• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel Stability Criteria for Sampled-Data Systems With Variable Sampling Periods

    2020-02-29 14:21:26HanyongShaoJianrongZhaoandDanZhang
    IEEE/CAA Journal of Automatica Sinica 2020年1期

    Hanyong Shao, Jianrong Zhao, and Dan Zhang

    Abstract—This paper is concerned with a novel Lyapunovlike functional approach to the stability of sampled-data systems with variable sampling periods. The Lyapunov-like functional has four striking characters compared to usual ones. First, it is time-dependent. Second, it may be discontinuous. Third, not every term of it is required to be positive definite. Fourth, the Lyapunov functional includes not only the state and the sampled state but also the integral of the state. By using a recently reported inequality to estimate the derivative of this Lyapunov functional, a sampled-interval-dependent stability criterion with reduced conservatism is obtained. The stability criterion is further extended to sampled-data systems with polytopic uncertainties.Finally,three examples are given to illustrate the reduced conservatism of the stability criteria.

    I. INTRODUCTION

    SAMPLED-DATA systems have received substantial attention over the last two decades due to their wide applications in digital control systems and networked control systems[1]-[7]. Stability of sampled-data systems is an especially interesting topic for many researchers [8]. In the literature there are mainly four approaches to the stability of sampleddata systems. The first is the discrete-time system method,which transforms sampled-data systems into discrete-time systems and then applies the classical system theory to stability analysis [9]. However, the method encounters difficulties for systems with variable sampling periods or uncertainties. The second approach to stability of sampled-data systems is the impulsive system method [10], [11]. As indicated in [10], the method requires the sampled-data system to be represented in the form of an impulsive model, and stability conditions are derived by constructing a time-dependent discontinuous Lyapunov functional.The third method is the input delay approach[12]-[14] by which sampled-data systems are formulated as continuous-time systems with a time-varying delay, and the time-dependent Lyapunov functional method is employed to study the stability of the continuous-time systems [15]-[18].As shown in [10]-[14] the time-dependent Lyapunov functional can lead to a stability condition that determines an upper bound of the time-varying delay, namely the size of the sampling interval.It is well known that both computational burden and data transmission rate of the sampled-data systems are decreased as the sampling interval increases. Therefore,the second and third methods are of significance in obtaining a possibly larger sampling period that ensures the stability of sampled-data systems. However, the Lyapunov functional involved in the latter two methods is too restrictive. The fourth is the Lyapunov-like functional method. It does not involve model transformation. Moreover, the functional is not necessarily positive definite [19]-[22]. Recently stability criteria of sampled-data system were provided by the fourth method in [19]. A further improved stability criterion was obtained in [20] by using a new inequality to estimate the derivative of the Lyapunov-like functional.Very recently those stability results have been extended to sampled-data systems with state quantization [21]. Note that the existing Lyapunovlike functional does not include the integral of the state; there is still room for the functional to improve.

    In this paper we further investigate the stability of a sampled-data system with variable sampling periods. Novel sampling-interval-dependent stability criteria are derived by a new Lyapunov-like functional approach that does not involve model transformation.Compared with existing ones,the Lyapunov functional makes use of the integral of the state as well as the sampled state. It is time-dependent, may be discontinuous, and not every term of it is necessarily positive definite. It is illustrated by examples that the stability criteria derived are less conservative than some existing ones.

    Throughout this paperIrefers to an identity matrix with appropriate dimensions. For real symmetric matricesXandY, the notationX >Y(respectively,X ≥Y) means that the matrixX-Yis positive definite (respectively, positive semidefinite). TheSym(X) stands forX+XT. In symmetric block matrices, we use an asterisk*to represent a term that is induced by symmetry. The smallest and the largest eigenvalues of a real symmetric matrixXare denoted byλmin(X) andλmax(X), respectively.| · |is the Euclidean norm for a vector while‖·‖is the induced matrix norm. We writeMatrices, if their dimensions are not explicitly stated, are assumed to be compatible for algebraic operations.

    II. PROBLEM FORMULATION

    Consider the linear system

    wherex(t)∈Rnis the state,A ∈Rn×n,B ∈Rn×mare known real constant matrices,u(t)∈Rmis the sampled-data inputu(t)=ud(tk),t ∈[tk,tk+1), with sampling instantstksatisfying 0=t0<t1<···<tk <···, and

    For a state-feedback controller in the form of

    the corresponding closed-loop system is

    whereAd=BK.

    The purpose of this paper is to study the stability problem for system(3)subject to(2),that is,for a givenK,to establish some sampling-interval-dependent stability conditions such that the system is asymptotically stable. In the following we give a lemma and a proposition that play a crucial role in studying the stability problem.

    Lemma 1[20]:For a given matrixR >0, the following inequality holds for all continuously differentiable functionωin [a,b]→Rn

    To study the stability problem mentioned above,the following proposition is also needed.

    Proposition 1:Consider the following sampled-data system described by

    where the sampling interval satisfies (2),f(0,0)=0, and fory(t),y(tk)∈Rn

    whereL1>0 andL2>0 are known constants. Forc1>0,c2>0 and a solutionx(t) to the system, suppose that there exist a continuous functionalVa(x(t)) and a piecewise continuous functionalsatisfying

    1)

    2)

    3)

    Then the trivial solution of system(4)is asymptotically stable.

    Proof:From 3) it follows:

    Noting thatVa(x(t)) is continuous at sampling instant, it is seen from 2) that

    Therefore, from (i) we havex(tk)→0,k →∞.

    On the other hand, from the system (4) it follows that fort ∈[tk,tk+1)

    Thus

    Apply Grownwall-Bellman lemma to obtain

    Now it can be concluded that the system (4) is asymptotically stable.

    Remark 1:Proposition 1 provides a general stability result for a class of nonlinear systems which covers the system (3)subject to (2) as a special case.

    It is noted thatV(x(t),t) is not the same as a usual Lyapunov functional becauseVb(x(t),t)may be discontinuous at sampling instants and it is not required to be positive definite. In the following we referV(x(t),t) to as a kind of Lyapunov-like functional.

    III. STABILITY CRITERIA

    For system (3) subject to (2), we construct a Lyapunov-like functional on [tk,tk+1) as follows:

    where

    with

    Remark 2:Note that

    This implies Lyapunov functional(5)is a 2-order function int,and it includes the integral of the state as well as the sampled state. As seen fromV4(x(t),t),

    So the Lyapunov functional may be discontinuous at the sampling instants. In the following we will see that not every term of Lyapunov functional (5) is required to be positive definite when employed to derive the following samplinginterval-dependent stability result.

    Theorem 1:For givenandsystem (3) subject to (2) is asymptotically stable if there exist symmetric matricesP >0,

    Q >0,Q1>0,Q2,Q3,S ∈Rn×nand matricesNα ∈R4n×n,Lα,α= 1,2,3,Mj ∈Rn×n(j= 1,2,...,6), such that for

    where

    Proof:Firstly, for the Lyapunov functional (5) we have

    Therefore,On the other hand,Letc1=λmin(P),c2=λmax(P), and thenThat is to say the Lyapunov functional (5) satisfies 1) and 2)of Proposition 1.

    In the following we will show it also satisfies 3) of Proposition 1. Define

    Integrating both sides of system (3) subject to (2) leads to

    So there existsN3∈R4n×nsuch that

    Employing Lemma 1 we have

    As per [20] there existN1andN2∈R4n×nsuch that

    Using Jensen inequality [18] gives

    Now from (8)-(14) it is derived that

    where

    On the other hand, from (6) and (7) it is concluded that for

    By (16), it follows thatW(tk)<0 andW(tk+1)<0. SinceW(t) is linear int,W(t)<0 fort ∈(tk,tk+1). By (15),

    Now it is shown under (6) and (7) the Lyapunov functional(5) also satisfies 3) of Proposition 1. By Proposition 1 system(3) subject to (2) is asymptotically stable.

    When, we have a sampling-intervaldependent stability result for the periodic sampling case in the following corollary.

    Corollary 1:For, the system (3) subject to(2) is asymptotically stable if there exist symmetric matricesand matrices,j= 1,2,...,6 such that (6) and (7) hold.

    Remark 3:Theorem 1 and Corollary 1 provide samplinginterval-dependent stability criteria for system (3) subject to(2), by which we can compute the admissible upper bound of sampling intervals that ensures the system to be asymptotically stable. Recently, sampling-interval-dependent stability for system(3)subject to(2)was also studied in[10],[12],[14],and [17]-[21] by employing Lyapunov functional methods.However, as a whole, Lyapunov functionalV(x(t),t) in (5)is different from those in that it is second order with respect to timet, and possibly discontinuous at the sampling points;it involves not only the sampled state but also the integral of the state, and not every term of it is positive definite.Moreover, different from [10],[12],[14] and [17]-[19],[21],when estimatingthis paper employs Lemma 1 and the integral equation (9) to take advantage of the integral of the stateas well as the statex(t). This method is expected to result in less conservative stability results, as illustrated in Section IV.

    When system (3) subject to (2) involves polytopic uncertainties, by Theorem 1 we have the stability result stated as follows.

    Theorem 2:Assume that the matricesAandAdin system(3) subject to (2) belong to a polytope: [A Ad]∈Θ, Θ =with...,land

    Remark 4:It is not difficult to present a stability analysis result using Theorem 1 for sampled-data systems with normbounded parameter uncertainties. Based on Theorem 1 one can also consider the stabilization problem, which is omitted here, given that the objective of this paper is to focus on the stability problem.

    IV. NUMERICAL EXAMPLES

    In this section,we give three examples to show the reduced conservatism of our stability criteria.

    Example 1:Consider the sampled-data control system in Fig.1.

    The physical plant is given bywith

    and the controller is given byu(t) =Kx(t) withK=[3.75 11.5].Since the controller is connected with the physical plant via the sampler and the zero-order hold ZOH,the closedloop system is in a form of (3) with

    which was employed in [10],[12],[14],[17],[19] and [21].

    Firstly we intend to find the admissible upper boundhon the periodic sampling, which guarantees the asymptotic stability of the system. Using Corollary 1 in this paper and some existing stability results we can compute the admissible upper bound, which are listed in Table I.

    Methods [10] [14] [19] [21] Corollary 1 h 1.32 1.69 1.723 1.7239 1.7294

    From the table above, it is seen that the stability result(Corollary 1) in this paper can provide a larger admissible upper boundhon periodic sampling than the corresponding ones in [10],[14],[19] and [21]. In this sense the stability result(Corollary 1)in this paper is less conservative,compared with those in [10],[14],[19] and [21].

    In this example, choose the initial conditionx0=[2-1.8]and the periodh= 1.7294, and then the state responses of the system can be obtained as in Fig.2.

    As shown by the Fig.2, the state trajectory of the closedloop system converges to zero.

    Secondly for the case of variable sampling, with the lower boundwe attempt to compute the admissible upper boundwhich is given in Table II.

    Methods [17] [19] [12] Theorem 1 h 1.36 1.721 1.723 1.729

    As shown from the table, for the variable sampling case,the admissible upper boundin this paper is also larger than the ones in [12],[17] and [19]. Therefore, the stability result Theorem 1 in this paper is less conservative than those in[12],[17] and [19].

    Example 2:Consider a 3rd order system described by (3)with

    The objective is to fnid admissible upper boundfor given lower bound= 0 on the variable sampling such that the closed-loop system is stable. By the methods in [19],[20] and this paper, the comparison results are given in Table III.

    Methods [19] [20] Theorem 1 h 1.9637 2.3724 3.0887

    It is clearly shown our method has the least conservatism.

    Example 3:Consider the uncertain system that was employed in [10],[19],[23] and [24], with parameters

    where|g1| ≤0.1 and|g2| ≤0.3. Obviously the system can be formulated as one with parameters from a polytope,the vertices of which are

    To guarantee the asymptotic stability of the uncertain system, by the stability result Theorem 2 and those in[10],[19],[23] and [24], we can find the admissible upper boundhon the periodic sampling in Table IV.

    Methods [10] [19] [23] [24] Theorem 2 h 0.4610 0.6674 0.7255 0.7310 0.7354

    It is obvious that the stability result Theorem 2 is less conservative than those in [10],[19],[23] and [24].

    V. CONCLUSION

    The stability of sampled-data systems with variable sampling periods has been investigated by constructing a new Lyapunov-like functional. Compared to existing ones the Lyapunov functional is more generalized in the sense of being second order with respect to time t, possibly discontinuous at the sampling instants, including the integral of the state as well as the sampled state. Moreover, not every term of it is required to be positive definite. Some new samplinginterval-dependent stability criteria have been obtained for the sampled-data systems with or without uncertainties.It has been illustrated that the stability criteria are less conservative than some existing ones.

    国产精品国产av在线观看| 中文字幕人妻丝袜制服| 一二三四在线观看免费中文在| 国产男女内射视频| 男女边摸边吃奶| 只有这里有精品99| 亚洲精品日韩在线中文字幕| 久久这里有精品视频免费| 国产精品免费视频内射| 最近中文字幕高清免费大全6| 国产精品秋霞免费鲁丝片| 精品国产乱码久久久久久男人| 少妇被粗大的猛进出69影院| 婷婷成人精品国产| 久久99热这里只频精品6学生| 国产精品秋霞免费鲁丝片| 婷婷色麻豆天堂久久| 你懂的网址亚洲精品在线观看| 天天影视国产精品| 久久人人爽人人片av| 爱豆传媒免费全集在线观看| 亚洲一区二区三区欧美精品| 久久毛片免费看一区二区三区| 女的被弄到高潮叫床怎么办| 精品少妇内射三级| √禁漫天堂资源中文www| 街头女战士在线观看网站| 女性生殖器流出的白浆| 久久亚洲国产成人精品v| 自线自在国产av| 最近的中文字幕免费完整| 亚洲精品av麻豆狂野| 亚洲av福利一区| 国产精品人妻久久久影院| 在线观看免费视频网站a站| 蜜桃国产av成人99| av不卡在线播放| 黄色怎么调成土黄色| 久久韩国三级中文字幕| 中文欧美无线码| 一级毛片黄色毛片免费观看视频| 人妻 亚洲 视频| 18禁观看日本| a 毛片基地| 亚洲色图综合在线观看| 不卡av一区二区三区| 夫妻午夜视频| 又大又黄又爽视频免费| 精品福利永久在线观看| 性高湖久久久久久久久免费观看| 日韩欧美一区视频在线观看| 亚洲精品在线美女| 久久久久久免费高清国产稀缺| 婷婷色综合www| 免费高清在线观看视频在线观看| 97在线人人人人妻| 精品亚洲成a人片在线观看| 亚洲国产精品国产精品| 欧美日韩精品网址| av女优亚洲男人天堂| 999精品在线视频| 韩国高清视频一区二区三区| 日日摸夜夜添夜夜爱| 国产在视频线精品| 最近手机中文字幕大全| 伊人亚洲综合成人网| 亚洲av国产av综合av卡| 亚洲精品乱久久久久久| 精品国产国语对白av| 国产精品国产三级国产专区5o| 欧美av亚洲av综合av国产av | 亚洲精品在线美女| 午夜福利乱码中文字幕| 看十八女毛片水多多多| 欧美精品人与动牲交sv欧美| 久久这里只有精品19| 成人影院久久| 一本大道久久a久久精品| 在线观看www视频免费| 丁香六月天网| 国产一区二区激情短视频 | 男女边吃奶边做爰视频| 午夜福利视频精品| 激情五月婷婷亚洲| 大话2 男鬼变身卡| 精品人妻偷拍中文字幕| 精品酒店卫生间| 久久久久久久久久人人人人人人| 香蕉丝袜av| 边亲边吃奶的免费视频| 成人亚洲欧美一区二区av| 人人妻人人澡人人爽人人夜夜| 久久av网站| 赤兔流量卡办理| 999精品在线视频| 婷婷成人精品国产| 亚洲五月色婷婷综合| 欧美人与性动交α欧美软件| av女优亚洲男人天堂| a级毛片黄视频| 亚洲国产精品成人久久小说| 国产精品免费视频内射| 久久国内精品自在自线图片| 久久精品国产综合久久久| 18禁裸乳无遮挡动漫免费视频| 观看av在线不卡| 少妇被粗大猛烈的视频| 人人妻人人澡人人看| 欧美精品一区二区免费开放| 亚洲一区二区三区欧美精品| 美女大奶头黄色视频| 国产免费福利视频在线观看| 永久网站在线| av网站免费在线观看视频| 最新的欧美精品一区二区| 免费观看在线日韩| 欧美激情高清一区二区三区 | 国产不卡av网站在线观看| 精品国产一区二区三区久久久樱花| 黄片无遮挡物在线观看| 中文字幕最新亚洲高清| 不卡av一区二区三区| 乱人伦中国视频| 成年人免费黄色播放视频| 欧美日韩成人在线一区二区| 国产成人免费观看mmmm| 97在线视频观看| 久久午夜综合久久蜜桃| 免费av中文字幕在线| 搡老乐熟女国产| 欧美少妇被猛烈插入视频| 国产一区二区 视频在线| 亚洲色图综合在线观看| 9热在线视频观看99| 久久久久久免费高清国产稀缺| 久久久久久人妻| 亚洲伊人色综图| 新久久久久国产一级毛片| 欧美日本中文国产一区发布| 91午夜精品亚洲一区二区三区| 亚洲一级一片aⅴ在线观看| 狠狠婷婷综合久久久久久88av| 观看av在线不卡| 青青草视频在线视频观看| 国产精品免费视频内射| 久久精品aⅴ一区二区三区四区 | 日本色播在线视频| 熟女少妇亚洲综合色aaa.| 中文字幕色久视频| 久久久久久久久免费视频了| 9色porny在线观看| 日日爽夜夜爽网站| 精品卡一卡二卡四卡免费| 不卡av一区二区三区| 下体分泌物呈黄色| 久久久久国产精品人妻一区二区| 纯流量卡能插随身wifi吗| 巨乳人妻的诱惑在线观看| 国产成人一区二区在线| 黑丝袜美女国产一区| 女性生殖器流出的白浆| 国产高清不卡午夜福利| 永久免费av网站大全| 交换朋友夫妻互换小说| 欧美日韩一区二区视频在线观看视频在线| 香蕉丝袜av| 成人手机av| 桃花免费在线播放| 免费久久久久久久精品成人欧美视频| 久久热在线av| 91精品伊人久久大香线蕉| av电影中文网址| 免费日韩欧美在线观看| 亚洲av免费高清在线观看| 一级黄片播放器| 男人舔女人的私密视频| 黑人巨大精品欧美一区二区蜜桃| 乱人伦中国视频| 亚洲美女搞黄在线观看| 丝袜喷水一区| 男人添女人高潮全过程视频| 热99久久久久精品小说推荐| 久久精品人人爽人人爽视色| 亚洲国产av影院在线观看| 久久精品久久精品一区二区三区| 2021少妇久久久久久久久久久| 欧美在线黄色| 永久网站在线| 亚洲精品视频女| 爱豆传媒免费全集在线观看| 亚洲,一卡二卡三卡| 国产在视频线精品| 少妇熟女欧美另类| 美女午夜性视频免费| 大陆偷拍与自拍| 亚洲色图 男人天堂 中文字幕| 一本—道久久a久久精品蜜桃钙片| 久久99热这里只频精品6学生| 天天躁日日躁夜夜躁夜夜| 国产精品国产三级国产专区5o| 精品亚洲乱码少妇综合久久| 人妻 亚洲 视频| 国产探花极品一区二区| 大香蕉久久网| 精品国产一区二区三区久久久樱花| 男女啪啪激烈高潮av片| 街头女战士在线观看网站| 免费播放大片免费观看视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕色久视频| 亚洲欧洲精品一区二区精品久久久 | 色视频在线一区二区三区| 热re99久久国产66热| 亚洲国产最新在线播放| 777久久人妻少妇嫩草av网站| 亚洲三区欧美一区| 伊人久久大香线蕉亚洲五| 一个人免费看片子| 另类亚洲欧美激情| 久久亚洲国产成人精品v| 国产白丝娇喘喷水9色精品| 熟女电影av网| 麻豆av在线久日| 激情五月婷婷亚洲| 亚洲一区中文字幕在线| tube8黄色片| 80岁老熟妇乱子伦牲交| 日本黄色日本黄色录像| 欧美日韩综合久久久久久| 午夜福利网站1000一区二区三区| 91午夜精品亚洲一区二区三区| 少妇被粗大猛烈的视频| 少妇的丰满在线观看| 久久ye,这里只有精品| 国产成人a∨麻豆精品| 五月天丁香电影| 精品国产超薄肉色丝袜足j| 日韩制服丝袜自拍偷拍| 青春草视频在线免费观看| 黄片小视频在线播放| 国产高清不卡午夜福利| 美女大奶头黄色视频| 精品国产乱码久久久久久小说| 国产精品亚洲av一区麻豆 | 中国三级夫妇交换| 久久影院123| 极品人妻少妇av视频| 99热国产这里只有精品6| 桃花免费在线播放| 亚洲av电影在线观看一区二区三区| 精品少妇内射三级| 国产深夜福利视频在线观看| 一个人免费看片子| 亚洲中文av在线| 欧美日韩成人在线一区二区| 夫妻午夜视频| 天天躁日日躁夜夜躁夜夜| 亚洲图色成人| 99国产精品免费福利视频| 天天躁夜夜躁狠狠久久av| 精品久久久久久电影网| 一区二区三区四区激情视频| 久久久久国产精品人妻一区二区| 精品人妻一区二区三区麻豆| 亚洲男人天堂网一区| 肉色欧美久久久久久久蜜桃| 日本wwww免费看| 嫩草影院入口| 久久人人97超碰香蕉20202| 亚洲成av片中文字幕在线观看 | 免费播放大片免费观看视频在线观看| 国产男人的电影天堂91| av国产精品久久久久影院| 一二三四在线观看免费中文在| 女人被躁到高潮嗷嗷叫费观| 国产毛片在线视频| 亚洲一区二区三区欧美精品| 国产精品欧美亚洲77777| 不卡av一区二区三区| 久久久久久久国产电影| 成人午夜精彩视频在线观看| 国产有黄有色有爽视频| 免费在线观看黄色视频的| 一级毛片电影观看| 国产免费一区二区三区四区乱码| 黄网站色视频无遮挡免费观看| 热99久久久久精品小说推荐| 一级毛片黄色毛片免费观看视频| 欧美bdsm另类| 91久久精品国产一区二区三区| 丰满少妇做爰视频| 亚洲成人一二三区av| 精品视频人人做人人爽| 国产精品一区二区在线观看99| 午夜av观看不卡| 国产精品 欧美亚洲| 久久 成人 亚洲| 亚洲成人一二三区av| 国产成人午夜福利电影在线观看| 久久精品国产亚洲av高清一级| 亚洲欧美成人综合另类久久久| 国产视频首页在线观看| 国产精品久久久久成人av| 久久精品国产亚洲av天美| 十八禁网站网址无遮挡| 欧美日韩视频精品一区| 欧美日韩视频高清一区二区三区二| 最近2019中文字幕mv第一页| 久久婷婷青草| 满18在线观看网站| 亚洲国产欧美在线一区| 天天躁日日躁夜夜躁夜夜| 韩国精品一区二区三区| 在线天堂中文资源库| 成人手机av| 搡老乐熟女国产| 久久人人爽人人片av| 五月开心婷婷网| 欧美国产精品一级二级三级| 婷婷成人精品国产| av.在线天堂| av天堂久久9| 丝瓜视频免费看黄片| 亚洲av欧美aⅴ国产| 大片免费播放器 马上看| 秋霞伦理黄片| 如日韩欧美国产精品一区二区三区| av国产久精品久网站免费入址| 人妻 亚洲 视频| 中文欧美无线码| 一二三四中文在线观看免费高清| 伊人久久国产一区二区| 一级,二级,三级黄色视频| 久久ye,这里只有精品| av在线app专区| 日韩人妻精品一区2区三区| www.熟女人妻精品国产| 丝袜在线中文字幕| 国产成人精品久久久久久| 久久久久久久久免费视频了| 亚洲av在线观看美女高潮| 美女大奶头黄色视频| 少妇猛男粗大的猛烈进出视频| 午夜福利乱码中文字幕| 国产极品天堂在线| 99久久综合免费| 午夜福利乱码中文字幕| 男的添女的下面高潮视频| 黄色怎么调成土黄色| 麻豆乱淫一区二区| 欧美激情 高清一区二区三区| 欧美日韩一级在线毛片| 中文字幕精品免费在线观看视频| 国产又爽黄色视频| 看免费成人av毛片| 七月丁香在线播放| 又黄又粗又硬又大视频| 巨乳人妻的诱惑在线观看| 男的添女的下面高潮视频| 国产成人av激情在线播放| 国产亚洲精品第一综合不卡| 亚洲av中文av极速乱| 国产综合精华液| 国产精品国产三级国产专区5o| 18+在线观看网站| 男女啪啪激烈高潮av片| 久久久精品94久久精品| 97人妻天天添夜夜摸| 久久精品aⅴ一区二区三区四区 | 免费观看在线日韩| av又黄又爽大尺度在线免费看| av不卡在线播放| 欧美在线黄色| 国产女主播在线喷水免费视频网站| 伊人久久国产一区二区| 香蕉丝袜av| 我的亚洲天堂| 亚洲国产成人一精品久久久| av有码第一页| 亚洲国产av新网站| 一级毛片我不卡| 新久久久久国产一级毛片| 熟女电影av网| av又黄又爽大尺度在线免费看| 热99国产精品久久久久久7| 久久国产精品男人的天堂亚洲| 成年美女黄网站色视频大全免费| 又粗又硬又长又爽又黄的视频| 久久久久网色| 午夜免费观看性视频| 欧美精品一区二区大全| 国产精品 欧美亚洲| 韩国av在线不卡| 欧美激情 高清一区二区三区| 91aial.com中文字幕在线观看| 制服人妻中文乱码| 秋霞在线观看毛片| a级片在线免费高清观看视频| 国产精品无大码| 日日爽夜夜爽网站| videos熟女内射| 永久免费av网站大全| 免费av中文字幕在线| 建设人人有责人人尽责人人享有的| 欧美老熟妇乱子伦牲交| 波多野结衣一区麻豆| 免费观看无遮挡的男女| 精品亚洲成a人片在线观看| 午夜福利网站1000一区二区三区| 亚洲精品国产色婷婷电影| 婷婷色av中文字幕| 成人免费观看视频高清| 一级毛片 在线播放| 曰老女人黄片| 亚洲,欧美,日韩| 欧美bdsm另类| 高清欧美精品videossex| 午夜福利乱码中文字幕| 制服诱惑二区| 好男人视频免费观看在线| 成年动漫av网址| 成人手机av| 午夜91福利影院| 少妇的逼水好多| 欧美日韩一级在线毛片| 高清欧美精品videossex| 亚洲人成网站在线观看播放| 两性夫妻黄色片| 精品久久久精品久久久| 午夜福利一区二区在线看| 国产欧美日韩综合在线一区二区| 国产精品熟女久久久久浪| 欧美人与善性xxx| 久久久久国产一级毛片高清牌| 国产精品国产三级国产专区5o| 亚洲经典国产精华液单| 国产精品欧美亚洲77777| 欧美成人精品欧美一级黄| 肉色欧美久久久久久久蜜桃| 国产片内射在线| 成年av动漫网址| 国产成人精品久久二区二区91 | 国产成人精品久久二区二区91 | 欧美日韩成人在线一区二区| 色播在线永久视频| 久久毛片免费看一区二区三区| 一区二区av电影网| 婷婷色综合www| 丝瓜视频免费看黄片| 永久免费av网站大全| 免费av中文字幕在线| 下体分泌物呈黄色| 国产白丝娇喘喷水9色精品| 日本猛色少妇xxxxx猛交久久| 丝袜在线中文字幕| 亚洲av日韩在线播放| av国产精品久久久久影院| 日韩一区二区视频免费看| 青草久久国产| 国产 一区精品| 成年人午夜在线观看视频| 看十八女毛片水多多多| 高清av免费在线| 如何舔出高潮| 天天躁夜夜躁狠狠久久av| 大片免费播放器 马上看| 亚洲久久久国产精品| 亚洲欧洲日产国产| 伊人久久大香线蕉亚洲五| 黄片无遮挡物在线观看| 午夜激情av网站| 国产av精品麻豆| 成人影院久久| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩视频精品一区| 老司机亚洲免费影院| 久久久国产精品麻豆| 97在线视频观看| 亚洲精品一区蜜桃| 最新的欧美精品一区二区| 国产在视频线精品| 亚洲第一青青草原| 国产一区二区在线观看av| 国产黄色视频一区二区在线观看| 国产精品一区二区在线观看99| xxx大片免费视频| 在线亚洲精品国产二区图片欧美| 欧美精品人与动牲交sv欧美| 亚洲成人手机| 在线精品无人区一区二区三| 少妇的丰满在线观看| 国产成人欧美| 亚洲精品视频女| 我要看黄色一级片免费的| 91精品三级在线观看| 国产视频首页在线观看| av在线老鸭窝| 少妇人妻 视频| 成人二区视频| 纵有疾风起免费观看全集完整版| 午夜福利视频精品| 国产成人午夜福利电影在线观看| 视频区图区小说| 日韩一本色道免费dvd| 亚洲av电影在线观看一区二区三区| 一区福利在线观看| 免费久久久久久久精品成人欧美视频| 午夜影院在线不卡| 亚洲国产av新网站| 如何舔出高潮| 两性夫妻黄色片| 亚洲一区中文字幕在线| 国产精品一区二区在线观看99| 欧美另类一区| 精品亚洲成a人片在线观看| 69精品国产乱码久久久| 一二三四在线观看免费中文在| 美女脱内裤让男人舔精品视频| 一二三四中文在线观看免费高清| 亚洲视频免费观看视频| av又黄又爽大尺度在线免费看| 国产欧美日韩一区二区三区在线| freevideosex欧美| 丝袜脚勾引网站| av.在线天堂| 亚洲国产最新在线播放| 欧美人与善性xxx| 天堂8中文在线网| 亚洲,欧美,日韩| 成人18禁高潮啪啪吃奶动态图| h视频一区二区三区| av免费在线看不卡| 久久精品国产亚洲av天美| 日韩中字成人| 韩国高清视频一区二区三区| 亚洲一区二区三区欧美精品| 日韩 亚洲 欧美在线| 天天操日日干夜夜撸| 色播在线永久视频| 精品国产一区二区三区久久久樱花| 卡戴珊不雅视频在线播放| 91精品三级在线观看| 青春草亚洲视频在线观看| 亚洲人成网站在线观看播放| 日韩av免费高清视频| 男人添女人高潮全过程视频| 日韩大片免费观看网站| 男女午夜视频在线观看| av免费在线看不卡| 精品亚洲乱码少妇综合久久| 亚洲欧洲国产日韩| 男人舔女人的私密视频| 日韩中字成人| 欧美 日韩 精品 国产| 91aial.com中文字幕在线观看| 一级黄片播放器| 91午夜精品亚洲一区二区三区| 男人爽女人下面视频在线观看| 精品国产一区二区三区久久久樱花| 午夜福利视频精品| 黑丝袜美女国产一区| av在线播放精品| 女性生殖器流出的白浆| 亚洲婷婷狠狠爱综合网| 国产精品av久久久久免费| 久久午夜福利片| 熟女电影av网| 老司机影院成人| 麻豆av在线久日| 久久久久久免费高清国产稀缺| 91国产中文字幕| 纯流量卡能插随身wifi吗| 色婷婷av一区二区三区视频| 男人舔女人的私密视频| 十分钟在线观看高清视频www| 秋霞伦理黄片| 一本色道久久久久久精品综合| 如何舔出高潮| 免费在线观看黄色视频的| 亚洲美女搞黄在线观看| 国产极品粉嫩免费观看在线| 伊人久久国产一区二区| 日本vs欧美在线观看视频| 国产亚洲精品第一综合不卡| 亚洲精品乱久久久久久| 欧美精品高潮呻吟av久久| 中国三级夫妇交换| av在线app专区| 大码成人一级视频| 一区二区日韩欧美中文字幕| 青春草亚洲视频在线观看| 黄色一级大片看看| 性色avwww在线观看| 交换朋友夫妻互换小说| 啦啦啦啦在线视频资源| 成人国产麻豆网| 国产日韩欧美在线精品| 制服人妻中文乱码| 性高湖久久久久久久久免费观看| 99九九在线精品视频| 满18在线观看网站| 免费黄色在线免费观看| av在线观看视频网站免费| 欧美成人精品欧美一级黄| 一区二区av电影网| 精品人妻一区二区三区麻豆| 少妇的丰满在线观看| 国产淫语在线视频| 免费久久久久久久精品成人欧美视频| 日韩精品免费视频一区二区三区| 精品一区在线观看国产| 久久av网站| 免费观看性生交大片5| 国产一区二区激情短视频 | 99热网站在线观看|