• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Guidance Control for Parallel Parking Tasks

    2020-02-29 14:22:08JiyuanTanChunlingXuLiLiFeiYueWangDongpuCaoandLingxiLiSenior
    IEEE/CAA Journal of Automatica Sinica 2020年1期

    Jiyuan Tan,, Chunling Xu, Li Li,, Fei-Yue Wang,,Dongpu Cao,, and Lingxi Li, Senior

    Abstract—Parking into small berths remains difficult for unskilled drivers. Researchers had proposed different automatic parking systems to solve this problem. The first kind of strategies(called parking trajectory planning) designs a detailed reference trajectory that links the start and ending points of a special parking task and let the vehicle track this reference trajectory so as to park into the berth. The second kind of strategies (called guidance control) just characterizes several regimes of driving actions as well as the important switching points in certain rule style and let the vehicle follows the pre-selected series of actions so as to park into the berth. Parking guidance control is simpler than parking trajectory planning. However, no studies thoroughly validated parking guidance control before. In this paper, a new automatic parking method is presented, which could characterize the desired control actions directly. Then the feasibility is examined carefully. Tests show that a simple parking guidance control strategy can work in most parallel parking tasks, if the available parking berth is not too small. This finding helps to build more concise automatic parking systems that can efficiently guide human drivers.

    I. INTRODUCTION

    IF being compared with car-following, parallel parking often appears more difficult for drivers, since drivers not only need to drive backward but also move laterally. As a result,good driver assistance systems and automatic parking systems are expected by many drivers, because machines can help handle this hot potato for human beings [1]-[8].

    Researchers proposed several automatic parking systems in the last three decades. The first kind of strategies is usually called as parking trajectory planning. The key idea is to design a detailed reference trajectory along which the vehicle can move and park into the berth [9]-[11]. Conventionally, there are two major difficulties in implementing this kind of strategies. First, vehicles are not moving robots which can steer freely. It is hard to appropriately consider the dynamic constraints of vehicles in trajectory planning stage. Usually,dynamic constraints are addressed indirectly as the curvature constraints of the reference trajectory. However, the errors may make it unable to implement the planned control actions.Second, we can add a certain feedback controller according to the gap between the reference parking trajectory and the actual one, reshaping the steering actions and making the vehicle roughly track this reference trajectory. However, the design and implementation costs of a proper feedback controller are high. Moreover, the whole strategy consists of two-stages. If the first stage gives the wrong solution, there is no chance to correct it in the second stage.

    Differently, a new trajectory planning method is proposed in[12], [13]. Suppose we have shifted the starting point to the origin point, this trajectory planning method samples all the possible steering actions and the corresponding trajectories as well as the resulting ending points of the trajectories. Then, a deep neural network is used to store the relation between steering actions, trajectories, and ending points in a reverse manner. That is, this deep neural network accepts ending points as input and outputs the corresponding steering actions and trajectories. When a new parking berth (ending point) is given, it directly recalls the required steering actions and trajectories that can move the vehicle toward this parking berth (ending point). This new approach greatly simplifies the parking planning problem but still consumes relatively high computational time and storage resources.

    The second kind of strategies is called parking guidance control. Its key idea is to characterize several regimes of driving actions as well as some important switching points in certain rule style. Then, we let the vehicle follow the preselected series of actions so as to park into the berth.However, no studies thoroughly validated parking guidance control before. The so-called “ parking guidance control”proposed before are focus on the technical assistant systems to help drivers to find parking space, while not the control strategies or control rules [14], [15].

    Most known guidance control rules were empirically summarized by skilled human drivers. These rules are usually very concise and thus make the resulting guidance control simple to understand and execute. Many drivers claimed that these guidance control rules are helpful. However, no studies thoroughly validated parking guidance control before.

    In this paper, we carefully examine its feasibility by applying the sampling and testing framework proposed in[13]. Tests show that a simple parking guidance control strategy can work in most parallel parking tasks, if the available parking berth is not too small. This finding helps to build more concise automatic parking systems that could well communicate with drivers to provide efficient guidance rules.

    To better present our findings, the rest of this paper is arranged as follows. Section II presents the parking guidance control for a general parallel parking scenario and explains how to check its feasibility. Section III provides some numerical testing results to verify the effectiveness of this method. Finally, Section IV concludes the paper.

    II. PROBLEM PRESENTATION AND THE RSS STRATEGY

    The parking scenario studied in this paper is shown in Fig. 1 and the related symbols are listed in Appendix.

    The origin of the world coordinate is set as the outer boundary point of the left berth. TheX-axis is parallel to the road and points to the right.

    In this paper, we introduce a simple three-step guidance control strategy which is the most popular in Chinese driving schools. As shown in Fig. 1, the core of this strategy can be summarized as follows:

    Step 1:Straightly drive the vehicle from the initial position(IP) forward to the start position (SP) whose coordinate is (x0,y0) and make the angleψfrom theX-axis to the longitudinal axis of vehicle becomes approximately 0;

    Step 2:Drive the vehicle backward to the critical angle position (CAP) from SP with full right turn (setting steering angleδf) with the velocityv, until the angleψfrom theX-axis to the longitudinal axis of vehicle reaches the preselected critical angle position (CAP) (ψ=θ);

    Step 3:Drive the vehicle backward from CAP with full left turn (setting steering angle -δf) with the velocityv, until the vehicle arrives the final position (FP) in the berth (meanwhile the angleψfrom theX-axis to the longitudinal axis of vehicle becomes approximately 0).

    There are five controlling variables in this three-step guidance control strategy:x0,y0,δf,v, andθ. Given the lengthLBand widthWBof the berth as well as the maximum vertical distanceDVto the berth, we need to examine whether there exists an appropriate setting of these five variables to make the above three-step parking feasible.

    For a given set of {x0,y0,δf,v,θ}, we can use the vehicle dynamic model presented in Appendix I to simulate the corresponding vehicle trajectory. There are three situations that this trajectory becomes infeasible:

    1) The right front cornerO1of the vehicle collides with the boundary of the right berth. Fig. 1 denotes this situation as the right yellow star.

    Let us denote the intersection of theX-axis and the trajectory of the center of the gravity (CG) as point “C”. The horizontal distance between “C” and the right edge of the berth of interest is denoted asdc. Clearly,dcreaches its maximum value when the vehicle is parallel to the berth. So,to avoid colliding with the boundary of the right berth, we require the abscissaxcof point C to satisfy

    2) The vehicle collided with the bottom edge of the berth.

    Let us denote the horizontal distancedYbetween the rear end of the vehicle and the left side of the berth, when the vehicle stops. Clearly, we requiredYto satisfy

    3) The rear end of the vehicle collides with the left side of the berth.

    Let us denote the horizontal distancedXbetween the rear end of the vehicle and the left side of the berth, when the vehicle stops. Clearly, we requiredYto satisfy

    The verification of the determined parking process could be straightforward. Fig. 2 shows an example trajectory, wherex0= 8.2 m,y0= 1.4 m,δf= 38°,v= 1 m/s,θ= 54°. The values of all the other parameters are given in Appendix I. We can see that the guidance control makes the vehicle park into the berth without causing any collisions.

    The parameters of a vehicle’s dynamic model can be predetermined. So, the maximum allowable steering angleδfcan be known in advance. If we further set the velocityv, there are only three variables that characterize the proposed control actions. First, the choice of the start point {x0,y0}. Second, the choice of the critical angle positionθ. To derive a simple parking guidance rule that can be easily used in practice, the following study will focus on finding an appropriate start point as well as the critical angle positionθto make the above guidance control feasible.

    III. TESTING RESULTS

    In this section, we will first show that there will exist a lot of combinations of {x0,y0,θ} are feasible, if the berth is not too small and the maximum allowable steering angleδfis large enough. Second, we will derive a simple rule to choose{x0,y0} according to the length of the berth. Third, we will show how to select an appropriateθ, with respect the given{x0,y0} and steering angleδf.

    In practice, the width of the berth is usually large enough.So, we focus on the influence of the length of the berth. As presented in [5], we can enumerate all the possible parking trajectories that a vehicle can make under the given combination of {x0,y0,θ}. Since the solution space of {x0,y0,θ} is continuous, we will use the sampling techniques, say,with the discretization time interval as 0.1 s, the discretization spatial interval as 0.1 m for {x0,y0}, and 1° forθ. Considering the dynamic attribute of current cars, we allowδf∈[30°,40°]andθ∈[0°,90°]. Fig. 3 gives an example the feasible region of {x0,y0}, where all the other parameters are chosen in Appendix expect keeping the lengthLBof the berth variable.According to practices, we choose theLBchange from 3.0 m to 9.0 m, with the discretization distance interval as 0.5 m.Surprisingly, we can always find an appropriate combination of {x0,y0} with the correspondingly calculatedδfandθ, if the length of the berth is at least 0.3 m larger than the length of the vehicle. Further tests show that the width of the berth has little influence on the parking feasibility, if it is wider than the vehicle; while the length of the berth has a significantly stronger influence.

    WhenLB>4.0 m, the average allowable value ofy0increases slowly from 1.3 m, asLBincreases. It soon reaches a saturation value as about 1.4 m. This indicates that we could roughlyy0as a constant in parking guidance control with respect the given dynamic parameters of vehicles. Moreover,the average allowable value ofx0increase noticeably from 5.6 m, asLBincreases. Furthermore, there was an obvious upper limit ofx0for eachLB, say, the vehicle could not park successfully when it is too far from the berth.

    Based on these results, we can establish a simple determination rule of the abscissax0of the starting point as

    for the given parameter sets of the vehicle.

    Further testing results show that we can always find such simple a determination rule to calculate the SP when other types of vehicle are considered (with different sets of parameters).

    Finally, we can set up a determination rule to selectδfandθ,with the given Starting Point calculated from (4). We still use the discretization sampling technique to enumerate all the possible combination of {δf,θ}. Tests suggest that, if we chooseδf= 35°, the critical angleθcan be simply chosen as

    to park the vehicle.

    In summary, the rules (4) and (5) for determining the controlling variables are quite simple. This enables us to carry out such parking guidance control on intelligent vehicles.

    IV. CONCLUSION

    This paper has presented a new automatic parking method.Different from existing methods, this new method characterizes the desired control actions directly, rather than seeking the desired trajectory first. Moreover, the series of whole control actions are divided into three steps which can be explicitly characterized and easily applied. Such three-step control strategy is indeed a direct imitation of a human parking procedure which is popularly taught in Chinese driving schools.

    Several simple rules are found to determine the exact values of the control parameters for the proposed guidance control,when the dynamic parameters of the vehicle are given. Testing results show that this simple guidance control method works well, if the available parking berth is not too small. This finding indicates that skilled human drivers had summarized an effective solution for parallel parking tasks. Furthermore,we can also design more concise automatic parking systems.

    Since the control rules are proposed by human, we can view this approach as a special hybrid-augmented intelligence application [16], [17]. In the future, we will further analyze how to integrate human driving experience so as to build more intelligent vehicles.

    APPENDIX VEHICLE DYNAMICS MODEL

    In this paper, the dynamic model of vehicle is adopted from[18], [19], and the nomenclatures used in this paper are given in Table I. As shown in Fig. 4, the reference point center of the gravity (CG) is chosen at the center of gravity of the vehicle body. Its coordinate vale (x,y) represents the position of the vehicle. Vehicle velocityvis defined at the reference point CG. Heading angleψrefers to the angle from theX-axis to the longitudinal axis of the vehicle body. slide-slip angleβis the angle from the longitudinal axis of the vehicle body to the direction of the vehicle velocity.

    When moving forward, the movement of the vehicle can be described as

    where

    whereμis a weighting coefficient with dry roadμ= 1 and wet roadμ= 0.5.

    When moving backward, the movement of the vehicle can be described as

    where

    We can then get the movement of vehicle in worldcoordinate. For instance, when moving backward, the velocity of vehicle can be calculated as

    and the position coordinates are

    ACKNOWLEDGMENT

    We would like to thank Mr. Chenghong Wang, who is the Vice-Chairman of Chinese Association of Automation, for his insightful opinion to improve this paper.

    熟女人妻精品中文字幕| 久9热在线精品视频| 午夜免费男女啪啪视频观看 | 在线免费十八禁| 国产高清不卡午夜福利| 人人妻人人澡欧美一区二区| 免费av毛片视频| 欧美3d第一页| 网址你懂的国产日韩在线| 亚洲熟妇中文字幕五十中出| 桃红色精品国产亚洲av| av福利片在线观看| 欧美高清成人免费视频www| 简卡轻食公司| 久久婷婷人人爽人人干人人爱| 啦啦啦韩国在线观看视频| 国产精品一区www在线观看 | 久久精品国产亚洲网站| 亚洲欧美日韩卡通动漫| www.色视频.com| 久久精品国产亚洲av涩爱 | 亚洲欧美日韩无卡精品| 观看免费一级毛片| 国产一区二区三区视频了| 国产人妻一区二区三区在| 精品一区二区三区视频在线观看免费| 亚洲人成伊人成综合网2020| 亚洲专区中文字幕在线| 人妻丰满熟妇av一区二区三区| 日韩人妻高清精品专区| 久久99热6这里只有精品| 国产av在哪里看| 国产女主播在线喷水免费视频网站 | 国产精品久久久久久精品电影| 国产成人一区二区在线| 人人妻人人看人人澡| 特大巨黑吊av在线直播| 午夜免费激情av| 国产伦人伦偷精品视频| 免费电影在线观看免费观看| 午夜影院日韩av| 在线观看舔阴道视频| 欧美中文日本在线观看视频| 少妇猛男粗大的猛烈进出视频 | 制服丝袜大香蕉在线| 国产爱豆传媒在线观看| 尾随美女入室| 欧美另类亚洲清纯唯美| 亚洲一区高清亚洲精品| 国产伦人伦偷精品视频| 日韩欧美三级三区| 身体一侧抽搐| 成人美女网站在线观看视频| 露出奶头的视频| 婷婷六月久久综合丁香| 中文字幕av成人在线电影| 九九爱精品视频在线观看| av视频在线观看入口| 国产乱人伦免费视频| 嫁个100分男人电影在线观看| 不卡视频在线观看欧美| 国产一区二区亚洲精品在线观看| 久久精品国产鲁丝片午夜精品 | 变态另类丝袜制服| 欧美高清成人免费视频www| 日韩 亚洲 欧美在线| 久久久久九九精品影院| 制服丝袜大香蕉在线| 久久婷婷人人爽人人干人人爱| 国产亚洲91精品色在线| 成年版毛片免费区| 免费在线观看影片大全网站| 国产精品国产高清国产av| 天天躁日日操中文字幕| 丰满人妻一区二区三区视频av| 亚洲自拍偷在线| 村上凉子中文字幕在线| 国产一级毛片七仙女欲春2| 免费观看在线日韩| 国产亚洲精品久久久久久毛片| 91狼人影院| 久久九九热精品免费| 少妇的逼好多水| 欧美bdsm另类| 国产一级毛片七仙女欲春2| 人妻久久中文字幕网| 国产精品三级大全| 国产精品,欧美在线| 成人高潮视频无遮挡免费网站| 日韩亚洲欧美综合| 免费av毛片视频| 小蜜桃在线观看免费完整版高清| 69av精品久久久久久| 三级男女做爰猛烈吃奶摸视频| 亚洲人与动物交配视频| 久久精品国产清高在天天线| 99视频精品全部免费 在线| av专区在线播放| 精品日产1卡2卡| 嫩草影院新地址| 美女xxoo啪啪120秒动态图| 乱系列少妇在线播放| 黄色欧美视频在线观看| av专区在线播放| 国产成人一区二区在线| 精品久久久噜噜| av在线老鸭窝| 久久精品国产99精品国产亚洲性色| 亚洲va在线va天堂va国产| 制服丝袜大香蕉在线| 免费看美女性在线毛片视频| 女生性感内裤真人,穿戴方法视频| 精华霜和精华液先用哪个| 欧美激情久久久久久爽电影| 99久国产av精品| 一边摸一边抽搐一进一小说| 国产精品三级大全| 亚洲熟妇中文字幕五十中出| 国产午夜精品久久久久久一区二区三区 | eeuss影院久久| 日本免费一区二区三区高清不卡| 国产视频一区二区在线看| 成人永久免费在线观看视频| 欧美日韩精品成人综合77777| 欧洲精品卡2卡3卡4卡5卡区| 欧美日韩乱码在线| 国产精品一区二区性色av| 麻豆成人av在线观看| 午夜激情福利司机影院| 精品久久久久久久久av| 久久久久久伊人网av| 日韩人妻高清精品专区| 日本三级黄在线观看| 嫩草影院新地址| 亚洲无线观看免费| 久久人妻av系列| 日韩欧美在线二视频| 精品欧美国产一区二区三| 91午夜精品亚洲一区二区三区 | .国产精品久久| 欧美中文日本在线观看视频| 亚洲美女视频黄频| 国产免费一级a男人的天堂| 国产探花在线观看一区二区| 国内久久婷婷六月综合欲色啪| 日韩欧美精品免费久久| 天堂√8在线中文| av在线观看视频网站免费| 99热这里只有是精品50| 日日夜夜操网爽| .国产精品久久| 婷婷色综合大香蕉| 婷婷色综合大香蕉| 国产av不卡久久| 夜夜爽天天搞| 国产欧美日韩一区二区精品| 日日撸夜夜添| 午夜福利在线在线| 亚洲成人中文字幕在线播放| 久久香蕉精品热| 99久久精品一区二区三区| 免费在线观看成人毛片| 成人无遮挡网站| 成人无遮挡网站| 99精品久久久久人妻精品| 国产黄色小视频在线观看| 亚洲成人精品中文字幕电影| 999久久久精品免费观看国产| 日韩一本色道免费dvd| 一a级毛片在线观看| 日韩欧美三级三区| 最近视频中文字幕2019在线8| 99久久无色码亚洲精品果冻| 97热精品久久久久久| 简卡轻食公司| 我要搜黄色片| 精华霜和精华液先用哪个| 一区二区三区高清视频在线| 人人妻,人人澡人人爽秒播| 亚洲真实伦在线观看| 看十八女毛片水多多多| 中文资源天堂在线| 中文字幕人妻熟人妻熟丝袜美| 久久人人爽人人爽人人片va| 久久婷婷人人爽人人干人人爱| 亚洲美女黄片视频| 22中文网久久字幕| 国产 一区精品| 久久精品久久久久久噜噜老黄 | 亚洲美女搞黄在线观看 | 乱系列少妇在线播放| 久久6这里有精品| 亚洲精品粉嫩美女一区| 一个人免费在线观看电影| 乱人视频在线观看| 精华霜和精华液先用哪个| 日本成人三级电影网站| 中文亚洲av片在线观看爽| 精品福利观看| 看免费成人av毛片| 窝窝影院91人妻| 不卡视频在线观看欧美| 欧美绝顶高潮抽搐喷水| 观看免费一级毛片| 亚洲一区高清亚洲精品| 又爽又黄a免费视频| 亚洲一区高清亚洲精品| 美女cb高潮喷水在线观看| 舔av片在线| 香蕉av资源在线| 午夜福利18| 日韩中字成人| 国产一区二区三区在线臀色熟女| 欧美在线一区亚洲| bbb黄色大片| 久久久久久久久久久丰满 | 欧美日韩综合久久久久久 | 三级国产精品欧美在线观看| 成人高潮视频无遮挡免费网站| 欧美激情久久久久久爽电影| 熟妇人妻久久中文字幕3abv| 韩国av一区二区三区四区| 亚洲性久久影院| 九色国产91popny在线| 亚洲人成网站在线播| 午夜激情福利司机影院| videossex国产| 免费观看人在逋| 日本a在线网址| 国产欧美日韩一区二区精品| 久久精品国产亚洲网站| 亚洲一区高清亚洲精品| 一卡2卡三卡四卡精品乱码亚洲| 十八禁国产超污无遮挡网站| 欧美+日韩+精品| 男人舔奶头视频| 亚洲精品国产成人久久av| 69av精品久久久久久| 成人亚洲精品av一区二区| 国产精品一区二区三区四区免费观看 | 日韩大尺度精品在线看网址| 网址你懂的国产日韩在线| 精品人妻1区二区| 欧美日韩中文字幕国产精品一区二区三区| 国产精品久久视频播放| 美女 人体艺术 gogo| 天堂网av新在线| 国产精品久久久久久久电影| 国产私拍福利视频在线观看| 国产伦人伦偷精品视频| 日本 欧美在线| 嫁个100分男人电影在线观看| 特大巨黑吊av在线直播| 精品人妻一区二区三区麻豆 | 简卡轻食公司| 亚洲三级黄色毛片| 91狼人影院| 亚洲第一区二区三区不卡| 草草在线视频免费看| 舔av片在线| 午夜老司机福利剧场| 久久国内精品自在自线图片| 桃红色精品国产亚洲av| 长腿黑丝高跟| 天堂动漫精品| 久久中文看片网| 国产一区二区在线av高清观看| 国产一区二区在线观看日韩| 一进一出抽搐gif免费好疼| 亚洲电影在线观看av| 日日摸夜夜添夜夜添小说| 级片在线观看| 成人美女网站在线观看视频| 老师上课跳d突然被开到最大视频| 久久精品国产亚洲av天美| 91狼人影院| 大型黄色视频在线免费观看| 热99在线观看视频| 日本a在线网址| a在线观看视频网站| 午夜精品久久久久久毛片777| 久久精品国产亚洲网站| 如何舔出高潮| 中文字幕久久专区| 国产精品人妻久久久久久| 久久久久久久久久成人| 国产乱人视频| 哪里可以看免费的av片| 亚洲精品久久国产高清桃花| 91麻豆av在线| 窝窝影院91人妻| h日本视频在线播放| 日韩欧美国产一区二区入口| 国国产精品蜜臀av免费| 日韩av在线大香蕉| 久久99热6这里只有精品| 精品国内亚洲2022精品成人| 国产黄片美女视频| 女人被狂操c到高潮| 级片在线观看| 国产精品1区2区在线观看.| 欧美+亚洲+日韩+国产| 床上黄色一级片| 午夜精品在线福利| 久久久久久久亚洲中文字幕| 国产亚洲精品久久久久久毛片| 精品久久久久久久久亚洲 | 亚洲欧美日韩高清专用| 美女高潮的动态| 十八禁国产超污无遮挡网站| 伊人久久精品亚洲午夜| 欧美+亚洲+日韩+国产| 亚洲av成人av| 亚洲七黄色美女视频| 亚洲成a人片在线一区二区| 色尼玛亚洲综合影院| 国产探花在线观看一区二区| 亚洲在线观看片| av专区在线播放| 欧美绝顶高潮抽搐喷水| 精品一区二区三区视频在线观看免费| 欧美日韩综合久久久久久 | 国产三级中文精品| 欧美日韩精品成人综合77777| 国产精品国产三级国产av玫瑰| 色综合站精品国产| 国国产精品蜜臀av免费| 国产精品一区二区三区四区久久| 亚洲一级一片aⅴ在线观看| 国产欧美日韩精品亚洲av| videossex国产| 别揉我奶头 嗯啊视频| 成人国产综合亚洲| av天堂在线播放| 亚洲内射少妇av| 成年人黄色毛片网站| 直男gayav资源| 国产精品98久久久久久宅男小说| 日本色播在线视频| 99国产精品一区二区蜜桃av| 18禁黄网站禁片午夜丰满| 天堂影院成人在线观看| 九九在线视频观看精品| 俄罗斯特黄特色一大片| 99热这里只有精品一区| 欧美最新免费一区二区三区| 搡老岳熟女国产| 欧美一区二区亚洲| a在线观看视频网站| 色尼玛亚洲综合影院| 国产精品99久久久久久久久| 免费看a级黄色片| 亚洲最大成人av| 好男人在线观看高清免费视频| 中文在线观看免费www的网站| 在线天堂最新版资源| 琪琪午夜伦伦电影理论片6080| 少妇人妻精品综合一区二区 | 伦理电影大哥的女人| 身体一侧抽搐| 草草在线视频免费看| 狠狠狠狠99中文字幕| 欧美高清性xxxxhd video| 色综合婷婷激情| 看十八女毛片水多多多| 国产不卡一卡二| 久久中文看片网| 欧美xxxx黑人xx丫x性爽| 美女 人体艺术 gogo| 午夜日韩欧美国产| 草草在线视频免费看| 国产精华一区二区三区| 精品国内亚洲2022精品成人| 成人国产一区最新在线观看| 成人午夜高清在线视频| 精品久久久久久久久久免费视频| 精华霜和精华液先用哪个| 亚洲欧美日韩高清专用| 精华霜和精华液先用哪个| 美女xxoo啪啪120秒动态图| 婷婷丁香在线五月| 人妻制服诱惑在线中文字幕| 亚洲国产精品sss在线观看| 搡老妇女老女人老熟妇| 天堂影院成人在线观看| 悠悠久久av| 九九热线精品视视频播放| 99热这里只有是精品在线观看| 国产午夜精品论理片| 精华霜和精华液先用哪个| 午夜福利视频1000在线观看| 啦啦啦观看免费观看视频高清| 亚洲专区国产一区二区| 午夜a级毛片| 国产人妻一区二区三区在| 亚洲不卡免费看| 一个人看视频在线观看www免费| www日本黄色视频网| 97热精品久久久久久| 九色国产91popny在线| 国产女主播在线喷水免费视频网站 | 91在线精品国自产拍蜜月| 亚洲欧美精品综合久久99| 精品不卡国产一区二区三区| 国产主播在线观看一区二区| 夜夜爽天天搞| 人妻久久中文字幕网| 女同久久另类99精品国产91| 国产精品免费一区二区三区在线| 国产精品嫩草影院av在线观看 | 黄色日韩在线| 国产精品免费一区二区三区在线| 久久久国产成人免费| 狂野欧美激情性xxxx在线观看| 国产人妻一区二区三区在| 亚洲国产精品合色在线| 国产精品久久久久久精品电影| 综合色av麻豆| 乱系列少妇在线播放| 久久国产精品人妻蜜桃| av.在线天堂| 亚洲综合色惰| 俺也久久电影网| 最新在线观看一区二区三区| 天堂网av新在线| 亚洲精华国产精华液的使用体验 | 午夜福利欧美成人| 午夜福利18| 久久精品国产亚洲av香蕉五月| 乱人视频在线观看| 俄罗斯特黄特色一大片| 亚洲欧美清纯卡通| 啦啦啦啦在线视频资源| 麻豆一二三区av精品| 国产精品综合久久久久久久免费| 欧美一区二区亚洲| x7x7x7水蜜桃| 一本精品99久久精品77| 伦理电影大哥的女人| 欧美日本亚洲视频在线播放| 亚洲av第一区精品v没综合| 十八禁国产超污无遮挡网站| 亚洲 国产 在线| 欧美xxxx黑人xx丫x性爽| 免费一级毛片在线播放高清视频| 97人妻精品一区二区三区麻豆| 桃红色精品国产亚洲av| 成人永久免费在线观看视频| 深夜a级毛片| 久久久久久久久久黄片| 午夜亚洲福利在线播放| 国产欧美日韩一区二区精品| av专区在线播放| 国产亚洲欧美98| 日韩欧美在线二视频| 动漫黄色视频在线观看| 午夜老司机福利剧场| 国产白丝娇喘喷水9色精品| 一级毛片久久久久久久久女| 麻豆一二三区av精品| 久久精品国产亚洲av香蕉五月| 久久久久性生活片| 永久网站在线| 日本 欧美在线| 欧美激情国产日韩精品一区| 变态另类丝袜制服| 国产在视频线在精品| 国产一区二区三区av在线 | 国产精品综合久久久久久久免费| 亚洲av熟女| 国产亚洲精品综合一区在线观看| 精品一区二区免费观看| 成人二区视频| 91久久精品电影网| 国产精品久久久久久av不卡| 午夜免费男女啪啪视频观看 | 色综合站精品国产| 可以在线观看毛片的网站| 久久中文看片网| 天堂影院成人在线观看| 搡女人真爽免费视频火全软件 | www.www免费av| 老司机深夜福利视频在线观看| 91久久精品国产一区二区三区| 国产精品一区二区免费欧美| 久久婷婷人人爽人人干人人爱| 午夜福利成人在线免费观看| 少妇被粗大猛烈的视频| 国产亚洲欧美98| 日韩欧美精品v在线| 99热这里只有是精品在线观看| 自拍偷自拍亚洲精品老妇| 国产美女午夜福利| 999久久久精品免费观看国产| 俺也久久电影网| 日本成人三级电影网站| 91久久精品国产一区二区成人| 赤兔流量卡办理| 免费高清视频大片| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产精品sss在线观看| 桃色一区二区三区在线观看| 大型黄色视频在线免费观看| 在现免费观看毛片| 日韩中文字幕欧美一区二区| 国产精品久久久久久av不卡| 国产伦在线观看视频一区| 欧美精品国产亚洲| 午夜福利成人在线免费观看| 一级黄色大片毛片| 噜噜噜噜噜久久久久久91| 99热这里只有是精品50| 婷婷六月久久综合丁香| 免费看日本二区| 一区二区三区高清视频在线| 99久久无色码亚洲精品果冻| 色5月婷婷丁香| 欧美性猛交黑人性爽| 国产激情偷乱视频一区二区| 88av欧美| 乱码一卡2卡4卡精品| 色噜噜av男人的天堂激情| 国产日本99.免费观看| 动漫黄色视频在线观看| 99riav亚洲国产免费| 变态另类成人亚洲欧美熟女| 亚洲七黄色美女视频| 国产精品亚洲美女久久久| 欧美日韩中文字幕国产精品一区二区三区| 国产精品永久免费网站| 国产一区二区三区av在线 | 麻豆久久精品国产亚洲av| 日韩欧美精品免费久久| 婷婷亚洲欧美| 制服丝袜大香蕉在线| 成人精品一区二区免费| 亚洲精品粉嫩美女一区| 尤物成人国产欧美一区二区三区| 精品久久久久久久久亚洲 | 欧美日韩瑟瑟在线播放| av在线天堂中文字幕| a级一级毛片免费在线观看| 亚洲av美国av| 亚洲国产精品久久男人天堂| 欧美日本亚洲视频在线播放| 99在线视频只有这里精品首页| 熟女电影av网| 久久久久久久精品吃奶| 特级一级黄色大片| 我要看日韩黄色一级片| 国产伦精品一区二区三区四那| 免费不卡的大黄色大毛片视频在线观看 | 内射极品少妇av片p| a级毛片免费高清观看在线播放| 免费人成在线观看视频色| 国产精品免费一区二区三区在线| 国产精品久久电影中文字幕| 少妇人妻一区二区三区视频| 韩国av在线不卡| 国产午夜福利久久久久久| 性色avwww在线观看| av福利片在线观看| 男女视频在线观看网站免费| 亚洲欧美日韩东京热| 国内毛片毛片毛片毛片毛片| 久久久久免费精品人妻一区二区| 国产精品自产拍在线观看55亚洲| 赤兔流量卡办理| 国产一区二区亚洲精品在线观看| 国产欧美日韩精品一区二区| 亚洲熟妇熟女久久| 国产在线精品亚洲第一网站| 美女黄网站色视频| 中文字幕人妻熟人妻熟丝袜美| 国产蜜桃级精品一区二区三区| 日韩欧美在线二视频| 国产伦精品一区二区三区视频9| 最近最新中文字幕大全电影3| 国产黄a三级三级三级人| 韩国av一区二区三区四区| 亚洲av一区综合| av天堂中文字幕网| 麻豆成人午夜福利视频| ponron亚洲| 中文字幕精品亚洲无线码一区| 日韩一本色道免费dvd| 热99re8久久精品国产| 国产三级中文精品| 亚洲成人久久爱视频| 欧美一区二区精品小视频在线| 国产美女午夜福利| 久久久午夜欧美精品| 欧美3d第一页| 日韩中字成人| 别揉我奶头 嗯啊视频| 色吧在线观看| 免费观看精品视频网站| 少妇的逼好多水| 国产在线男女| 少妇裸体淫交视频免费看高清| 成人国产综合亚洲| 一个人观看的视频www高清免费观看| 国产毛片a区久久久久| 欧美在线一区亚洲| h日本视频在线播放| 久久精品91蜜桃| 久久精品综合一区二区三区| 国产欧美日韩精品一区二区| 久久久久久国产a免费观看| 国产精品人妻久久久久久| 黄色视频,在线免费观看| 内射极品少妇av片p| 久久亚洲真实| 动漫黄色视频在线观看| 成人av在线播放网站|