• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Particle flux characteristics of a compact high-field cascaded arc plasma device

    2021-11-30 08:28:34XiaogangYUAN袁小剛HaishanZHOU周海山HaodongLIU劉皓東BoLI李波YongWANG王勇LeiCHANG萇磊XinYANG楊鑫ChuangWANG汪闖LupengZHANG張潞鵬andGuangnanLUO羅廣南
    Plasma Science and Technology 2021年11期
    關(guān)鍵詞:廣南海山李波

    Xiaogang YUAN(袁小剛),Haishan ZHOU(周海山),Haodong LIU(劉皓東),Bo LI (李波), Yong WANG (王勇), Lei CHANG (萇磊), Xin YANG (楊鑫),Chuang WANG (汪闖), Lupeng ZHANG (張潞鵬) and Guangnan LUO (羅廣南)

    1 Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China

    2 University of Science and Technology of China, Hefei 230026, People’s Republic of China

    Abstract A new compact cascaded arc device for plasma-wall interaction study is developed at the Institute of Plasma Physics, Chinese Academy of Sciences.A magnetic field up to 0.8 T is achieved to confine plasmas in a 1.2 m long and 0.1 m diameter vacuum chamber.Gas fluid type analysis in this compact vacuum system was done under high particle flux condition.The gas pressure obtained by calculation was consistent with the measurement result.Continuous argon plasma discharge with ion flux of ~0.5 × 1024 m?2 s?1 is successfully sustained for more than 1 h.The effects of magnetic field configuration, gas flow rate, and discharge arc current on the ion flux to target were studied in detail.

    Keywords:cascaded arc plasma,plasma-wall interaction,ion flux,vacuum design,linear plasma device

    1.Introduction

    The plasma-facing material of divertor will be subject to high particle flux up to 1024–1025m?2s?1in fusion reactors like ITER [1].The evaluation of the plasma-facing material performance under such high particle flux is necessary.To support the R&D of China Fusion Engineering Test Reactor[2],a large superconducting linear plasma testing facility will be built to evaluate candidate plasma-facing materials and component mockups in the Comprehensive Research Facility for Fusion Technology project [3].Due to the capacity to produce high density plasma,cascaded arc plasma sources are selected to simulate the divertor plasma stream.Plasma-wall interactions (PWI) experiments with high particle flux have been performed in cascaded arc source type linear plasma devices such as Magnum-PSI[4],Pilot-PSI[5],CIMPLE-PSI[6],SCU-PSI[7],and DUT-PSI[8].It has been demonstrated that the achievement of large ion flux requires both high magnetic field and huge gas fueling rate (typically several to tens of standard liters per minute (SLM)).The plasma expands from the nozzle and goes through a stationary shock,after which the plasma expands with subsonic velocity.The plasma density increases with the decrease of velocity.To avoid strong plasma recombination in the chamber, a relatively low operational gas pressure is required.Thus, the cascaded arc source is typically installed in a chamber with large diameter for the purpose of achieving high gas conductance.As a result,the inner diameter of the magnet needs to be large and the typical steady-state magnetic field at the center of the discharge chamber cannot exceed 0.5 T unless superconducting coils are installed, like Magnum-PSI [4].

    However, it is still attractive to achieve high magnetic fields with conventional water-cooled copper magnet due to its low cost.That may lead to a limitation of the diameter of vacuum chamber.In such a compact vacuum chamber, the shock becomes narrow with the decrease of mean free path resulted from insufficient fluid conductance [9, 10].The impacts on plasma operation are not clear yet.In this work,a new compact cascaded arc plasma device with a magnetic field up to 0.8 T aiming for plasma source testing is developed.Argon (Ar) plasma discharge under the flux of~0.5 × 1024m?2s?1for 1 h is demonstrated.The ion flux under different magnetic field configurations, discharge currents, and gas flows are also analyzed.

    2.Experime ntal setup

    A new cascaded arc plasma device (as shown in figure 1) is developed at the Institute of Plasma Physics, Chinese Academy of Sciences.This machine consists of a compact vacuum chamber made of 316 l stainless steel with a diameter D of 0.10 m and a length L0of ~1.2 m, three independently controlled solenoid coils, a cascaded arc source, an actively cooled target with a distance L1of 0.52 m and a full range vacuum gauge.A roots pump with a pumping speed of 4500 m3h?1and a mechanical pump with a pumping speed of 630 m3h?1are employed to evacuate the discharge chamber.A background pressure of 0.1 Pa can be achieved within a few minutes.The reference axis is positioned at the end of the plasma source as shown in figure 1.

    Figure 1.(a) A schematic drawing and (b) a picture of the new compact cascaded arc plasma device.

    A one-cathode cascaded arc source, which is modified from the three-cathode source concept of Pilot-PSI and Magnum-PSI [11, 12], is employed to produce plasma, as shown in figure 2.To avoid the double arc problem in plasma discharge,four copper plates are used to separate the cathode and anode.Polyimide film and O-rings are selected for insulation and seal.The diameter of the discharge channel has a distinct impact on plasma deposition power.The size of the cathode determines the discharge lifetime and maximum operation current [13, 14].The cathode is made of tungsten alloy because of its high melting point and electron emissivity.Moreover,a copper anode is mounted on the end of the source.A discharge channel length of 0.05 m between the cathode tip and anode is designed.Inner diameters of 0.007 m for the copper plate and 0.012 m for anode are selected.A larger diameter anode design can reduce the arc root attachment on chamber wall surface, which can prevent the arc erosion and prolong the life-span of the plasma source.A maximum discharge current of 250 A can be obtained by a 100 kW DC power source.Ar gas is introduced into the source by a high precision mass flow controller.A mass flow of 0–20 SLM can be controlled precisely.The magnetic field configuration can be modified by changing the operation currents of the three coils C1,C2 and C3.A maximum current of 800 A is available for each single solenoid magnet and a uniform axial magnetic field of 0.8 T can be achieved.

    Figure 2.The schematic view of the cascaded arc source.

    To investigate the plasma characteristics of the cathode arc source,an actively cooled planar target probe is designed to measure the ion flux.Figure 3 shows the configuration of the target system.The target consists of a tungsten collector plate, a molybdenum shield, a ceramics plate, four molybdenum bolts and a water-cooling copper holder.A DC tunable source is employed to measure the ion saturation current.The voltage of the resistor Usis recorded by a voltage meter.The tunable negative voltage from ?200 to 0 V can be applied to the collector plate.A ceramic shield was installed to isolate plasma from the target.A hole with a diameter of 10 mm was designed in the center of the target and the ions can pass through the hole and bombard the collector.

    Figure 3.The schematic drawing of the actively cooled target to measure ion flux (zoomed in figure 1).

    The ion flux to the target is calculated from the Bohm flux [15].When the adequate negative potential is applied,most of electrons are repelled and ions are accelerated to the probe.The ion flux can be calculated by the ion saturation current (Is0) [16]:

    Here A0is the area of ion collection, e is elementary charge.The ion saturation current Is0can be acquired when the negative bias voltage to the target is high enough.Here A0is 7.85 × 10?5m2, R is 1 Ohm and e is 1.6 × 10?19C.A voltage of ?45 V is applied to the tungsten collector,which is in the ion saturation regime [17].

    3.Fluid conduction analysis

    The fluid conduction in a vacuum is determined by fluid type in the chamber.The state of fluid can be distinguished by Knudsen coefficient (Kn):

    Hereλis the mean free path of gas molecule,d is the feature size of vacuum chamber.When Kn> 1,the fluid is molecular flow.There are some significant collision interactions between molecules and the wall of the chamber.When Kn< 0.01, the internal fiction of gas dominates, which is called continuous flow.Moreover, when 0.01 < Kn< 1,Knudsen flow is a transition stage between internal friction and gas molecules collision in the vacuum chamber.

    The Knudsen coefficient is calculated by equation (3) and discharge pressure of 1–100 Pa is maintained in the compact vacuum system.As demonstrated in figure 4, both Knudsen flow and continuous flow exist in the operation range of pressure.Previous studies[7,18]show that high particle flux can be achieved in higher gas flow and discharge pressure, thereby continuous flow in the compact plasma source is analyzed.

    Figure 4.The range of operational gas pressure and Knudsen coefficient of this machine.

    Using the theory of continuous flow model, the fluid conductance (Un,f) is described [19] by:

    where d is the diameter of the vacuum chamber,pmis the mean pressure of the vacuum chamber,?is the coefficient of viscosity for argon, L is the equivalent length of the vacuum chamber.In the compact plasma source, fluid conduction at the position of the vacuum gauge is calculated to be 2210 L s?1.The effective pumping speed S of the compact chamber can be calculated by

    where SLis the nominal speed of roots pump.In this compact vacuum system,the effective pumping speed is calculated by equations (3)–(5).Calculation results show that 798 L s?1of the effective pump speed is obtained in the compact vacuum chamber.Finally, the operation pressure P is obtained from

    where P0is the limited vacuum of root pump,which is 0.1 Pa(P0≈ 0.1 Pa).Q0is the gas flow with unit of Pa L s?1.Q1is air leakage of the components and degassing from the material in vacuum system.Compared with the active gas fed in cascaded arc plasma source, Q1is neglected in the high gas flow experiment.

    Figure 5 shows the comparison of experimental data and the calculated values of pressure versus gas flow.The experimental values are close to calculated ones.The pressure in the chamber increases linearly with the gas flow.The results reveal that the typical operating pressure of a cascaded arc plasma source[11,12]can be maintained with high gas fueling rate in our compact device design despite the poor fluid conduction.As mentioned above, the compact device is beneficial to improve the intensity of the peak magnetic field as well.

    Figure 5.Comparison of the pressure results between experiment and theory calculation.

    4.Experimental results

    4.1.Steady-state plasma discharge

    The steady-state plasma was operated under the discharge current of 150 A and gas flow of 10 SLM.The recorded ion flux is shown in figure 6(a).A high ion flux plasma larger than 0.5 × 1024m?2s?1can be achieved in our compact device by the conventional water-cooled solenoid coil and the continuous discharge time is up to 1 h.The total ion fluence is calculated to be ~1.8 × 1027m?2, which is close to the ion fluence during the 400 s pulse in the ITER divertor.The operation magnetic field is shown in figure 6(b).The maximum magnetic field in plasma source is 0.28 T at the nozzle of the anode, and the peak magnetic field in the expanding chamber is 0.50 T at 0.20 m away from the anode nozzle.A magnetic field strength of 0.37 T is achieved in the target area.The solenoid currents of C1, and C2.C3 are 650 A, 300 A and 250 A, respectively.

    Figure 6.(a)The ion flux measurement for the 1 h plasma discharge and (b) axial magnetic field profiles.

    The result of flux measurement suggests that there are some random undulations in the operation because of the turbulent flow type in the discharge channel at high gas flow.Simulation[20,21]results indicate that the fluid often transits from laminar within the discharge channel to turbulent at the target.The argon gas is ionized near the tungsten tip area and accelerated by the potential between the cathode and anode.Then the particles reach at anode region, under the drive of gradient pressure and thermal in the chamber.The plasma expands from the nozzle and goes through a stationary shock and then decreases in the turbulent flow module in the target area.The effects of turbulent flow in the compact plasma source will be studied in our future experiments.

    4.2.The effect of the magnetic field profile

    Figure 7 shows the relationship between the ion flux and the magnet currents of C1, C2.Figure 7(a) demonstrates that ion flux grows up from 1.40 × 1023to 1.60 × 1023m?2s?1with the operation current of C1 increasing from 400 to 750 A when the C2 and C3 are fixed at the current of 300 A.The corresponding peak magnetic field is 0.35–0.56 T along the Z-direction as shown in figure 8(a).However, figure 7(b)shows that the ion flux decreases from 2.30 × 1023to 0.70 × 1023m?2s?1with the operation current of C2 increasing from 100 to 700 A when C1 and C3 are set at 600 A and 300 A, respectively.The maximum and minimum operation magnetic fields are in the range of 0.28–0.60 T along the Z-direction in figure 8(b).Moreover, figure 7(c)shows that the ion flux measured in target decreases from 2.35 × 1023to 0.85 × 1023m?2s?1with the operation current of C3 increasing from 50 to 700 A when C1 and C2 are set at 600 A and 300 A, respectively.The maximum and minimum operation magnetic fields correspond to the range of 0.50–0.58 T in figure 8(c).There are three independent magnetic mirrors under the coils of C1,C2 and C3.C1 is the solenoid coil near the cascaded arc plasma source as shown in figure 1(b).Stronger magnetic field in the plasma source can reduce the attachment between the arc and copper plates and improve ionization efficiency.The magnetic field strength in the discharge channel significantly increased with the enhancement of C1 current.However, there is a magnetic mirror [22, 23] between the target and the front of the anode nozzle that seems to limit the transport of plasma from the plasma source to the target.Due to the mirror effects, the particle flux in the target area decreases with the increase of C2 and C3 currents when the operation current of C1 is fixed.

    Figure 7.Measured ion flux as a function of coil current of (a) C1,(b) C2 and (c) C3.In each case, the currents of the other two coils are fixed.

    Figure 8.The maximum (red straight line) and minimum (black dotted line) operation magnetic field configurations when adjusting the current of(a)C1,(b)C2 and(c)C3.In each case,the currents of the other two coils are fixed.

    4.3.The effects of gas flow and discharge current

    The effects of gas flow and discharge current on the ion flux are studied.The argon ion flux at the target grows with the gas flow at a constant input arc current.The gas flow rate plays an important role in increasing the ion flux of argon plasma,which is consistent with the previous reports[15].As the argon gas flow grows,more neutral atoms are ionized and collected by the electric pole in the target.Moreover,the cold gas boundary layer is formed between the arc column and anode surface, and the cold gas boundary can hold the stability of the arc and decrease the anode erosion.It can be seen from figure 9 that ion flux increases rapidly as the arc current increases, which will be discussed in detail in the next paragraph.

    The arc current dependence of ion flux was investigated as well.Figure 10 shows that argon ion flux grows with the arc current.Higher density plasma is produced at a higher arc current density [24].The possible reason is that the increase in applied current leads to the increase of electron kinetic energy.The power dissipated in the plasma column grows with the arc current.When the gas flow rate is fixed, cold atoms are heated and excited by the ohmic heating energy,which increases ion flux.

    Figure 9.Ion flux as a function of gas flow for different discharge currents.The coils currents of C1,C2 and C3 are 600 A,300 A and 300 A, respectively.

    Figure 10.The ion flux as a function of cathode current.

    5.Conclusions

    A compact cascaded arc plasma source for PWI study is developed at the Institute of Plasma Physics,Chinese Academy of Sciences.With a relatively low fluid conductance,high flux steady-state experiments are performed successfully.The magnetic field configuration has significant effects on target flux.Experimental results indicate that a uniform magnetic field is not beneficial to achieving high flux in cascaded arc plasma sources.On the contrary, ion flux of target is growing with the augment of the magnetic field in the source area.The gradients of the magnetic field in the axial direction are also conductive to acquire high flux plasma in the target area,which suggests that the magnetic field mirror effects play an important role in axial plasma transport.Moreover, higher ion flux can be achieved in a higher arc current and a higher gas flow rate.The performance of the device can be further improved.It has been found that the ion flux was an undulant variation in the steady-state operation of cascaded arc plasma, suggesting that the flow type in expand chamber plays an important role in plasma characteristics at the target area,which warrants further investigation in this new device.

    Acknowledgments

    This work was supported by Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01001228) and the Youth Innovation Promotion Association CAS (No.2018484).The authors would like to thank Dr T W Morgan and Dr H J N van Eck for their suggestions to our facility.

    猜你喜歡
    廣南海山李波
    廣南壩美 一個(gè)藏在青山綠水間的世外桃源
    On the heating mechanism of electron cyclotron resonance thruster immerged in a non-uniform magnetic field
    風(fēng)從哪里來(lái)
    夢(mèng)里鮮花開放
    37°女人(2019年4期)2019-04-20 02:17:42
    廣南蒜頭果發(fā)展現(xiàn)狀與保護(hù)
    佐藤海山的詩(shī)
    作品(2016年10期)2016-12-06 10:41:54
    迎春花
    大江南北(2016年3期)2016-11-22 07:37:20
    兩年出欄的廣南高峰牛身價(jià)過(guò)萬(wàn)元
    籃球賽
    馬術(shù)
    日韩成人在线观看一区二区三区| 小说图片视频综合网站| 日韩欧美在线二视频| 给我免费播放毛片高清在线观看| 国产精品嫩草影院av在线观看 | 日韩成人在线观看一区二区三区| 97人妻精品一区二区三区麻豆| 亚洲国产精品999在线| 最新中文字幕久久久久| 久久精品夜夜夜夜夜久久蜜豆| 婷婷色综合大香蕉| 久久这里只有精品中国| 一进一出好大好爽视频| 变态另类丝袜制服| 能在线免费观看的黄片| 丁香六月欧美| 久久久久亚洲av毛片大全| 亚洲熟妇熟女久久| 日韩 亚洲 欧美在线| 99热精品在线国产| 嫩草影视91久久| 亚洲内射少妇av| 青草久久国产| 国产色爽女视频免费观看| 一个人看的www免费观看视频| 18禁黄网站禁片免费观看直播| 一级毛片久久久久久久久女| 蜜桃亚洲精品一区二区三区| 成年版毛片免费区| 草草在线视频免费看| 日日干狠狠操夜夜爽| 成人鲁丝片一二三区免费| 9191精品国产免费久久| 久久国产乱子免费精品| 天天躁日日操中文字幕| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产成人福利小说| 男人和女人高潮做爰伦理| 国产又黄又爽又无遮挡在线| 成人特级黄色片久久久久久久| 黄色女人牲交| 嫩草影院入口| 国产精品一区二区免费欧美| 国产高潮美女av| 日本精品一区二区三区蜜桃| 桃红色精品国产亚洲av| 性欧美人与动物交配| 一区二区三区四区激情视频 | 亚洲中文字幕日韩| 一级黄色大片毛片| 国产精品98久久久久久宅男小说| 国内精品美女久久久久久| 人人妻,人人澡人人爽秒播| 男女做爰动态图高潮gif福利片| 天堂√8在线中文| 日本免费a在线| 欧美xxxx黑人xx丫x性爽| 日韩有码中文字幕| 欧美极品一区二区三区四区| 国产精品一区二区免费欧美| 好看av亚洲va欧美ⅴa在| 全区人妻精品视频| 精品午夜福利在线看| 成年人黄色毛片网站| 真实男女啪啪啪动态图| 国产亚洲精品久久久久久毛片| 国产精品,欧美在线| www.www免费av| 久久人妻av系列| 全区人妻精品视频| 女生性感内裤真人,穿戴方法视频| 熟女人妻精品中文字幕| 国产精品99久久久久久久久| 黄色女人牲交| 国产成人影院久久av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 一本综合久久免费| av欧美777| 99久久无色码亚洲精品果冻| 国产综合懂色| 又粗又爽又猛毛片免费看| 午夜福利免费观看在线| 如何舔出高潮| 亚洲国产日韩欧美精品在线观看| 国产精品亚洲一级av第二区| 国语自产精品视频在线第100页| 国产免费一级a男人的天堂| 亚洲成人中文字幕在线播放| 深夜精品福利| 亚洲av一区综合| 日韩亚洲欧美综合| 国产单亲对白刺激| 色尼玛亚洲综合影院| 小蜜桃在线观看免费完整版高清| 三级男女做爰猛烈吃奶摸视频| 日韩精品青青久久久久久| 男人舔女人下体高潮全视频| 国产精品日韩av在线免费观看| 欧美成人a在线观看| 51国产日韩欧美| 国产大屁股一区二区在线视频| 韩国av一区二区三区四区| 夜夜看夜夜爽夜夜摸| 精品久久久久久,| 久久久久久久午夜电影| 俺也久久电影网| 蜜桃亚洲精品一区二区三区| 日韩精品中文字幕看吧| 国产91精品成人一区二区三区| 午夜老司机福利剧场| 国产精品一区二区免费欧美| 国产男靠女视频免费网站| 搡老妇女老女人老熟妇| 真实男女啪啪啪动态图| 国产男靠女视频免费网站| 嫩草影院新地址| 免费黄网站久久成人精品 | 99精品久久久久人妻精品| 天堂av国产一区二区熟女人妻| 久久热精品热| 亚洲国产精品成人综合色| 国产av一区在线观看免费| 精品国产亚洲在线| 国产精品爽爽va在线观看网站| 麻豆av噜噜一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 午夜a级毛片| 高清毛片免费观看视频网站| 日日摸夜夜添夜夜添av毛片 | 性色av乱码一区二区三区2| 人妻久久中文字幕网| 在线国产一区二区在线| 亚洲av五月六月丁香网| 亚洲最大成人手机在线| 日韩有码中文字幕| 中文字幕人妻熟人妻熟丝袜美| 99精品在免费线老司机午夜| 网址你懂的国产日韩在线| 悠悠久久av| 亚洲国产精品999在线| www.999成人在线观看| 中亚洲国语对白在线视频| 欧美3d第一页| a级一级毛片免费在线观看| 国产亚洲精品久久久久久毛片| 97人妻精品一区二区三区麻豆| 欧美一区二区国产精品久久精品| 日韩高清综合在线| 老司机福利观看| 亚洲国产日韩欧美精品在线观看| 国产乱人视频| 丰满人妻一区二区三区视频av| 免费搜索国产男女视频| 99热6这里只有精品| 久久久久久久久久成人| 日韩中字成人| 久久久国产成人免费| 欧美日本视频| 国产成年人精品一区二区| 午夜激情福利司机影院| 日本熟妇午夜| 女生性感内裤真人,穿戴方法视频| 首页视频小说图片口味搜索| 老熟妇乱子伦视频在线观看| a级毛片免费高清观看在线播放| 亚洲欧美精品综合久久99| 九九在线视频观看精品| av在线天堂中文字幕| 国产精品久久电影中文字幕| ponron亚洲| 日本免费a在线| 乱码一卡2卡4卡精品| 亚洲 国产 在线| 成人午夜高清在线视频| 啦啦啦观看免费观看视频高清| 国产男靠女视频免费网站| 久久天躁狠狠躁夜夜2o2o| 欧美最黄视频在线播放免费| 精华霜和精华液先用哪个| 嫁个100分男人电影在线观看| 波多野结衣巨乳人妻| 搡老岳熟女国产| 十八禁人妻一区二区| 麻豆一二三区av精品| 亚洲精品成人久久久久久| 高清毛片免费观看视频网站| 少妇熟女aⅴ在线视频| 五月玫瑰六月丁香| 国产精品久久电影中文字幕| 亚洲真实伦在线观看| 一边摸一边抽搐一进一小说| 熟妇人妻久久中文字幕3abv| 五月玫瑰六月丁香| 亚洲美女搞黄在线观看 | 小蜜桃在线观看免费完整版高清| 午夜福利欧美成人| 非洲黑人性xxxx精品又粗又长| 一个人看的www免费观看视频| 九色成人免费人妻av| 亚洲精品456在线播放app | 男女床上黄色一级片免费看| 欧美极品一区二区三区四区| 此物有八面人人有两片| 欧美成狂野欧美在线观看| 午夜视频国产福利| 久久精品国产清高在天天线| 亚洲一区高清亚洲精品| 99国产精品一区二区蜜桃av| 日韩大尺度精品在线看网址| 欧美bdsm另类| 日本黄色片子视频| 一区二区三区激情视频| 女人十人毛片免费观看3o分钟| 亚洲在线观看片| 99国产极品粉嫩在线观看| 舔av片在线| 国产成人福利小说| 亚洲片人在线观看| 露出奶头的视频| 久99久视频精品免费| 老女人水多毛片| 动漫黄色视频在线观看| 天堂动漫精品| 色尼玛亚洲综合影院| 日韩精品青青久久久久久| 亚洲精品影视一区二区三区av| 麻豆一二三区av精品| 久久99热这里只有精品18| 久久久久性生活片| 国产精品一区二区性色av| 欧美激情在线99| 国产激情偷乱视频一区二区| 美女黄网站色视频| 亚洲国产精品久久男人天堂| 97人妻精品一区二区三区麻豆| 欧美色视频一区免费| 成人高潮视频无遮挡免费网站| 波多野结衣高清作品| 成熟少妇高潮喷水视频| 日韩欧美国产一区二区入口| 国产真实乱freesex| 熟妇人妻久久中文字幕3abv| 国产伦精品一区二区三区视频9| 欧美性猛交╳xxx乱大交人| 国产三级黄色录像| 能在线免费观看的黄片| 窝窝影院91人妻| 久9热在线精品视频| 男女那种视频在线观看| 最新中文字幕久久久久| 国产成人欧美在线观看| 此物有八面人人有两片| 男人和女人高潮做爰伦理| 搞女人的毛片| 听说在线观看完整版免费高清| 观看免费一级毛片| 搡女人真爽免费视频火全软件 | 一区福利在线观看| 国产成人欧美在线观看| 精品人妻1区二区| 给我免费播放毛片高清在线观看| 在线观看66精品国产| 欧美性感艳星| 国产亚洲精品综合一区在线观看| 国产一区二区亚洲精品在线观看| 国产在线精品亚洲第一网站| 国内揄拍国产精品人妻在线| 又爽又黄无遮挡网站| 日韩欧美 国产精品| 欧美成人a在线观看| 好看av亚洲va欧美ⅴa在| 十八禁网站免费在线| 亚洲人成网站在线播| 欧美又色又爽又黄视频| 日韩 亚洲 欧美在线| 日韩中文字幕欧美一区二区| 亚洲欧美日韩卡通动漫| 内射极品少妇av片p| 女生性感内裤真人,穿戴方法视频| 尤物成人国产欧美一区二区三区| avwww免费| 国产视频内射| 国产精品久久久久久亚洲av鲁大| 能在线免费观看的黄片| 99久久久亚洲精品蜜臀av| 国模一区二区三区四区视频| 伦理电影大哥的女人| 嫩草影院精品99| 国产探花在线观看一区二区| 欧美黑人欧美精品刺激| 国产综合懂色| 久久精品国产清高在天天线| 直男gayav资源| 亚洲成人中文字幕在线播放| 免费看日本二区| 成人国产一区最新在线观看| 精品熟女少妇八av免费久了| 日韩欧美 国产精品| 嫁个100分男人电影在线观看| 免费无遮挡裸体视频| 超碰av人人做人人爽久久| 国产欧美日韩精品一区二区| 天堂√8在线中文| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 18禁黄网站禁片午夜丰满| 动漫黄色视频在线观看| 久久性视频一级片| 国产午夜福利久久久久久| 精品久久久久久久末码| 黄色日韩在线| 18美女黄网站色大片免费观看| 欧美绝顶高潮抽搐喷水| 性色av乱码一区二区三区2| 欧美高清成人免费视频www| 国产黄a三级三级三级人| 偷拍熟女少妇极品色| 夜夜躁狠狠躁天天躁| 久久99热这里只有精品18| 亚洲欧美精品综合久久99| 国产三级在线视频| 日本黄色片子视频| 久久国产乱子伦精品免费另类| 中文字幕精品亚洲无线码一区| 亚洲第一区二区三区不卡| 久久久久国内视频| 国产亚洲精品久久久久久毛片| 嫩草影院入口| 小说图片视频综合网站| a在线观看视频网站| 国产精品98久久久久久宅男小说| 中亚洲国语对白在线视频| 99久久九九国产精品国产免费| 一个人免费在线观看电影| 成人精品一区二区免费| 久久久久久国产a免费观看| 中文字幕久久专区| 变态另类丝袜制服| 麻豆一二三区av精品| 99热只有精品国产| 亚洲成a人片在线一区二区| 久久久久久久亚洲中文字幕 | 此物有八面人人有两片| 欧美性猛交╳xxx乱大交人| 免费黄网站久久成人精品 | 日韩亚洲欧美综合| 内射极品少妇av片p| 亚洲av免费在线观看| 非洲黑人性xxxx精品又粗又长| 国产白丝娇喘喷水9色精品| 欧美日韩乱码在线| 国产伦在线观看视频一区| 我要看日韩黄色一级片| 国产伦一二天堂av在线观看| 欧美日韩乱码在线| 亚洲国产精品合色在线| 嫩草影院入口| 亚洲人成网站在线播放欧美日韩| 久久久久九九精品影院| 色哟哟哟哟哟哟| 国产亚洲精品久久久com| 一级黄色大片毛片| 毛片女人毛片| 国产精品一区二区性色av| 久久久色成人| 在线观看av片永久免费下载| 国产麻豆成人av免费视频| 久久热精品热| 亚洲第一欧美日韩一区二区三区| 男女下面进入的视频免费午夜| 亚洲av电影不卡..在线观看| 一区福利在线观看| 日韩欧美国产在线观看| 亚洲自偷自拍三级| 国产精品电影一区二区三区| 国产精品爽爽va在线观看网站| 色综合婷婷激情| 国产精品爽爽va在线观看网站| 中文字幕av在线有码专区| a级毛片a级免费在线| 亚洲午夜理论影院| 日本免费a在线| 一个人看视频在线观看www免费| 日本免费a在线| 天天一区二区日本电影三级| 亚洲aⅴ乱码一区二区在线播放| 国产精品一区二区三区四区免费观看 | 淫妇啪啪啪对白视频| 国产成年人精品一区二区| 天堂网av新在线| 亚洲av成人av| a级一级毛片免费在线观看| 欧美一区二区国产精品久久精品| 91狼人影院| 性色av乱码一区二区三区2| 亚洲国产精品合色在线| 一边摸一边抽搐一进一小说| 国产一区二区三区视频了| 欧美色视频一区免费| 国产爱豆传媒在线观看| xxxwww97欧美| 久久精品国产自在天天线| 亚洲美女搞黄在线观看 | 91av网一区二区| 欧美日韩亚洲国产一区二区在线观看| 国产精品av视频在线免费观看| 亚洲第一电影网av| 亚洲自偷自拍三级| 成人精品一区二区免费| 国产黄色小视频在线观看| 欧美绝顶高潮抽搐喷水| 欧美黑人巨大hd| 免费av不卡在线播放| www.www免费av| 国产一区二区三区视频了| 别揉我奶头~嗯~啊~动态视频| 国内少妇人妻偷人精品xxx网站| 99热6这里只有精品| 亚洲美女黄片视频| 亚洲国产精品久久男人天堂| 精品乱码久久久久久99久播| av专区在线播放| 九九热线精品视视频播放| 好看av亚洲va欧美ⅴa在| 嫩草影院新地址| 精品福利观看| 男人和女人高潮做爰伦理| 精品人妻偷拍中文字幕| 两人在一起打扑克的视频| 五月伊人婷婷丁香| 色尼玛亚洲综合影院| 欧美黄色片欧美黄色片| 麻豆一二三区av精品| 偷拍熟女少妇极品色| 黄色一级大片看看| 十八禁人妻一区二区| 免费在线观看影片大全网站| 亚洲欧美激情综合另类| 国产不卡一卡二| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美日韩亚洲国产一区二区在线观看| 日韩成人在线观看一区二区三区| 女人被狂操c到高潮| avwww免费| 最近最新中文字幕大全电影3| 亚洲自偷自拍三级| netflix在线观看网站| av视频在线观看入口| 变态另类成人亚洲欧美熟女| 麻豆国产av国片精品| 波多野结衣高清无吗| 国产单亲对白刺激| 91麻豆精品激情在线观看国产| 国内精品久久久久精免费| a级毛片免费高清观看在线播放| 亚洲,欧美,日韩| 男女视频在线观看网站免费| 国产精品一区二区性色av| 99热6这里只有精品| 亚洲精品成人久久久久久| 尤物成人国产欧美一区二区三区| 亚洲精品粉嫩美女一区| 久久久久久久久久成人| 久久久久国内视频| 嫩草影视91久久| 亚洲欧美精品综合久久99| 一进一出好大好爽视频| 麻豆一二三区av精品| 一个人免费在线观看电影| 久久国产精品影院| 国产麻豆成人av免费视频| 美女大奶头视频| 在线播放国产精品三级| 精品久久久久久久久av| 熟妇人妻久久中文字幕3abv| 性色avwww在线观看| 国产高清视频在线播放一区| 亚洲第一欧美日韩一区二区三区| 精品乱码久久久久久99久播| 9191精品国产免费久久| 中亚洲国语对白在线视频| 悠悠久久av| 又爽又黄无遮挡网站| www.色视频.com| av专区在线播放| 精品免费久久久久久久清纯| 日本黄色视频三级网站网址| 免费在线观看成人毛片| 最新中文字幕久久久久| 啦啦啦韩国在线观看视频| 免费观看人在逋| 99视频精品全部免费 在线| 国产成人aa在线观看| 少妇人妻一区二区三区视频| av在线老鸭窝| 深爱激情五月婷婷| 国产亚洲精品久久久久久毛片| 狂野欧美白嫩少妇大欣赏| 搡老岳熟女国产| 男女那种视频在线观看| 欧美一区二区亚洲| 在线天堂最新版资源| 三级毛片av免费| 国产不卡一卡二| 人妻丰满熟妇av一区二区三区| 国产精品精品国产色婷婷| 免费无遮挡裸体视频| 一级作爱视频免费观看| 91av网一区二区| 亚洲人成网站高清观看| 国内毛片毛片毛片毛片毛片| 亚洲成人免费电影在线观看| 在线看三级毛片| 婷婷色综合大香蕉| 啦啦啦观看免费观看视频高清| 少妇裸体淫交视频免费看高清| 欧美日韩综合久久久久久 | 亚洲人成网站在线播| АⅤ资源中文在线天堂| 757午夜福利合集在线观看| 亚洲av免费高清在线观看| 色在线成人网| 国产综合懂色| 国内毛片毛片毛片毛片毛片| 99视频精品全部免费 在线| x7x7x7水蜜桃| 国产免费av片在线观看野外av| 麻豆一二三区av精品| 夜夜爽天天搞| 日韩精品青青久久久久久| 亚洲国产精品久久男人天堂| 欧美日韩中文字幕国产精品一区二区三区| 99久久九九国产精品国产免费| 国产真实乱freesex| 少妇被粗大猛烈的视频| 啦啦啦韩国在线观看视频| 一区二区三区四区激情视频 | 成年女人毛片免费观看观看9| 黄片小视频在线播放| 国产熟女xx| 十八禁人妻一区二区| 人人妻人人澡欧美一区二区| 国产大屁股一区二区在线视频| 欧美性猛交╳xxx乱大交人| 久久香蕉精品热| 麻豆av噜噜一区二区三区| 99热只有精品国产| 免费看光身美女| 最近在线观看免费完整版| 中文字幕人成人乱码亚洲影| 美女被艹到高潮喷水动态| 国产精品久久久久久人妻精品电影| 亚洲成人久久性| 午夜福利成人在线免费观看| 成年女人永久免费观看视频| 成年版毛片免费区| 一级黄片播放器| 国产免费av片在线观看野外av| 9191精品国产免费久久| 亚洲五月婷婷丁香| 搡老岳熟女国产| 窝窝影院91人妻| 日本 欧美在线| 亚洲av成人不卡在线观看播放网| 直男gayav资源| 黄色视频,在线免费观看| 亚洲 欧美 日韩 在线 免费| 一级av片app| 99在线人妻在线中文字幕| 欧美激情久久久久久爽电影| 国产美女午夜福利| 亚洲综合色惰| 色5月婷婷丁香| 国产精华一区二区三区| 丁香欧美五月| 99精品在免费线老司机午夜| 日本 欧美在线| 自拍偷自拍亚洲精品老妇| 国产亚洲欧美在线一区二区| 波野结衣二区三区在线| 99久久精品国产亚洲精品| 美女高潮喷水抽搐中文字幕| 又黄又爽又免费观看的视频| 无人区码免费观看不卡| 91麻豆精品激情在线观看国产| 久久久久久久久久成人| 99精品久久久久人妻精品| 九九久久精品国产亚洲av麻豆| 搡老熟女国产l中国老女人| 男人和女人高潮做爰伦理| 男女下面进入的视频免费午夜| 18+在线观看网站| 禁无遮挡网站| 婷婷色综合大香蕉| 亚洲中文日韩欧美视频| 美女cb高潮喷水在线观看| www日本黄色视频网| 美女被艹到高潮喷水动态| 在线观看午夜福利视频| 日韩成人在线观看一区二区三区| 99精品在免费线老司机午夜| 中国美女看黄片| 国产真实伦视频高清在线观看 | 成人国产一区最新在线观看| 最近最新中文字幕大全电影3| 欧美成人性av电影在线观看| 97碰自拍视频| 成人美女网站在线观看视频| 毛片一级片免费看久久久久 | 亚洲美女视频黄频| 亚洲国产日韩欧美精品在线观看| 亚洲欧美日韩高清专用| 久久这里只有精品中国| 欧美+日韩+精品| 久99久视频精品免费| 宅男免费午夜|