• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Particle flux characteristics of a compact high-field cascaded arc plasma device

    2021-11-30 08:28:34XiaogangYUAN袁小剛HaishanZHOU周海山HaodongLIU劉皓東BoLI李波YongWANG王勇LeiCHANG萇磊XinYANG楊鑫ChuangWANG汪闖LupengZHANG張潞鵬andGuangnanLUO羅廣南
    Plasma Science and Technology 2021年11期
    關(guān)鍵詞:廣南海山李波

    Xiaogang YUAN(袁小剛),Haishan ZHOU(周海山),Haodong LIU(劉皓東),Bo LI (李波), Yong WANG (王勇), Lei CHANG (萇磊), Xin YANG (楊鑫),Chuang WANG (汪闖), Lupeng ZHANG (張潞鵬) and Guangnan LUO (羅廣南)

    1 Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China

    2 University of Science and Technology of China, Hefei 230026, People’s Republic of China

    Abstract A new compact cascaded arc device for plasma-wall interaction study is developed at the Institute of Plasma Physics, Chinese Academy of Sciences.A magnetic field up to 0.8 T is achieved to confine plasmas in a 1.2 m long and 0.1 m diameter vacuum chamber.Gas fluid type analysis in this compact vacuum system was done under high particle flux condition.The gas pressure obtained by calculation was consistent with the measurement result.Continuous argon plasma discharge with ion flux of ~0.5 × 1024 m?2 s?1 is successfully sustained for more than 1 h.The effects of magnetic field configuration, gas flow rate, and discharge arc current on the ion flux to target were studied in detail.

    Keywords:cascaded arc plasma,plasma-wall interaction,ion flux,vacuum design,linear plasma device

    1.Introduction

    The plasma-facing material of divertor will be subject to high particle flux up to 1024–1025m?2s?1in fusion reactors like ITER [1].The evaluation of the plasma-facing material performance under such high particle flux is necessary.To support the R&D of China Fusion Engineering Test Reactor[2],a large superconducting linear plasma testing facility will be built to evaluate candidate plasma-facing materials and component mockups in the Comprehensive Research Facility for Fusion Technology project [3].Due to the capacity to produce high density plasma,cascaded arc plasma sources are selected to simulate the divertor plasma stream.Plasma-wall interactions (PWI) experiments with high particle flux have been performed in cascaded arc source type linear plasma devices such as Magnum-PSI[4],Pilot-PSI[5],CIMPLE-PSI[6],SCU-PSI[7],and DUT-PSI[8].It has been demonstrated that the achievement of large ion flux requires both high magnetic field and huge gas fueling rate (typically several to tens of standard liters per minute (SLM)).The plasma expands from the nozzle and goes through a stationary shock,after which the plasma expands with subsonic velocity.The plasma density increases with the decrease of velocity.To avoid strong plasma recombination in the chamber, a relatively low operational gas pressure is required.Thus, the cascaded arc source is typically installed in a chamber with large diameter for the purpose of achieving high gas conductance.As a result,the inner diameter of the magnet needs to be large and the typical steady-state magnetic field at the center of the discharge chamber cannot exceed 0.5 T unless superconducting coils are installed, like Magnum-PSI [4].

    However, it is still attractive to achieve high magnetic fields with conventional water-cooled copper magnet due to its low cost.That may lead to a limitation of the diameter of vacuum chamber.In such a compact vacuum chamber, the shock becomes narrow with the decrease of mean free path resulted from insufficient fluid conductance [9, 10].The impacts on plasma operation are not clear yet.In this work,a new compact cascaded arc plasma device with a magnetic field up to 0.8 T aiming for plasma source testing is developed.Argon (Ar) plasma discharge under the flux of~0.5 × 1024m?2s?1for 1 h is demonstrated.The ion flux under different magnetic field configurations, discharge currents, and gas flows are also analyzed.

    2.Experime ntal setup

    A new cascaded arc plasma device (as shown in figure 1) is developed at the Institute of Plasma Physics, Chinese Academy of Sciences.This machine consists of a compact vacuum chamber made of 316 l stainless steel with a diameter D of 0.10 m and a length L0of ~1.2 m, three independently controlled solenoid coils, a cascaded arc source, an actively cooled target with a distance L1of 0.52 m and a full range vacuum gauge.A roots pump with a pumping speed of 4500 m3h?1and a mechanical pump with a pumping speed of 630 m3h?1are employed to evacuate the discharge chamber.A background pressure of 0.1 Pa can be achieved within a few minutes.The reference axis is positioned at the end of the plasma source as shown in figure 1.

    Figure 1.(a) A schematic drawing and (b) a picture of the new compact cascaded arc plasma device.

    A one-cathode cascaded arc source, which is modified from the three-cathode source concept of Pilot-PSI and Magnum-PSI [11, 12], is employed to produce plasma, as shown in figure 2.To avoid the double arc problem in plasma discharge,four copper plates are used to separate the cathode and anode.Polyimide film and O-rings are selected for insulation and seal.The diameter of the discharge channel has a distinct impact on plasma deposition power.The size of the cathode determines the discharge lifetime and maximum operation current [13, 14].The cathode is made of tungsten alloy because of its high melting point and electron emissivity.Moreover,a copper anode is mounted on the end of the source.A discharge channel length of 0.05 m between the cathode tip and anode is designed.Inner diameters of 0.007 m for the copper plate and 0.012 m for anode are selected.A larger diameter anode design can reduce the arc root attachment on chamber wall surface, which can prevent the arc erosion and prolong the life-span of the plasma source.A maximum discharge current of 250 A can be obtained by a 100 kW DC power source.Ar gas is introduced into the source by a high precision mass flow controller.A mass flow of 0–20 SLM can be controlled precisely.The magnetic field configuration can be modified by changing the operation currents of the three coils C1,C2 and C3.A maximum current of 800 A is available for each single solenoid magnet and a uniform axial magnetic field of 0.8 T can be achieved.

    Figure 2.The schematic view of the cascaded arc source.

    To investigate the plasma characteristics of the cathode arc source,an actively cooled planar target probe is designed to measure the ion flux.Figure 3 shows the configuration of the target system.The target consists of a tungsten collector plate, a molybdenum shield, a ceramics plate, four molybdenum bolts and a water-cooling copper holder.A DC tunable source is employed to measure the ion saturation current.The voltage of the resistor Usis recorded by a voltage meter.The tunable negative voltage from ?200 to 0 V can be applied to the collector plate.A ceramic shield was installed to isolate plasma from the target.A hole with a diameter of 10 mm was designed in the center of the target and the ions can pass through the hole and bombard the collector.

    Figure 3.The schematic drawing of the actively cooled target to measure ion flux (zoomed in figure 1).

    The ion flux to the target is calculated from the Bohm flux [15].When the adequate negative potential is applied,most of electrons are repelled and ions are accelerated to the probe.The ion flux can be calculated by the ion saturation current (Is0) [16]:

    Here A0is the area of ion collection, e is elementary charge.The ion saturation current Is0can be acquired when the negative bias voltage to the target is high enough.Here A0is 7.85 × 10?5m2, R is 1 Ohm and e is 1.6 × 10?19C.A voltage of ?45 V is applied to the tungsten collector,which is in the ion saturation regime [17].

    3.Fluid conduction analysis

    The fluid conduction in a vacuum is determined by fluid type in the chamber.The state of fluid can be distinguished by Knudsen coefficient (Kn):

    Hereλis the mean free path of gas molecule,d is the feature size of vacuum chamber.When Kn> 1,the fluid is molecular flow.There are some significant collision interactions between molecules and the wall of the chamber.When Kn< 0.01, the internal fiction of gas dominates, which is called continuous flow.Moreover, when 0.01 < Kn< 1,Knudsen flow is a transition stage between internal friction and gas molecules collision in the vacuum chamber.

    The Knudsen coefficient is calculated by equation (3) and discharge pressure of 1–100 Pa is maintained in the compact vacuum system.As demonstrated in figure 4, both Knudsen flow and continuous flow exist in the operation range of pressure.Previous studies[7,18]show that high particle flux can be achieved in higher gas flow and discharge pressure, thereby continuous flow in the compact plasma source is analyzed.

    Figure 4.The range of operational gas pressure and Knudsen coefficient of this machine.

    Using the theory of continuous flow model, the fluid conductance (Un,f) is described [19] by:

    where d is the diameter of the vacuum chamber,pmis the mean pressure of the vacuum chamber,?is the coefficient of viscosity for argon, L is the equivalent length of the vacuum chamber.In the compact plasma source, fluid conduction at the position of the vacuum gauge is calculated to be 2210 L s?1.The effective pumping speed S of the compact chamber can be calculated by

    where SLis the nominal speed of roots pump.In this compact vacuum system,the effective pumping speed is calculated by equations (3)–(5).Calculation results show that 798 L s?1of the effective pump speed is obtained in the compact vacuum chamber.Finally, the operation pressure P is obtained from

    where P0is the limited vacuum of root pump,which is 0.1 Pa(P0≈ 0.1 Pa).Q0is the gas flow with unit of Pa L s?1.Q1is air leakage of the components and degassing from the material in vacuum system.Compared with the active gas fed in cascaded arc plasma source, Q1is neglected in the high gas flow experiment.

    Figure 5 shows the comparison of experimental data and the calculated values of pressure versus gas flow.The experimental values are close to calculated ones.The pressure in the chamber increases linearly with the gas flow.The results reveal that the typical operating pressure of a cascaded arc plasma source[11,12]can be maintained with high gas fueling rate in our compact device design despite the poor fluid conduction.As mentioned above, the compact device is beneficial to improve the intensity of the peak magnetic field as well.

    Figure 5.Comparison of the pressure results between experiment and theory calculation.

    4.Experimental results

    4.1.Steady-state plasma discharge

    The steady-state plasma was operated under the discharge current of 150 A and gas flow of 10 SLM.The recorded ion flux is shown in figure 6(a).A high ion flux plasma larger than 0.5 × 1024m?2s?1can be achieved in our compact device by the conventional water-cooled solenoid coil and the continuous discharge time is up to 1 h.The total ion fluence is calculated to be ~1.8 × 1027m?2, which is close to the ion fluence during the 400 s pulse in the ITER divertor.The operation magnetic field is shown in figure 6(b).The maximum magnetic field in plasma source is 0.28 T at the nozzle of the anode, and the peak magnetic field in the expanding chamber is 0.50 T at 0.20 m away from the anode nozzle.A magnetic field strength of 0.37 T is achieved in the target area.The solenoid currents of C1, and C2.C3 are 650 A, 300 A and 250 A, respectively.

    Figure 6.(a)The ion flux measurement for the 1 h plasma discharge and (b) axial magnetic field profiles.

    The result of flux measurement suggests that there are some random undulations in the operation because of the turbulent flow type in the discharge channel at high gas flow.Simulation[20,21]results indicate that the fluid often transits from laminar within the discharge channel to turbulent at the target.The argon gas is ionized near the tungsten tip area and accelerated by the potential between the cathode and anode.Then the particles reach at anode region, under the drive of gradient pressure and thermal in the chamber.The plasma expands from the nozzle and goes through a stationary shock and then decreases in the turbulent flow module in the target area.The effects of turbulent flow in the compact plasma source will be studied in our future experiments.

    4.2.The effect of the magnetic field profile

    Figure 7 shows the relationship between the ion flux and the magnet currents of C1, C2.Figure 7(a) demonstrates that ion flux grows up from 1.40 × 1023to 1.60 × 1023m?2s?1with the operation current of C1 increasing from 400 to 750 A when the C2 and C3 are fixed at the current of 300 A.The corresponding peak magnetic field is 0.35–0.56 T along the Z-direction as shown in figure 8(a).However, figure 7(b)shows that the ion flux decreases from 2.30 × 1023to 0.70 × 1023m?2s?1with the operation current of C2 increasing from 100 to 700 A when C1 and C3 are set at 600 A and 300 A, respectively.The maximum and minimum operation magnetic fields are in the range of 0.28–0.60 T along the Z-direction in figure 8(b).Moreover, figure 7(c)shows that the ion flux measured in target decreases from 2.35 × 1023to 0.85 × 1023m?2s?1with the operation current of C3 increasing from 50 to 700 A when C1 and C2 are set at 600 A and 300 A, respectively.The maximum and minimum operation magnetic fields correspond to the range of 0.50–0.58 T in figure 8(c).There are three independent magnetic mirrors under the coils of C1,C2 and C3.C1 is the solenoid coil near the cascaded arc plasma source as shown in figure 1(b).Stronger magnetic field in the plasma source can reduce the attachment between the arc and copper plates and improve ionization efficiency.The magnetic field strength in the discharge channel significantly increased with the enhancement of C1 current.However, there is a magnetic mirror [22, 23] between the target and the front of the anode nozzle that seems to limit the transport of plasma from the plasma source to the target.Due to the mirror effects, the particle flux in the target area decreases with the increase of C2 and C3 currents when the operation current of C1 is fixed.

    Figure 7.Measured ion flux as a function of coil current of (a) C1,(b) C2 and (c) C3.In each case, the currents of the other two coils are fixed.

    Figure 8.The maximum (red straight line) and minimum (black dotted line) operation magnetic field configurations when adjusting the current of(a)C1,(b)C2 and(c)C3.In each case,the currents of the other two coils are fixed.

    4.3.The effects of gas flow and discharge current

    The effects of gas flow and discharge current on the ion flux are studied.The argon ion flux at the target grows with the gas flow at a constant input arc current.The gas flow rate plays an important role in increasing the ion flux of argon plasma,which is consistent with the previous reports[15].As the argon gas flow grows,more neutral atoms are ionized and collected by the electric pole in the target.Moreover,the cold gas boundary layer is formed between the arc column and anode surface, and the cold gas boundary can hold the stability of the arc and decrease the anode erosion.It can be seen from figure 9 that ion flux increases rapidly as the arc current increases, which will be discussed in detail in the next paragraph.

    The arc current dependence of ion flux was investigated as well.Figure 10 shows that argon ion flux grows with the arc current.Higher density plasma is produced at a higher arc current density [24].The possible reason is that the increase in applied current leads to the increase of electron kinetic energy.The power dissipated in the plasma column grows with the arc current.When the gas flow rate is fixed, cold atoms are heated and excited by the ohmic heating energy,which increases ion flux.

    Figure 9.Ion flux as a function of gas flow for different discharge currents.The coils currents of C1,C2 and C3 are 600 A,300 A and 300 A, respectively.

    Figure 10.The ion flux as a function of cathode current.

    5.Conclusions

    A compact cascaded arc plasma source for PWI study is developed at the Institute of Plasma Physics,Chinese Academy of Sciences.With a relatively low fluid conductance,high flux steady-state experiments are performed successfully.The magnetic field configuration has significant effects on target flux.Experimental results indicate that a uniform magnetic field is not beneficial to achieving high flux in cascaded arc plasma sources.On the contrary, ion flux of target is growing with the augment of the magnetic field in the source area.The gradients of the magnetic field in the axial direction are also conductive to acquire high flux plasma in the target area,which suggests that the magnetic field mirror effects play an important role in axial plasma transport.Moreover, higher ion flux can be achieved in a higher arc current and a higher gas flow rate.The performance of the device can be further improved.It has been found that the ion flux was an undulant variation in the steady-state operation of cascaded arc plasma, suggesting that the flow type in expand chamber plays an important role in plasma characteristics at the target area,which warrants further investigation in this new device.

    Acknowledgments

    This work was supported by Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01001228) and the Youth Innovation Promotion Association CAS (No.2018484).The authors would like to thank Dr T W Morgan and Dr H J N van Eck for their suggestions to our facility.

    猜你喜歡
    廣南海山李波
    廣南壩美 一個(gè)藏在青山綠水間的世外桃源
    On the heating mechanism of electron cyclotron resonance thruster immerged in a non-uniform magnetic field
    風(fēng)從哪里來(lái)
    夢(mèng)里鮮花開放
    37°女人(2019年4期)2019-04-20 02:17:42
    廣南蒜頭果發(fā)展現(xiàn)狀與保護(hù)
    佐藤海山的詩(shī)
    作品(2016年10期)2016-12-06 10:41:54
    迎春花
    大江南北(2016年3期)2016-11-22 07:37:20
    兩年出欄的廣南高峰牛身價(jià)過(guò)萬(wàn)元
    籃球賽
    馬術(shù)
    一本一本久久a久久精品综合妖精| 精品少妇内射三级| 一区二区三区精品91| 国产精品免费一区二区三区在线 | 久久久久久久久久久久大奶| 久久精品国产亚洲av香蕉五月 | 高清欧美精品videossex| 高清在线国产一区| 国产精品偷伦视频观看了| 亚洲av电影在线进入| 午夜福利欧美成人| 久久婷婷成人综合色麻豆| 大片免费播放器 马上看| 777米奇影视久久| 亚洲av国产av综合av卡| 国产成人精品在线电影| 国产亚洲欧美在线一区二区| 日本五十路高清| 婷婷成人精品国产| 亚洲中文日韩欧美视频| 亚洲精品国产一区二区精华液| 久久九九热精品免费| 国产男女超爽视频在线观看| 国产淫语在线视频| 国产一区二区三区视频了| 热99国产精品久久久久久7| 多毛熟女@视频| 99香蕉大伊视频| 一夜夜www| 成年人免费黄色播放视频| 天天躁狠狠躁夜夜躁狠狠躁| 黄网站色视频无遮挡免费观看| 丝袜美足系列| 亚洲avbb在线观看| 女警被强在线播放| 欧美在线一区亚洲| 99精品欧美一区二区三区四区| 精品亚洲成a人片在线观看| 黑人巨大精品欧美一区二区mp4| 丝袜美足系列| 一级毛片电影观看| 无人区码免费观看不卡 | 日韩欧美三级三区| 老熟妇乱子伦视频在线观看| 丰满迷人的少妇在线观看| 日本wwww免费看| 国产精品 国内视频| kizo精华| 日本五十路高清| 午夜精品国产一区二区电影| 下体分泌物呈黄色| 国产视频一区二区在线看| 麻豆乱淫一区二区| 一级黄色大片毛片| 亚洲欧美精品综合一区二区三区| 免费在线观看视频国产中文字幕亚洲| 超碰成人久久| 亚洲午夜理论影院| 亚洲av成人一区二区三| 啦啦啦在线免费观看视频4| 伦理电影免费视频| 久久国产精品人妻蜜桃| 亚洲avbb在线观看| 首页视频小说图片口味搜索| 日本撒尿小便嘘嘘汇集6| 后天国语完整版免费观看| av超薄肉色丝袜交足视频| 亚洲欧美一区二区三区黑人| 国产免费现黄频在线看| 久久久国产精品麻豆| 午夜福利免费观看在线| 亚洲熟妇熟女久久| 宅男免费午夜| 一区二区日韩欧美中文字幕| 亚洲成人免费电影在线观看| 在线观看66精品国产| 手机成人av网站| 免费在线观看视频国产中文字幕亚洲| 亚洲国产欧美网| 国产精品电影一区二区三区 | 多毛熟女@视频| 2018国产大陆天天弄谢| 久久久久视频综合| 中文字幕人妻熟女乱码| 如日韩欧美国产精品一区二区三区| 天堂中文最新版在线下载| 国内毛片毛片毛片毛片毛片| www.999成人在线观看| 日韩精品免费视频一区二区三区| 亚洲av成人不卡在线观看播放网| 免费在线观看影片大全网站| 女同久久另类99精品国产91| 精品国产国语对白av| 国产男女内射视频| 18禁裸乳无遮挡动漫免费视频| 久久久久久亚洲精品国产蜜桃av| 午夜精品久久久久久毛片777| 最近最新中文字幕大全免费视频| 欧美日本中文国产一区发布| av视频免费观看在线观看| 精品一品国产午夜福利视频| 国产精品麻豆人妻色哟哟久久| 女人高潮潮喷娇喘18禁视频| 丰满饥渴人妻一区二区三| 免费在线观看视频国产中文字幕亚洲| 在线观看舔阴道视频| 午夜91福利影院| 亚洲五月色婷婷综合| 十八禁高潮呻吟视频| 亚洲伊人色综图| 伊人久久大香线蕉亚洲五| 国产视频一区二区在线看| 日本vs欧美在线观看视频| 亚洲精品自拍成人| 中文字幕人妻丝袜制服| av有码第一页| 亚洲av美国av| 视频区欧美日本亚洲| 深夜精品福利| 亚洲精品国产区一区二| 丁香六月天网| 久久久水蜜桃国产精品网| 精品福利永久在线观看| 99久久精品国产亚洲精品| 久久人人爽av亚洲精品天堂| 国产在视频线精品| 老司机靠b影院| 欧美午夜高清在线| 国产欧美日韩精品亚洲av| 久久久国产精品麻豆| 麻豆av在线久日| 色综合婷婷激情| 黄色a级毛片大全视频| 下体分泌物呈黄色| 12—13女人毛片做爰片一| 亚洲 国产 在线| 婷婷成人精品国产| 动漫黄色视频在线观看| 亚洲色图av天堂| 黑人操中国人逼视频| 99国产综合亚洲精品| 老熟妇仑乱视频hdxx| 亚洲国产欧美网| 水蜜桃什么品种好| 建设人人有责人人尽责人人享有的| 欧美+亚洲+日韩+国产| 亚洲久久久国产精品| 亚洲九九香蕉| 性高湖久久久久久久久免费观看| 国产主播在线观看一区二区| 国产深夜福利视频在线观看| 精品少妇内射三级| 中文字幕最新亚洲高清| 777米奇影视久久| 欧美日韩一级在线毛片| 久久国产精品大桥未久av| 亚洲精品美女久久av网站| 美女午夜性视频免费| 好男人电影高清在线观看| 国产亚洲精品一区二区www | 国产高清国产精品国产三级| 法律面前人人平等表现在哪些方面| 黄色成人免费大全| 日韩欧美一区二区三区在线观看 | 捣出白浆h1v1| 亚洲人成电影观看| 咕卡用的链子| 国产不卡av网站在线观看| 嫁个100分男人电影在线观看| 人人妻人人添人人爽欧美一区卜| 色在线成人网| 国产黄色免费在线视频| 精品卡一卡二卡四卡免费| 精品国产一区二区三区四区第35| 成人黄色视频免费在线看| av国产精品久久久久影院| av线在线观看网站| a在线观看视频网站| 色视频在线一区二区三区| 自线自在国产av| 免费女性裸体啪啪无遮挡网站| 久久久国产一区二区| 黑人巨大精品欧美一区二区mp4| www.999成人在线观看| 久久这里只有精品19| 免费日韩欧美在线观看| 精品少妇黑人巨大在线播放| 成年女人毛片免费观看观看9 | 午夜精品国产一区二区电影| 欧美在线一区亚洲| 日日摸夜夜添夜夜添小说| 老熟女久久久| 18在线观看网站| 精品国产乱子伦一区二区三区| 嫩草影视91久久| 狠狠狠狠99中文字幕| 亚洲精品国产色婷婷电影| 悠悠久久av| 国产av精品麻豆| 法律面前人人平等表现在哪些方面| 黄色 视频免费看| 久久中文字幕人妻熟女| 黄片播放在线免费| 啦啦啦免费观看视频1| 国产成人影院久久av| 欧美久久黑人一区二区| 国产精品久久久av美女十八| 久久久国产成人免费| 一本综合久久免费| 一本一本久久a久久精品综合妖精| 人人妻人人澡人人看| 国产精品熟女久久久久浪| 亚洲精品一二三| 国产极品粉嫩免费观看在线| 一级a爱视频在线免费观看| 国产精品二区激情视频| www.精华液| 少妇粗大呻吟视频| 一级片免费观看大全| 青青草视频在线视频观看| av天堂在线播放| av网站免费在线观看视频| 久久99热这里只频精品6学生| 99国产极品粉嫩在线观看| 夜夜爽天天搞| 亚洲国产欧美网| 热99久久久久精品小说推荐| 成人国语在线视频| 肉色欧美久久久久久久蜜桃| 看免费av毛片| 80岁老熟妇乱子伦牲交| 桃花免费在线播放| 美女视频免费永久观看网站| 亚洲黑人精品在线| 色播在线永久视频| 人妻 亚洲 视频| 别揉我奶头~嗯~啊~动态视频| 超碰成人久久| 成人免费观看视频高清| 国产精品久久电影中文字幕 | 国产一区有黄有色的免费视频| 亚洲人成电影观看| 国产精品久久久久久精品电影小说| 亚洲精品粉嫩美女一区| 成人影院久久| 午夜福利乱码中文字幕| 少妇的丰满在线观看| 一边摸一边做爽爽视频免费| 欧美日韩亚洲综合一区二区三区_| 欧美成人免费av一区二区三区 | 免费看a级黄色片| 亚洲黑人精品在线| 高清欧美精品videossex| 精品人妻在线不人妻| 亚洲人成电影免费在线| 国产高清videossex| 国产高清videossex| 欧美日韩福利视频一区二区| 国产激情久久老熟女| 热re99久久国产66热| www.自偷自拍.com| 国产一卡二卡三卡精品| 18在线观看网站| 纵有疾风起免费观看全集完整版| 精品欧美一区二区三区在线| 在线 av 中文字幕| 在线观看人妻少妇| 成人av一区二区三区在线看| 伊人久久大香线蕉亚洲五| 久久久久久人人人人人| 免费少妇av软件| 免费观看人在逋| 男人操女人黄网站| 国产亚洲欧美精品永久| 国产成人精品久久二区二区免费| 国产日韩欧美视频二区| 在线观看一区二区三区激情| 亚洲熟妇熟女久久| 精品少妇黑人巨大在线播放| 91av网站免费观看| 成人手机av| 国产黄色免费在线视频| 亚洲人成电影观看| www.熟女人妻精品国产| 在线十欧美十亚洲十日本专区| 18禁观看日本| 国产精品二区激情视频| 成人手机av| 久久午夜综合久久蜜桃| 亚洲五月色婷婷综合| 午夜福利欧美成人| 日韩欧美免费精品| 最新在线观看一区二区三区| 国产1区2区3区精品| 亚洲精品国产区一区二| 一个人免费在线观看的高清视频| 久久ye,这里只有精品| 久久久久久久国产电影| 一级片免费观看大全| 午夜福利视频精品| 国产高清激情床上av| 菩萨蛮人人尽说江南好唐韦庄| av国产精品久久久久影院| avwww免费| 男人操女人黄网站| 一级黄色大片毛片| 国内毛片毛片毛片毛片毛片| 国产成人啪精品午夜网站| a级毛片黄视频| 国产无遮挡羞羞视频在线观看| 国精品久久久久久国模美| 中文亚洲av片在线观看爽 | 色婷婷久久久亚洲欧美| 18禁观看日本| 两个人免费观看高清视频| 少妇裸体淫交视频免费看高清 | 一夜夜www| 50天的宝宝边吃奶边哭怎么回事| 老熟妇仑乱视频hdxx| 亚洲精品中文字幕一二三四区 | 日韩欧美三级三区| 成人黄色视频免费在线看| 99国产精品99久久久久| 女人被躁到高潮嗷嗷叫费观| 性色av乱码一区二区三区2| 搡老乐熟女国产| 国产无遮挡羞羞视频在线观看| 欧美日韩亚洲综合一区二区三区_| 黄色丝袜av网址大全| 激情在线观看视频在线高清 | 国产在线视频一区二区| 这个男人来自地球电影免费观看| 日日爽夜夜爽网站| 精品少妇一区二区三区视频日本电影| 久久av网站| 91成年电影在线观看| 亚洲伊人久久精品综合| 欧美激情久久久久久爽电影 | 丝袜人妻中文字幕| 国产在线精品亚洲第一网站| 久久久久久久国产电影| 叶爱在线成人免费视频播放| 精品久久蜜臀av无| 一级a爱视频在线免费观看| 美国免费a级毛片| 欧美成人午夜精品| 捣出白浆h1v1| 国产成人免费无遮挡视频| 日韩欧美三级三区| 黄色怎么调成土黄色| 蜜桃在线观看..| 夫妻午夜视频| av在线播放免费不卡| 亚洲精品乱久久久久久| 少妇精品久久久久久久| 久久久国产一区二区| 99re在线观看精品视频| 午夜成年电影在线免费观看| 人妻 亚洲 视频| 国产亚洲午夜精品一区二区久久| 国产主播在线观看一区二区| 国产高清国产精品国产三级| 欧美黑人欧美精品刺激| 国产精品一区二区免费欧美| 欧美日本中文国产一区发布| xxxhd国产人妻xxx| videosex国产| 日本av手机在线免费观看| 欧美变态另类bdsm刘玥| av网站在线播放免费| 男女午夜视频在线观看| 777米奇影视久久| 美女午夜性视频免费| 一级片'在线观看视频| 一区二区三区激情视频| 成年人黄色毛片网站| 侵犯人妻中文字幕一二三四区| 亚洲av欧美aⅴ国产| 啦啦啦在线免费观看视频4| 丁香六月天网| 国产欧美日韩一区二区精品| 国产在视频线精品| 18禁国产床啪视频网站| 国产成人av教育| 亚洲精品一卡2卡三卡4卡5卡| 国产精品九九99| 2018国产大陆天天弄谢| 日本黄色视频三级网站网址 | 91av网站免费观看| 久久国产精品人妻蜜桃| 乱人伦中国视频| av网站免费在线观看视频| 欧美日韩国产mv在线观看视频| 亚洲国产毛片av蜜桃av| a在线观看视频网站| 色视频在线一区二区三区| 久久国产精品男人的天堂亚洲| 国产黄频视频在线观看| 国产精品久久久久成人av| 国产精品一区二区在线观看99| 亚洲欧洲精品一区二区精品久久久| 老汉色∧v一级毛片| 黑丝袜美女国产一区| 久久午夜综合久久蜜桃| 女人高潮潮喷娇喘18禁视频| 久久亚洲真实| 在线播放国产精品三级| av线在线观看网站| 中亚洲国语对白在线视频| 天天躁日日躁夜夜躁夜夜| 日韩欧美一区视频在线观看| 69精品国产乱码久久久| av免费在线观看网站| 丝袜美腿诱惑在线| 免费在线观看日本一区| 黄色成人免费大全| 久久av网站| 亚洲熟妇熟女久久| 久久久久精品国产欧美久久久| 黄色 视频免费看| 亚洲欧美精品综合一区二区三区| 人妻 亚洲 视频| 色在线成人网| 日韩有码中文字幕| 天堂俺去俺来也www色官网| 少妇被粗大的猛进出69影院| 十八禁人妻一区二区| 在线十欧美十亚洲十日本专区| 亚洲国产精品一区二区三区在线| 黑人欧美特级aaaaaa片| 久久中文看片网| 中文字幕人妻熟女乱码| 亚洲精品一卡2卡三卡4卡5卡| 少妇裸体淫交视频免费看高清 | 欧美国产精品va在线观看不卡| 人人妻人人爽人人添夜夜欢视频| 国产精品免费大片| 午夜福利视频在线观看免费| 精品熟女少妇八av免费久了| 一级a爱视频在线免费观看| 大陆偷拍与自拍| av天堂久久9| 国产真人三级小视频在线观看| 18禁黄网站禁片午夜丰满| 免费日韩欧美在线观看| 五月开心婷婷网| 国产一区二区 视频在线| 国产又色又爽无遮挡免费看| 亚洲国产av影院在线观看| 久久婷婷成人综合色麻豆| 亚洲天堂av无毛| 色婷婷久久久亚洲欧美| 亚洲黑人精品在线| 一边摸一边抽搐一进一出视频| www.999成人在线观看| 黄色视频,在线免费观看| 亚洲国产欧美在线一区| 久久久久久久大尺度免费视频| 男人操女人黄网站| 亚洲欧美一区二区三区久久| 少妇精品久久久久久久| 日本撒尿小便嘘嘘汇集6| 嫩草影视91久久| 99久久国产精品久久久| 大型黄色视频在线免费观看| 久久午夜亚洲精品久久| 亚洲免费av在线视频| 日韩中文字幕欧美一区二区| 久久久久久久久久久久大奶| 夜夜骑夜夜射夜夜干| 一个人免费在线观看的高清视频| 91精品国产国语对白视频| 极品少妇高潮喷水抽搐| 国产免费现黄频在线看| 精品久久蜜臀av无| 国产又色又爽无遮挡免费看| 婷婷丁香在线五月| 少妇精品久久久久久久| 午夜老司机福利片| 日韩制服丝袜自拍偷拍| 99久久国产精品久久久| 97在线人人人人妻| 两人在一起打扑克的视频| 91字幕亚洲| 中文字幕人妻熟女乱码| 建设人人有责人人尽责人人享有的| 亚洲黑人精品在线| 在线观看舔阴道视频| 女性生殖器流出的白浆| 淫妇啪啪啪对白视频| 少妇被粗大的猛进出69影院| 久久久久精品国产欧美久久久| 日韩欧美一区视频在线观看| 午夜激情久久久久久久| 天天影视国产精品| 国产成人免费观看mmmm| 亚洲少妇的诱惑av| 无人区码免费观看不卡 | 国产欧美日韩精品亚洲av| 精品久久蜜臀av无| 国产又爽黄色视频| 自拍欧美九色日韩亚洲蝌蚪91| 免费少妇av软件| 777米奇影视久久| 日韩视频在线欧美| 一本色道久久久久久精品综合| 伊人久久大香线蕉亚洲五| 18禁黄网站禁片午夜丰满| 国产深夜福利视频在线观看| 午夜老司机福利片| 99国产极品粉嫩在线观看| aaaaa片日本免费| 男人舔女人的私密视频| 亚洲人成电影免费在线| 黑人巨大精品欧美一区二区蜜桃| 国产国语露脸激情在线看| 久久精品国产a三级三级三级| 男人操女人黄网站| 亚洲国产成人一精品久久久| 纵有疾风起免费观看全集完整版| 老司机在亚洲福利影院| 国产黄色免费在线视频| 成人特级黄色片久久久久久久 | 亚洲国产欧美网| 久久人妻福利社区极品人妻图片| 又黄又粗又硬又大视频| 欧美+亚洲+日韩+国产| 中国美女看黄片| 久热爱精品视频在线9| 成年人黄色毛片网站| 韩国精品一区二区三区| 两人在一起打扑克的视频| 国产又爽黄色视频| 正在播放国产对白刺激| 99国产精品免费福利视频| 午夜成年电影在线免费观看| 高清视频免费观看一区二区| 精品一区二区三区av网在线观看 | 日韩大码丰满熟妇| 亚洲专区国产一区二区| 黄片大片在线免费观看| 999久久久国产精品视频| 美女主播在线视频| 91字幕亚洲| 老司机午夜福利在线观看视频 | 在线观看免费午夜福利视频| 乱人伦中国视频| 久久久国产一区二区| 免费在线观看完整版高清| 啦啦啦在线免费观看视频4| 国产有黄有色有爽视频| 黄色成人免费大全| 久久久国产成人免费| 97在线人人人人妻| 美女扒开内裤让男人捅视频| 欧美午夜高清在线| xxxhd国产人妻xxx| 女人久久www免费人成看片| 国产精品电影一区二区三区 | 黄片小视频在线播放| 一级毛片电影观看| 亚洲视频免费观看视频| 最近最新中文字幕大全电影3 | 在线 av 中文字幕| 国产精品 国内视频| 亚洲精品在线美女| 久久久国产成人免费| 亚洲精品在线观看二区| av又黄又爽大尺度在线免费看| 国产日韩欧美在线精品| 人妻久久中文字幕网| 国产不卡av网站在线观看| 精品国内亚洲2022精品成人 | 97在线人人人人妻| 一级片'在线观看视频| 亚洲第一青青草原| 男男h啪啪无遮挡| 天堂中文最新版在线下载| 亚洲精品久久午夜乱码| 99国产综合亚洲精品| 国产精品一区二区精品视频观看| 成人手机av| 老熟女久久久| 高清av免费在线| 人人妻人人爽人人添夜夜欢视频| 两个人看的免费小视频| 美女午夜性视频免费| 国产一区二区 视频在线| 女性生殖器流出的白浆| 欧美性长视频在线观看| 欧美日韩成人在线一区二区| 亚洲 国产 在线| 一级片'在线观看视频| 午夜福利,免费看| 99久久99久久久精品蜜桃| 精品免费久久久久久久清纯 | 亚洲av成人不卡在线观看播放网| 亚洲人成电影免费在线| 国产亚洲精品第一综合不卡| 大片电影免费在线观看免费| 欧美变态另类bdsm刘玥| 国产精品电影一区二区三区 | av超薄肉色丝袜交足视频| 麻豆成人av在线观看| 99精品久久久久人妻精品| 涩涩av久久男人的天堂| svipshipincom国产片| 亚洲熟妇熟女久久| 亚洲自偷自拍图片 自拍| 亚洲av日韩在线播放| 精品免费久久久久久久清纯 | 午夜福利影视在线免费观看| 国产精品 国内视频| 国产精品久久久久久精品古装| 日本撒尿小便嘘嘘汇集6|