] by which sampled-data systems are formulated as continuous-time systems with a time-varying delay, and the time-dependent Lyapunov functional method is employed to study the stability of the continuous-time systems [15]-[18].As shown in [10]-[14] the time-dependent Lyapunov functional can lead to a stability condition that determines an upper bound of the time-varying delay, namely the size of the sampling interval.It is well known that both computational burden and data transmission rate of the sampled-data systems are decreased as the sampling interval increases. Therefore,the second and third methods are of significance in obtaining a possibly larger sampling period that ensures the stability of sampled-data systems. However, the Lyapunov functional involved in the latter two methods is too restrictive. The fourth is the Lyapunov-like functional method. It does not involve model transformation. Moreover, the functional is not necessarily positive definite [19]-[22]. Recently stability criteria of sampled-data system were provided by the fourth method in [19]. A further improved stability criterion was obtained in [20] by using a new inequality to estimate the derivative of the Lyapunov-like functional.Very recently those stability results have been extended to sampled-data systems with state quantization [21]. Note that the existing Lyapunovlike functional does not include the integral of the state; there is still room for the functional to improve.

    In this paper we further investigate the stability of a sampled-data system with variable sampling periods. Novel sampling-interval-dependent stability criteria are derived by a new Lyapunov-like functional approach that does not involve model transformation.Compared with existing ones,the Lyapunov functional makes use of the integral of the state as well as the sampled state. It is time-dependent, may be discontinuous, and not every term of it is necessarily positive definite. It is illustrated by examples that the stability criteria derived are less conservative than some existing ones.

    Throughout this paperIrefers to an identity matrix with appropriate dimensions. For real symmetric matricesXandY, the notationX >Y(respectively,X ≥Y) means that the matrixX-Yis positive definite (respectively, positive semidefinite). TheSym(X) stands forX+XT. In symmetric block matrices, we use an asterisk*to represent a term that is induced by symmetry. The smallest and the largest eigenvalues of a real symmetric matrixXare denoted byλmin(X) andλmax(X), respectively.| · |is the Euclidean norm for a vector while‖·‖is the induced matrix norm. We writeMatrices, if their dimensions are not explicitly stated, are assumed to be compatible for algebraic operations.

    II. PROBLEM FORMULATION

    Consider the linear system

    wherex(t)∈Rnis the state,A ∈Rn×n,B ∈Rn×mare known real constant matrices,u(t)∈Rmis the sampled-data inputu(t)=ud(tk),t ∈[tk,tk+1), with sampling instantstksatisfying 0=t0<t1<···<tk <···, and

    For a state-feedback controller in the form of

    the corresponding closed-loop system is

    whereAd=BK.

    The purpose of this paper is to study the stability problem for system(3)subject to(2),that is,for a givenK,to establish some sampling-interval-dependent stability conditions such that the system is asymptotically stable. In the following we give a lemma and a proposition that play a crucial role in studying the stability problem.

    Lemma 1[20]:For a given matrixR >0, the following inequality holds for all continuously differentiable functionωin [a,b]→Rn

    To study the stability problem mentioned above,the following proposition is also needed.

    Proposition 1:Consider the following sampled-data system described by

    where the sampling interval satisfies (2),f(0,0)=0, and fory(t),y(tk)∈Rn

    whereL1>0 andL2>0 are known constants. Forc1>0,c2>0 and a solutionx(t) to the system, suppose that there exist a continuous functionalVa(x(t)) and a piecewise continuous functionalsatisfying

    1)

    2)

    3)

    Then the trivial solution of system(4)is asymptotically stable.

    Proof:From 3) it follows:

    Noting thatVa(x(t)) is continuous at sampling instant, it is seen from 2) that

    Therefore, from (i) we havex(tk)→0,k →∞.

    On the other hand, from the system (4) it follows that fort ∈[tk,tk+1)

    Thus

    Apply Grownwall-Bellman lemma to obtain

    Now it can be concluded that the system (4) is asymptotically stable.

    Remark 1:Proposition 1 provides a general stability result for a class of nonlinear systems which covers the system (3)subject to (2) as a special case.

    It is noted thatV(x(t),t) is not the same as a usual Lyapunov functional becauseVb(x(t),t)may be discontinuous at sampling instants and it is not required to be positive definite. In the following we referV(x(t),t) to as a kind of Lyapunov-like functional.

    III. STABILITY CRITERIA

    For system (3) subject to (2), we construct a Lyapunov-like functional on [tk,tk+1) as follows:

    where

    with

    Remark 2:Note that

    This implies Lyapunov functional(5)is a 2-order function int,and it includes the integral of the state as well as the sampled state. As seen fromV4(x(t),t),

    So the Lyapunov functional may be discontinuous at the sampling instants. In the following we will see that not every term of Lyapunov functional (5) is required to be positive definite when employed to derive the following samplinginterval-dependent stability result.

    Theorem 1:For givenandsystem (3) subject to (2) is asymptotically stable if there exist symmetric matricesP >0,

    Q >0,Q1>0,Q2,Q3,S ∈Rn×nand matricesNα ∈R4n×n,Lα,α= 1,2,3,Mj ∈Rn×n(j= 1,2,...,6), such that for

    where

    Proof:Firstly, for the Lyapunov functional (5) we have

    Therefore,On the other hand,Letc1=λmin(P),c2=λmax(P), and thenThat is to say the Lyapunov functional (5) satisfies 1) and 2)of Proposition 1.

    In the following we will show it also satisfies 3) of Proposition 1. Define

    Integrating both sides of system (3) subject to (2) leads to

    So there existsN3∈R4n×nsuch that

    Employing Lemma 1 we have

    As per [20] there existN1andN2∈R4n×nsuch that

    Using Jensen inequality [18] gives

    Now from (8)-(14) it is derived that

    where

    On the other hand, from (6) and (7) it is concluded that for

    By (16), it follows thatW(tk)<0 andW(tk+1)<0. SinceW(t) is linear int,W(t)<0 fort ∈(tk,tk+1). By (15),

    Now it is shown under (6) and (7) the Lyapunov functional(5) also satisfies 3) of Proposition 1. By Proposition 1 system(3) subject to (2) is asymptotically stable.

    When, we have a sampling-intervaldependent stability result for the periodic sampling case in the following corollary.

    Corollary 1:For, the system (3) subject to(2) is asymptotically stable if there exist symmetric matricesand matrices,j= 1,2,...,6 such that (6) and (7) hold.

    Remark 3:Theorem 1 and Corollary 1 provide samplinginterval-dependent stability criteria for system (3) subject to(2), by which we can compute the admissible upper bound of sampling intervals that ensures the system to be asymptotically stable. Recently, sampling-interval-dependent stability for system(3)subject to(2)was also studied in[10],[12],[14],and [17]-[21] by employing Lyapunov functional methods.However, as a whole, Lyapunov functionalV(x(t),t) in (5)is different from those in that it is second order with respect to timet, and possibly discontinuous at the sampling points;it involves not only the sampled state but also the integral of the state, and not every term of it is positive definite.Moreover, different from [10],[12],[14] and [17]-[19],[21],when estimatingthis paper employs Lemma 1 and the integral equation (9) to take advantage of the integral of the stateas well as the statex(t). This method is expected to result in less conservative stability results, as illustrated in Section IV.

    When system (3) subject to (2) involves polytopic uncertainties, by Theorem 1 we have the stability result stated as follows.

    Theorem 2:Assume that the matricesAandAdin system(3) subject to (2) belong to a polytope: [A Ad]∈Θ, Θ =with...,land

    Remark 4:It is not difficult to present a stability analysis result using Theorem 1 for sampled-data systems with normbounded parameter uncertainties. Based on Theorem 1 one can also consider the stabilization problem, which is omitted here, given that the objective of this paper is to focus on the stability problem.

    IV. NUMERICAL EXAMPLES

    In this section,we give three examples to show the reduced conservatism of our stability criteria.

    Example 1:Consider the sampled-data control system in Fig.1.

    The physical plant is given bywith

    and the controller is given byu(t) =Kx(t) withK=[3.75 11.5].Since the controller is connected with the physical plant via the sampler and the zero-order hold ZOH,the closedloop system is in a form of (3) with

    which was employed in [10],[12],[14],[17],[19] and [21].

    Firstly we intend to find the admissible upper boundhon the periodic sampling, which guarantees the asymptotic stability of the system. Using Corollary 1 in this paper and some existing stability results we can compute the admissible upper bound, which are listed in Table I.

    Methods [10] [14] [19] [21] Corollary 1 h 1.32 1.69 1.723 1.7239 1.7294

    From the table above, it is seen that the stability result(Corollary 1) in this paper can provide a larger admissible upper boundhon periodic sampling than the corresponding ones in [10],[14],[19] and [21]. In this sense the stability result(Corollary 1)in this paper is less conservative,compared with those in [10],[14],[19] and [21].

    In this example, choose the initial conditionx0=[2-1.8]and the periodh= 1.7294, and then the state responses of the system can be obtained as in Fig.2.

    As shown by the Fig.2, the state trajectory of the closedloop system converges to zero.

    Secondly for the case of variable sampling, with the lower boundwe attempt to compute the admissible upper boundwhich is given in Table II.

    Methods [17] [19] [12] Theorem 1 h 1.36 1.721 1.723 1.729

    As shown from the table, for the variable sampling case,the admissible upper boundin this paper is also larger than the ones in [12],[17] and [19]. Therefore, the stability result Theorem 1 in this paper is less conservative than those in[12],[17] and [19].

    Example 2:Consider a 3rd order system described by (3)with

    The objective is to fnid admissible upper boundfor given lower bound= 0 on the variable sampling such that the closed-loop system is stable. By the methods in [19],[20] and this paper, the comparison results are given in Table III.

    Methods [19] [20] Theorem 1 h 1.9637 2.3724 3.0887

    It is clearly shown our method has the least conservatism.

    Example 3:Consider the uncertain system that was employed in [10],[19],[23] and [24], with parameters

    where|g1| ≤0.1 and|g2| ≤0.3. Obviously the system can be formulated as one with parameters from a polytope,the vertices of which are

    To guarantee the asymptotic stability of the uncertain system, by the stability result Theorem 2 and those in[10],[19],[23] and [24], we can find the admissible upper boundhon the periodic sampling in Table IV.

    Methods [10] [19] [23] [24] Theorem 2 h 0.4610 0.6674 0.7255 0.7310 0.7354

    It is obvious that the stability result Theorem 2 is less conservative than those in [10],[19],[23] and [24].

    V. CONCLUSION

    The stability of sampled-data systems with variable sampling periods has been investigated by constructing a new Lyapunov-like functional. Compared to existing ones the Lyapunov functional is more generalized in the sense of being second order with respect to time t, possibly discontinuous at the sampling instants, including the integral of the state as well as the sampled state. Moreover, not every term of it is required to be positive definite. Some new samplinginterval-dependent stability criteria have been obtained for the sampled-data systems with or without uncertainties.It has been illustrated that the stability criteria are less conservative than some existing ones.

    亚洲熟妇中文字幕五十中出| 动漫黄色视频在线观看| 国产精品 国内视频| 欧美黑人欧美精品刺激| 又粗又爽又猛毛片免费看| 免费一级毛片在线播放高清视频| 真人做人爱边吃奶动态| 亚洲成人久久性| 午夜a级毛片| 国产黄a三级三级三级人| 狠狠狠狠99中文字幕| 免费在线观看亚洲国产| 免费在线观看日本一区| 99久久久亚洲精品蜜臀av| 91麻豆精品激情在线观看国产| 大型av网站在线播放| 国产亚洲欧美98| 高潮久久久久久久久久久不卡| 亚洲精品一卡2卡三卡4卡5卡| 国产又色又爽无遮挡免费看| 老鸭窝网址在线观看| 老司机福利观看| 香蕉久久夜色| 日本五十路高清| 女生性感内裤真人,穿戴方法视频| 日本一二三区视频观看| 久久久久精品国产欧美久久久| www日本在线高清视频| 人人妻人人澡欧美一区二区| 香蕉丝袜av| 精品一区二区三区四区五区乱码| netflix在线观看网站| 久久久久久九九精品二区国产 | 久久国产精品人妻蜜桃| 精品国产亚洲在线| 国产欧美日韩精品亚洲av| 嫁个100分男人电影在线观看| svipshipincom国产片| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品国产清高在天天线| 高清毛片免费观看视频网站| 亚洲欧美日韩高清在线视频| 此物有八面人人有两片| 亚洲九九香蕉| 熟女少妇亚洲综合色aaa.| 久久精品国产综合久久久| 久久久久久九九精品二区国产 | 欧美乱色亚洲激情| 欧美日本亚洲视频在线播放| 亚洲七黄色美女视频| 少妇的丰满在线观看| 久久精品国产综合久久久| 神马国产精品三级电影在线观看 | 久久久久国产精品人妻aⅴ院| 午夜福利18| 极品教师在线免费播放| 熟女少妇亚洲综合色aaa.| 国产精品国产高清国产av| 亚洲国产精品999在线| 国产黄色小视频在线观看| 两人在一起打扑克的视频| 人人妻人人看人人澡| 亚洲专区中文字幕在线| 亚洲无线在线观看| 免费看日本二区| 无限看片的www在线观看| 欧美日本亚洲视频在线播放| 一个人观看的视频www高清免费观看 | 欧美色视频一区免费| 夜夜躁狠狠躁天天躁| 亚洲精品在线美女| 亚洲国产欧美人成| 狂野欧美白嫩少妇大欣赏| 丁香六月欧美| 男女午夜视频在线观看| 狠狠狠狠99中文字幕| 成熟少妇高潮喷水视频| 国产视频一区二区在线看| 日韩欧美一区二区三区在线观看| 制服诱惑二区| 91九色精品人成在线观看| 亚洲乱码一区二区免费版| 久久人妻福利社区极品人妻图片| 久久久久国产一级毛片高清牌| 老司机深夜福利视频在线观看| 五月伊人婷婷丁香| 一边摸一边抽搐一进一小说| 两个人看的免费小视频| 男人舔女人的私密视频| 国产亚洲精品久久久久5区| 女人被狂操c到高潮| 亚洲va日本ⅴa欧美va伊人久久| 美女免费视频网站| 男人的好看免费观看在线视频 | 久久久久久大精品| 欧美成人免费av一区二区三区| 色老头精品视频在线观看| 男女做爰动态图高潮gif福利片| 精品久久久久久久末码| 免费观看精品视频网站| 国产av在哪里看| 国内毛片毛片毛片毛片毛片| 成人亚洲精品av一区二区| av福利片在线观看| 国产精品,欧美在线| 国模一区二区三区四区视频 | 久久久久久免费高清国产稀缺| 五月玫瑰六月丁香| 性欧美人与动物交配| 久久久久国产精品人妻aⅴ院| 男女做爰动态图高潮gif福利片| 丝袜人妻中文字幕| 啦啦啦观看免费观看视频高清| 日韩免费av在线播放| 天天添夜夜摸| 少妇粗大呻吟视频| 夜夜看夜夜爽夜夜摸| 91在线观看av| 精品不卡国产一区二区三区| 一进一出抽搐gif免费好疼| 国产一区在线观看成人免费| 男女床上黄色一级片免费看| 露出奶头的视频| 麻豆av在线久日| 两人在一起打扑克的视频| 九色国产91popny在线| 91九色精品人成在线观看| 在线观看免费视频日本深夜| 欧美又色又爽又黄视频| 国产精品久久久久久精品电影| 极品教师在线免费播放| 国产av又大| 法律面前人人平等表现在哪些方面| av免费在线观看网站| 国产精品免费一区二区三区在线| 国产日本99.免费观看| 亚洲国产精品合色在线| 国产精品久久久久久精品电影| 久久九九热精品免费| 精品高清国产在线一区| 久久99热这里只有精品18| 久久性视频一级片| 女人爽到高潮嗷嗷叫在线视频| 99re在线观看精品视频| 成人av在线播放网站| 91九色精品人成在线观看| 日韩精品免费视频一区二区三区| 后天国语完整版免费观看| 亚洲午夜理论影院| 精品国产美女av久久久久小说| 亚洲色图 男人天堂 中文字幕| 久久久久久久久中文| 美女午夜性视频免费| a在线观看视频网站| 看免费av毛片| 久久精品夜夜夜夜夜久久蜜豆 | 国产精品乱码一区二三区的特点| 岛国视频午夜一区免费看| 午夜激情福利司机影院| 国产乱人伦免费视频| 日本精品一区二区三区蜜桃| 夜夜夜夜夜久久久久| 成人国产综合亚洲| a级毛片a级免费在线| 校园春色视频在线观看| 伊人久久大香线蕉亚洲五| 精品免费久久久久久久清纯| 国产精品电影一区二区三区| 色噜噜av男人的天堂激情| 久久性视频一级片| 国内精品一区二区在线观看| 黄色视频不卡| 国产精品 欧美亚洲| 精品国产超薄肉色丝袜足j| 午夜福利免费观看在线| 级片在线观看| 婷婷精品国产亚洲av在线| 两个人视频免费观看高清| 成人18禁高潮啪啪吃奶动态图| 亚洲 国产 在线| 国产高清有码在线观看视频 | 午夜a级毛片| 真人一进一出gif抽搐免费| 成人精品一区二区免费| 91麻豆精品激情在线观看国产| 国产成人一区二区三区免费视频网站| av福利片在线观看| 香蕉丝袜av| 最新美女视频免费是黄的| 日韩精品青青久久久久久| 国产精品久久久久久人妻精品电影| 国产在线精品亚洲第一网站| avwww免费| 香蕉国产在线看| 国产亚洲精品av在线| 亚洲美女视频黄频| xxxwww97欧美| 国产精品免费视频内射| 久久人妻福利社区极品人妻图片| 亚洲 欧美一区二区三区| 巨乳人妻的诱惑在线观看| 男插女下体视频免费在线播放| 久久久久免费精品人妻一区二区| 久久精品影院6| 亚洲欧美精品综合久久99| 夜夜看夜夜爽夜夜摸| 精品国产乱码久久久久久男人| 天堂影院成人在线观看| 国产一区二区在线观看日韩 | 长腿黑丝高跟| 久久伊人香网站| 此物有八面人人有两片| 亚洲五月婷婷丁香| 亚洲专区字幕在线| АⅤ资源中文在线天堂| 日韩欧美在线二视频| 国内少妇人妻偷人精品xxx网站 | 两个人看的免费小视频| 无遮挡黄片免费观看| 两性夫妻黄色片| 免费在线观看视频国产中文字幕亚洲| 久久精品综合一区二区三区| 亚洲av成人精品一区久久| 一级a爱片免费观看的视频| 成人手机av| 欧美绝顶高潮抽搐喷水| videosex国产| 亚洲第一电影网av| 欧美又色又爽又黄视频| av福利片在线| 动漫黄色视频在线观看| 午夜福利在线观看吧| 91在线观看av| av有码第一页| 高潮久久久久久久久久久不卡| 中文字幕人成人乱码亚洲影| 夜夜夜夜夜久久久久| 亚洲精品在线美女| 国模一区二区三区四区视频 | 久久久国产欧美日韩av| 一本一本综合久久| 在线a可以看的网站| 丝袜美腿诱惑在线| 日日夜夜操网爽| 国产成人系列免费观看| 热99re8久久精品国产| 亚洲专区国产一区二区| 亚洲欧美一区二区三区黑人| 国产成人精品久久二区二区免费| 亚洲国产欧洲综合997久久,| 黄色丝袜av网址大全| 午夜福利18| 久久香蕉激情| 国产一区二区三区视频了| 欧美在线一区亚洲| 国产伦一二天堂av在线观看| 国产三级黄色录像| 黑人欧美特级aaaaaa片| 黄色女人牲交| 国产激情久久老熟女| 波多野结衣高清无吗| 亚洲五月婷婷丁香| 在线观看免费视频日本深夜| 人人妻,人人澡人人爽秒播| 十八禁人妻一区二区| 熟妇人妻久久中文字幕3abv| 亚洲国产欧美人成| 国产成人av激情在线播放| 一区福利在线观看| av片东京热男人的天堂| 在线十欧美十亚洲十日本专区| 无遮挡黄片免费观看| 看片在线看免费视频| 国产精品香港三级国产av潘金莲| 十八禁人妻一区二区| 最新美女视频免费是黄的| 男人舔女人的私密视频| 最近最新中文字幕大全免费视频| 黄色丝袜av网址大全| 亚洲精品中文字幕在线视频| 亚洲精品色激情综合| 两性夫妻黄色片| 中文资源天堂在线| 久久久久久免费高清国产稀缺| 一二三四社区在线视频社区8| 久9热在线精品视频| 亚洲av成人精品一区久久| 在线视频色国产色| 大型av网站在线播放| 欧美中文综合在线视频| 全区人妻精品视频| 长腿黑丝高跟| 99在线视频只有这里精品首页| 国产精品一区二区三区四区免费观看 | 亚洲中文日韩欧美视频| 国产av在哪里看| а√天堂www在线а√下载| 99久久综合精品五月天人人| 久久久久国产精品人妻aⅴ院| 亚洲18禁久久av| 成人手机av| netflix在线观看网站| 国产蜜桃级精品一区二区三区| 亚洲五月天丁香| 99国产精品99久久久久| 精品福利观看| 亚洲精品国产精品久久久不卡| 欧美3d第一页| 白带黄色成豆腐渣| 神马国产精品三级电影在线观看 | 在线国产一区二区在线| 好男人电影高清在线观看| 极品教师在线免费播放| 色综合欧美亚洲国产小说| 欧美性长视频在线观看| 宅男免费午夜| 男女视频在线观看网站免费 | 哪里可以看免费的av片| 老司机午夜十八禁免费视频| 岛国在线观看网站| 久久婷婷人人爽人人干人人爱| 免费看十八禁软件| 国产99久久九九免费精品| 99久久久亚洲精品蜜臀av| 俄罗斯特黄特色一大片| 99久久综合精品五月天人人| 在线a可以看的网站| 久久久久久久午夜电影| 狂野欧美激情性xxxx| 一级毛片高清免费大全| 久久久久久久久久黄片| 国产精品美女特级片免费视频播放器 | 亚洲欧美精品综合久久99| 日本成人三级电影网站| 久久精品国产亚洲av高清一级| 日韩欧美国产在线观看| 国产精品久久久久久亚洲av鲁大| 91av网站免费观看| 少妇的丰满在线观看| 成人特级黄色片久久久久久久| 国产v大片淫在线免费观看| 久久精品综合一区二区三区| 日韩欧美在线二视频| 亚洲专区中文字幕在线| 99久久无色码亚洲精品果冻| 丁香六月欧美| 国内揄拍国产精品人妻在线| 国产成人影院久久av| 国产伦一二天堂av在线观看| 国产精品一区二区三区四区久久| 成人手机av| 精品高清国产在线一区| 成人三级黄色视频| 这个男人来自地球电影免费观看| 一级毛片精品| 国内揄拍国产精品人妻在线| 麻豆国产av国片精品| 可以在线观看毛片的网站| 丁香欧美五月| 欧美zozozo另类| 亚洲国产精品久久男人天堂| 一区二区三区高清视频在线| 一夜夜www| 亚洲av成人精品一区久久| 欧美又色又爽又黄视频| 日本 欧美在线| 99精品在免费线老司机午夜| 18禁黄网站禁片免费观看直播| 日本一二三区视频观看| 国产亚洲精品一区二区www| 亚洲成人国产一区在线观看| 国产精品亚洲av一区麻豆| 精品人妻1区二区| 美女 人体艺术 gogo| 又粗又爽又猛毛片免费看| 99久久国产精品久久久| 最好的美女福利视频网| 欧美一级毛片孕妇| 一a级毛片在线观看| 狂野欧美激情性xxxx| 97人妻精品一区二区三区麻豆| 女人被狂操c到高潮| 亚洲国产精品999在线| 亚洲第一欧美日韩一区二区三区| 国产不卡一卡二| 美女扒开内裤让男人捅视频| 国产免费av片在线观看野外av| 亚洲国产精品久久男人天堂| 丰满人妻一区二区三区视频av | 国产一区二区激情短视频| 看片在线看免费视频| 午夜福利免费观看在线| 特级一级黄色大片| 久久久久久久精品吃奶| 国产精品亚洲一级av第二区| 欧美色视频一区免费| ponron亚洲| 久久这里只有精品19| 婷婷精品国产亚洲av在线| 亚洲免费av在线视频| 美女大奶头视频| 亚洲第一欧美日韩一区二区三区| 两个人免费观看高清视频| 黄色丝袜av网址大全| 丰满人妻一区二区三区视频av | 午夜精品在线福利| 亚洲 国产 在线| 97超级碰碰碰精品色视频在线观看| 女人高潮潮喷娇喘18禁视频| 精品午夜福利视频在线观看一区| 丰满的人妻完整版| 50天的宝宝边吃奶边哭怎么回事| 琪琪午夜伦伦电影理论片6080| 午夜日韩欧美国产| 欧美日韩乱码在线| 国产精品1区2区在线观看.| 欧美黑人巨大hd| 熟女电影av网| 亚洲成人久久爱视频| 婷婷精品国产亚洲av在线| 欧美中文日本在线观看视频| 男女做爰动态图高潮gif福利片| 制服人妻中文乱码| 19禁男女啪啪无遮挡网站| 人人妻人人看人人澡| 叶爱在线成人免费视频播放| 免费无遮挡裸体视频| 这个男人来自地球电影免费观看| 悠悠久久av| 黄色片一级片一级黄色片| 婷婷精品国产亚洲av在线| 成年女人毛片免费观看观看9| 亚洲国产看品久久| 国产又黄又爽又无遮挡在线| АⅤ资源中文在线天堂| 女人爽到高潮嗷嗷叫在线视频| 亚洲七黄色美女视频| 变态另类成人亚洲欧美熟女| 给我免费播放毛片高清在线观看| 嫩草影视91久久| 久久热在线av| 亚洲18禁久久av| 久久 成人 亚洲| 丝袜美腿诱惑在线| 精品福利观看| 久久午夜亚洲精品久久| 亚洲av成人不卡在线观看播放网| 精品久久蜜臀av无| 久久精品国产亚洲av香蕉五月| 国产又黄又爽又无遮挡在线| 女生性感内裤真人,穿戴方法视频| 亚洲国产日韩欧美精品在线观看 | a级毛片a级免费在线| 女人爽到高潮嗷嗷叫在线视频| 欧美成人性av电影在线观看| 亚洲熟女毛片儿| 亚洲一卡2卡3卡4卡5卡精品中文| av天堂在线播放| 久久久久国产一级毛片高清牌| 少妇被粗大的猛进出69影院| 啦啦啦韩国在线观看视频| 露出奶头的视频| 757午夜福利合集在线观看| 久久久久国内视频| 精品电影一区二区在线| 又爽又黄无遮挡网站| 婷婷六月久久综合丁香| 50天的宝宝边吃奶边哭怎么回事| 亚洲人成77777在线视频| 成人高潮视频无遮挡免费网站| 这个男人来自地球电影免费观看| 日本免费一区二区三区高清不卡| 免费看日本二区| 香蕉av资源在线| 久久 成人 亚洲| 一夜夜www| 久久香蕉精品热| 国产成人av教育| 在线视频色国产色| 最新美女视频免费是黄的| 国产一区二区激情短视频| 欧美绝顶高潮抽搐喷水| 俺也久久电影网| 999久久久国产精品视频| 性欧美人与动物交配| 国产精品久久久久久精品电影| 可以在线观看毛片的网站| 国产伦人伦偷精品视频| 老汉色av国产亚洲站长工具| 好看av亚洲va欧美ⅴa在| a级毛片在线看网站| 熟女电影av网| 老司机午夜十八禁免费视频| 两个人免费观看高清视频| 欧美最黄视频在线播放免费| 亚洲人成77777在线视频| 老熟妇乱子伦视频在线观看| 99在线视频只有这里精品首页| 亚洲乱码一区二区免费版| 国产精品永久免费网站| 国产三级黄色录像| 国产精品一区二区三区四区免费观看 | 亚洲精品久久成人aⅴ小说| 午夜精品一区二区三区免费看| 听说在线观看完整版免费高清| 欧美日韩精品网址| 午夜精品久久久久久毛片777| 欧美av亚洲av综合av国产av| 精品第一国产精品| 成在线人永久免费视频| 成人国产综合亚洲| 成人av在线播放网站| 精华霜和精华液先用哪个| 亚洲天堂国产精品一区在线| 欧美性猛交黑人性爽| 亚洲一区中文字幕在线| 好男人在线观看高清免费视频| 亚洲成人精品中文字幕电影| 久久热在线av| 少妇裸体淫交视频免费看高清 | 日韩av在线大香蕉| 亚洲成人久久性| 亚洲第一欧美日韩一区二区三区| 五月玫瑰六月丁香| 不卡av一区二区三区| 午夜精品在线福利| 精华霜和精华液先用哪个| 夜夜躁狠狠躁天天躁| 国产黄色小视频在线观看| 精品一区二区三区视频在线观看免费| 欧美黄色淫秽网站| 五月玫瑰六月丁香| 天天一区二区日本电影三级| 亚洲欧美日韩高清专用| 在线视频色国产色| 人妻丰满熟妇av一区二区三区| 51午夜福利影视在线观看| 久久久久久免费高清国产稀缺| 性欧美人与动物交配| 岛国视频午夜一区免费看| 无限看片的www在线观看| 给我免费播放毛片高清在线观看| 国产成人系列免费观看| 免费在线观看日本一区| 日韩av在线大香蕉| 好男人电影高清在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲成人精品中文字幕电影| 成年女人毛片免费观看观看9| 男女下面进入的视频免费午夜| 校园春色视频在线观看| 成人三级黄色视频| 国产伦在线观看视频一区| 露出奶头的视频| 757午夜福利合集在线观看| 一个人观看的视频www高清免费观看 | 毛片女人毛片| 每晚都被弄得嗷嗷叫到高潮| 老司机午夜十八禁免费视频| 成人三级黄色视频| 伦理电影免费视频| 国产精品九九99| 国产亚洲精品一区二区www| 99久久无色码亚洲精品果冻| 全区人妻精品视频| 亚洲成av人片免费观看| 国产精品亚洲一级av第二区| 桃红色精品国产亚洲av| 精品一区二区三区视频在线观看免费| 香蕉国产在线看| 999久久久国产精品视频| 国产视频内射| 99re在线观看精品视频| 久久久久精品国产欧美久久久| 亚洲男人天堂网一区| 日韩大尺度精品在线看网址| 久久久久久大精品| 日韩国内少妇激情av| 中亚洲国语对白在线视频| 久久久久久免费高清国产稀缺| 女警被强在线播放| 2021天堂中文幕一二区在线观| 国产单亲对白刺激| 国产高清激情床上av| 久久国产精品人妻蜜桃| av有码第一页| 熟妇人妻久久中文字幕3abv| a级毛片在线看网站| 此物有八面人人有两片| 久久国产精品人妻蜜桃| 岛国在线免费视频观看| www.自偷自拍.com| 久久午夜综合久久蜜桃| 欧美日韩乱码在线| 18禁观看日本| 制服人妻中文乱码| 欧美成人性av电影在线观看| 国产三级中文精品| 最新美女视频免费是黄的| а√天堂www在线а√下载| 日本免费一区二区三区高清不卡| 天堂影院成人在线观看| 男女之事视频高清在线观看| 天天躁夜夜躁狠狠躁躁| 国产又黄又爽又无遮挡在线| 两个人视频免费观看高清| 97碰自拍视频| 久久人妻av系列| 久久精品国产亚洲av高清一级| 国产三级中文精品| 亚洲av成人精品一区久久| 99久久无色码亚洲精品果冻| 国产野战对白在线观看| 中文字幕久久专区| 免费看十八禁软件|