郝媛媛,趙向前,黃福燈,李春壽
綜 述
PPR蛋白在植物細(xì)胞器組分轉(zhuǎn)錄后調(diào)控中的作用機(jī)制
郝媛媛,趙向前,黃福燈,李春壽
浙江省農(nóng)業(yè)科學(xué)院作物與核技術(shù)利用研究所,杭州 310021
PPR (pentatricopeptide repeats)蛋白是陸生植物中最大的蛋白家族之一,是一類RNA結(jié)合蛋白,參與細(xì)胞器基因的轉(zhuǎn)錄后加工過(guò)程,對(duì)細(xì)胞器的生物合成和功能具有深遠(yuǎn)影響。PPR突變后造成葉綠體光合電子傳遞鏈和線粒體呼吸鏈等進(jìn)程受損,最終通過(guò)影響光合作用或者呼吸作用,造成植株生長(zhǎng)發(fā)育異常,影響產(chǎn)量、育性、籽粒品質(zhì)等。近年來(lái),關(guān)于該蛋白家族成員參與植物生長(zhǎng)發(fā)育的報(bào)道越來(lái)越多,但由于該家族龐大,大部分成員的功能還未被解析。本文系統(tǒng)總結(jié)了目前PPR蛋白調(diào)控細(xì)胞器基因轉(zhuǎn)錄后加工的分子機(jī)理及對(duì)細(xì)胞器和植株發(fā)育的影響,提出PPR家族還未解決的問(wèn)題,為深入解析該基因家族的功能及育種應(yīng)用提供理論基礎(chǔ)。
PPR蛋白;轉(zhuǎn)錄后調(diào)控;細(xì)胞器代謝;植株生長(zhǎng)發(fā)育
PPR (pentatricopeptide repeats)蛋白表達(dá)基因約在20多年前被發(fā)現(xiàn)[1,2],但是對(duì)PPR家族的系統(tǒng)研究,是從擬南芥()基因組測(cè)序之后才開(kāi)始。對(duì)擬南芥基因組測(cè)序發(fā)現(xiàn),將近31%的基因與已知功能的基因不同,而在未知功能的基因中,PPR基因占比6%,約有450個(gè)成員構(gòu)成這個(gè)龐大的家族。由于與已知的TPR (tetratricopeptide repeat)蛋白結(jié)構(gòu)域相似,學(xué)者們將其命名為PPR蛋白,TPR蛋白是一類蛋白結(jié)合型蛋白家族,而PPR蛋白屬于RNA結(jié)合蛋白,這兩種蛋白可以通過(guò)保守的氨基酸殘基進(jìn)行區(qū)分。PPR蛋白廣泛存在于真核細(xì)胞中,原核生物只有在少數(shù)病原體和共生菌中存在,因此PPR蛋白是一類真核細(xì)胞特有的蛋白家族[3]。
近年來(lái),在研究各種類型突變體的過(guò)程中發(fā)現(xiàn)PPR蛋白在植物不同生長(zhǎng)發(fā)育階段發(fā)揮重要作用,因此有關(guān)植物PPR成員的功能研究越來(lái)越多。目前,PPR大部分成員被定位于線粒體和葉綠體,對(duì)細(xì)胞器基因的轉(zhuǎn)錄后調(diào)控起重要作用,主要包括RNA剪接、RNA穩(wěn)定、RNA切割、RNA翻譯和RNA編輯[3]。一些PPR基因突變后,下游的RNA底物加工異常,導(dǎo)致產(chǎn)生異常的轉(zhuǎn)錄本,進(jìn)而影響了葉綠體和線粒體的正常發(fā)育,從而影響植物光合作用和呼吸作用等重要生物進(jìn)程,導(dǎo)致植物生長(zhǎng)發(fā)育受阻。如此,研究龐大的PPR家族成員影響植物生長(zhǎng)的分子機(jī)理至關(guān)重要。
對(duì)PPR家族分子機(jī)理的研究關(guān)鍵是探尋其所作用的RNA底物及作用方式。植物線粒體及葉綠體的基因組較小,且各基因在基因組的位置已研究的較為清楚,利用成熟的分子生物學(xué)手段,可較快速地定位目標(biāo)RNA,并確定影響植物生長(zhǎng)發(fā)育的機(jī)理。因此,掌握PPR基因?qū)Φ孜锏淖饔脵C(jī)理及作用方式有助于探究并總結(jié)PPR家族對(duì)植物生長(zhǎng)發(fā)育的作用。本文以水稻()、擬南芥、玉米()為例,總結(jié)了目前多個(gè)PPR成員的分子作用機(jī)理及不同的PPR突變體對(duì)植物形態(tài)建成的影響,以期為未來(lái)研究龐大的PPR家族成員提供理論依據(jù)及研究方向。
PPR蛋白主要分為P類和PLS類,其中P類是由相對(duì)保守的35個(gè)氨基酸串聯(lián)重復(fù)排列而成,PLS類成員則是由P基序(35個(gè)氨基酸)、L (longer)基序(35~36個(gè)氨基酸)和S (shorter) (31~32個(gè)氨基酸)基序?yàn)橐粋€(gè)重復(fù)單位排列而成[3]。此外,PLS類成員按照其C端的不同氨基酸序列又分為E亞類、E+亞類和DYW亞類。E和E+結(jié)構(gòu)域包含34個(gè)氨基酸,這種結(jié)構(gòu)類似于TPR蛋白,DYW結(jié)構(gòu)域包含胞苷脫氨酶序列,其命名來(lái)源于3個(gè)保守的氨基酸—天冬氨酸(D)、酪氨酸(Y)和色氨酸(W)[3]。
PPR蛋白作為一種RNA結(jié)合蛋白,對(duì)mRNA轉(zhuǎn)錄后加工起著關(guān)鍵作用。P類成員主要參與RNA的剪接、穩(wěn)定、切割和翻譯過(guò)程,PLS類成員主要參與RNA的編輯過(guò)程。
RNA剪接是指把內(nèi)含子從前體mRNA (pre- mRNA)上移除,并將外顯子連接起來(lái)的過(guò)程。與細(xì)胞核基因不同,葉綠體和線粒體基因的外顯子并非連續(xù)分布在環(huán)狀基因組上,而是包含多個(gè)多順?lè)醋咏Y(jié)構(gòu),需要順式剪切和反式剪切形成多個(gè)轉(zhuǎn)錄中間產(chǎn)物,并分別去除內(nèi)含子,才能將外顯子連接起來(lái)形成成熟mRNA。發(fā)生在一條前體mRNA之間的剪接,稱為順式剪接(-splicing),多見(jiàn)于真核生物細(xì)胞核基因的剪接;發(fā)生在不同前體mRNA之間的剪接,稱為反式剪接(-splicing),反式剪接可產(chǎn)生某個(gè)成熟mRNA的中間轉(zhuǎn)錄物,反式剪接多見(jiàn)于對(duì)葉綠體和線粒體基因組的初始轉(zhuǎn)錄物進(jìn)行加工的過(guò)程中[4]。
需要剪切的葉綠體和線粒體基因內(nèi)含子在不同物種中數(shù)量不同,被歸類為I型內(nèi)含子和II型內(nèi)含子,其中大部分是II型內(nèi)含子[4]。I型內(nèi)含子由10個(gè)結(jié)構(gòu)域構(gòu)成(P1~P10),作用于RNA折疊,促進(jìn)剪切和連接;II型內(nèi)含子由6個(gè)雙螺旋結(jié)構(gòu)域構(gòu)成(I~VI),形成復(fù)雜的空間結(jié)構(gòu),構(gòu)成剪切的活性識(shí)別位點(diǎn),每個(gè)結(jié)構(gòu)域都有獨(dú)特的作用,其剪切方式是經(jīng)過(guò)兩步轉(zhuǎn)酯反應(yīng)完成的,剪切機(jī)制類似于細(xì)胞核中的剪接體[5]。I型內(nèi)含子和II型內(nèi)含子的區(qū)別主要是二級(jí)結(jié)構(gòu)和第一步剪切步驟的化學(xué)反應(yīng)機(jī)制不同[6]。
II型內(nèi)含子在植物中的分布較普遍,以水稻、玉米和擬南芥為例,擬南芥線粒體基因組9個(gè)基因共含有23個(gè)內(nèi)含子,水稻和玉米線粒體基因組8個(gè)基因共含有22個(gè)內(nèi)含子,且均為II型內(nèi)含子。其中需要順式剪切的內(nèi)含子有17個(gè)(包含擬南芥中的一個(gè)內(nèi)含子),需要反式剪切的內(nèi)含子有6個(gè)[5]。目前,參與RNA剪接的PPR蛋白大多參與、、的順?lè)词郊羟校瑓⑴c、、RNA剪切的PPR蛋白還未見(jiàn)報(bào)道(圖1)[7~28]。擬南芥葉綠體基因組有20個(gè)II型內(nèi)含子和1個(gè)I型內(nèi)含子(),分布在18個(gè)基因中;水稻和玉米葉綠體基因組有17個(gè)II型內(nèi)含子和1個(gè)I型內(nèi)含子(),分布在16個(gè)基因中[29]。這些內(nèi)含子中只有的一個(gè)內(nèi)含子屬于I型內(nèi)含子,其余均為II型內(nèi)含子。此外,根據(jù)結(jié)構(gòu)特異性和功能差異性,II型內(nèi)含子可分為IIA組、IIB組、IIC組和IIE/F組[30]。在植物中,依據(jù)內(nèi)含子的二級(jí)結(jié)構(gòu)不同,Michel等[31]將葉綠體的II型內(nèi)含子分為IIA和IIB兩組。葉綠體基因只有的第一個(gè)內(nèi)含子需反式剪切,且屬于B組內(nèi)含子,其余所有剪切方式均為順式剪切。葉綠體中報(bào)道參與RNA剪接的PPR蛋白數(shù)量相對(duì)較少(圖2)[32~42]。
圖1 水稻、玉米和擬南芥中參與線粒體內(nèi)含子剪接的PPR蛋白
水稻和玉米包含22個(gè)內(nèi)含子,擬南芥包含23個(gè)內(nèi)含子,蛋白名稱右上角為參考文獻(xiàn)。Zm:玉米;Os:水稻;At:擬南芥。圖中展示了9個(gè)包含內(nèi)含子的基因結(jié)構(gòu)圖,擬南芥比水稻和玉米多了1個(gè)內(nèi)含子(的內(nèi)含子,虛線標(biāo)注),黑色方框代表外顯子(E),閉合曲線表示順式剪接的內(nèi)含子,未閉合的曲線代表反式剪接的內(nèi)含子。
圖2 水稻、玉米和擬南芥中參與葉綠體內(nèi)含子剪接的PPR蛋白
水稻和玉米包含18個(gè)內(nèi)含子,擬南芥包含21個(gè)內(nèi)含子,蛋白右上角為參考文獻(xiàn)。Zm:玉米;Os:水稻;At:擬南芥。是唯一一個(gè)I型內(nèi)含子,其余均為II型內(nèi)含子,且II型內(nèi)含子分為兩個(gè)亞組(Subgroup II A和Subgroup II B)。虛線左側(cè)的內(nèi)含子為B組內(nèi)含子,虛線右側(cè)的內(nèi)含子為A組內(nèi)含子。圖中展示了包含內(nèi)含子的基因結(jié)構(gòu)圖,擬南芥比水稻和玉米多了3個(gè)內(nèi)含子(的1個(gè)內(nèi)含子,的2個(gè)內(nèi)含子,虛線標(biāo)注)。黑色方框代表外顯子(E),閉合曲線表示順式剪接的內(nèi)含子,未閉合的曲線代表反式剪接的內(nèi)含子。
參與RNA剪接的PPR蛋白突變后,通常會(huì)造成成熟(spliced)的mRNA含量減少或缺失,而未剪接(unspliced)的前體mRNA含量增多。根據(jù)目前的報(bào)道,還沒(méi)有一個(gè)PPR蛋白可參與某個(gè)基因所有內(nèi)含子的剪接,可見(jiàn)一個(gè)基因,或者某個(gè)特定內(nèi)含子,是由多個(gè)PPR蛋白和其他RNA加工類蛋白共同完成的,且這些RNA加工蛋白的氨基酸序列并不保守,這種現(xiàn)象反映了進(jìn)化的多樣性和剪接過(guò)程的復(fù)雜性。在進(jìn)化過(guò)程中,不同物種線粒體和葉綠體基因組的內(nèi)含子發(fā)生自然突變,進(jìn)而招募相應(yīng)的核編碼蛋白(如PPR蛋白)進(jìn)行剪接加工。若內(nèi)含子在不同物種中的突變發(fā)生在單子葉和雙子葉植物進(jìn)化之后,則同一個(gè)內(nèi)含子的剪接可能需要不同的PPR蛋白;若內(nèi)含子的突變發(fā)生在單雙子葉植物進(jìn)化之前,則作用于內(nèi)含子的PPR蛋白在不同物種中具有保守性。此外,同一個(gè)PPR蛋白也可參與多個(gè)基因內(nèi)含子的剪切過(guò)程,這體現(xiàn)了PPR蛋白對(duì)下游底物作用機(jī)制的復(fù)雜性。
PPR 蛋白穩(wěn)定底物RNA主要是保護(hù)底物RNA免受核酸外切酶的非特異性切割。其作用機(jī)理是PPR蛋白結(jié)合于初始轉(zhuǎn)錄物的5?或3?末端,或者結(jié)合于多順?lè)醋臃词郊羟兄虚g轉(zhuǎn)錄物的5?或3?末端,作為一種“障礙”,阻擋5?或3?外切酶的非特異性切割,穩(wěn)定mRNA不被降解。同時(shí),由于所結(jié)合位置是固定的、特異性的,所以PPR也界定了轉(zhuǎn)錄物的5?或3?末端[43]。因此,PPR蛋白參與mRNA的穩(wěn)定,既確定了轉(zhuǎn)錄物的末端,又保證了轉(zhuǎn)錄物免于降解,具有雙重作用。由于線粒體和葉綠體基因組由多順?lè)醋咏M成,因此界定正確的5?或3?末端這一功能對(duì)成熟mRNA的形成至關(guān)重要。
參與RNA剪接的PPR蛋白功能缺失時(shí),通常會(huì)造成成熟的底物RNA轉(zhuǎn)錄本減少或缺失,未剪切的中間轉(zhuǎn)錄本增加,表明剪接過(guò)程受阻。相反,參與mRNA穩(wěn)定的PPR蛋白功能缺失時(shí),雖然也會(huì)阻止mRNA成熟,但是未剪切的轉(zhuǎn)錄本并未增多,反而是減少的,由于未剪切的中間轉(zhuǎn)錄物被5?或3?外切酶非特異性切割,穩(wěn)定性降低并缺失,導(dǎo)致不能形成功能正常的成熟mRNA。因此,該分子機(jī)理是鑒定PPR蛋白參與底物RNA的剪接或穩(wěn)定進(jìn)程的依據(jù)。
葉綠體中同時(shí)擁有5?和3?核酸外切酶,PPR蛋白可結(jié)合于轉(zhuǎn)錄物的5?或3?末端,參與mRNA的穩(wěn)定(圖3A)。玉米ZmPPR10可結(jié)合于-、-基因間區(qū)[44];此外,玉米ZmATP4、ZmCRP1、擬南芥AtHCF152可分別作用于-基因間區(qū)、-基因間區(qū)、-基因間區(qū)[45~47],上述4個(gè)蛋白均能同時(shí)阻止5?和3?核酸外切酶的非特異性切割。擬南芥AtMRL1、AtPGR3、玉米ZmPPR103分別結(jié)合于、、的5?UTR,阻止5?核酸外切酶的非特異性切割[48~50]。ZmPPR5較為特殊,它結(jié)合于的3?內(nèi)含子,促進(jìn)的穩(wěn)定,并促進(jìn)剪切[33]。
線粒體基因組在進(jìn)化過(guò)程中經(jīng)過(guò)動(dòng)態(tài)的進(jìn)化和重排,只有3?核酸外切酶,而無(wú)法檢測(cè)到5?核酸外切酶活性[51]。所以,在線粒體中,參與mRNA穩(wěn)定的報(bào)道多集中于阻止3?核酸外切酶的切割(圖3B),而5?端的加工為一種切割作用(見(jiàn)下文)。線粒體的成熟過(guò)程經(jīng)過(guò)3個(gè)反式剪切過(guò)程,所以其前體轉(zhuǎn)錄物包含4個(gè)中間產(chǎn)物,AtMTSF2和AtPPR19均可結(jié)合于第二個(gè)前體int1b-exon2-int2-exon3-int3a的內(nèi)含子3a處,阻止3?核酸外切酶的切割[52,53];AtMTSF1結(jié)合于的3?UTR,免受3?核酸外切酶的非特異性切割[54];ZmPPR78比較特殊,不參與穩(wěn)定反式剪切的中間轉(zhuǎn)錄物,而是直接穩(wěn)定成熟的轉(zhuǎn)錄物,且突變后,成熟轉(zhuǎn)錄本中缺失5?ATG和3?TGA的不完整轉(zhuǎn)錄本增多,猜測(cè)其可通過(guò)阻止3?核酸外切酶的切割穩(wěn)定3?端,但是由于未能檢測(cè)到5?核酸外切酶活性,其縮短的5?端轉(zhuǎn)錄本還未能解釋。由此可見(jiàn),在線粒體中仍然有未被發(fā)現(xiàn)的mRNA加工進(jìn)程待挖掘[55]。
PPR蛋白參與RNA切割包含兩種方式:核酸外切酶方式和核酸內(nèi)切酶方式。較典型的是PPR編碼的RF (restorers of fertility)蛋白可以切割育性相關(guān)的線粒體RNAs,在三系配套育種工作中發(fā)揮重要作用,也是系譜法選育品種的理論依據(jù)。細(xì)胞質(zhì)雄性不育(cytoplasmic male sterility, CMS)是一種母系遺傳的線粒體遺傳缺陷,產(chǎn)生不育的花粉,目前已在200多種高等植物中觀察到CMS。與CMS相關(guān)的線粒體基因均是以嵌合體的結(jié)構(gòu)分布在線粒體基因組上[57],這種有缺陷的線粒體基因編碼的蛋白,使植物特定發(fā)育階段的組織生長(zhǎng)受阻從而產(chǎn)生不育的花粉。用包含RF蛋白的恢復(fù)系與不育系雜交產(chǎn)生F1雜交種,在F1的植株中攜帶育性恢復(fù)基因,即可恢復(fù)植株的雄性育性,其分子機(jī)理即PPR蛋白可對(duì)線粒體目標(biāo)RNA正確切割,進(jìn)而不能產(chǎn)生有毒蛋白,從而恢復(fù)F1雜交種的育性。目前大部分的RF蛋白都是PPR蛋白,包括矮牽?;?) RF[58]、油菜() Rfk1[59]、蘿卜() Rfo[60]、高粱() PPR13[61]、水稻RF1[62]。以水稻BT-CMS育性恢復(fù)基因?yàn)槔?,該基因包含兩個(gè)位于第10號(hào)染色體的PPR基因和。BT-CMS線粒體基因組包含兩個(gè)拷貝的,分別為和。其中,下游為,ORF79蛋白是一個(gè)特異性表達(dá)于小孢子的毒性蛋白。的初始轉(zhuǎn)錄物為2 kb,Rf-1A參與3?末端和5?端基因間區(qū)的切割,加工后分為1 kb和0.4 kb,而B(niǎo)T-CMS中初始轉(zhuǎn)錄物不能正確切割,產(chǎn)生毒性蛋白導(dǎo)致不育;Rf-1B降解轉(zhuǎn)錄物,使植株不受毒性蛋白ORF79侵害,從而恢復(fù)育性,Rf-1A的作用上位于Rf-1B[63]。
圖3 水稻、玉米和擬南芥中參與葉綠體(A)和線粒體(B)轉(zhuǎn)錄物穩(wěn)定的PPR蛋白
蛋白右上角為參考文獻(xiàn)。藍(lán)色方框代表外顯子,閉合曲線代表順式剪接的內(nèi)含子,未閉合的曲線代表反式剪接的內(nèi)含子,藍(lán)色直線代表基因間區(qū)。
PPR蛋白參與5?端切割的具體機(jī)制還未研究清楚,Barkan等[43]指出,可能的機(jī)制是切割位點(diǎn)的順式作用元件可與PPR蛋白的結(jié)合位點(diǎn)形成一個(gè)RNA結(jié)構(gòu),當(dāng)PPR蛋白結(jié)合于目標(biāo)位點(diǎn)時(shí),可暴露順式作用元件,繼而通過(guò)一種未知機(jī)制促進(jìn)5?端的加工成熟過(guò)程。擬南芥中與RF同源的蛋白稱之為RFLs (restorers of fertility like),其中RPF1[64]作用于的5?UTR區(qū)、RPF2[65]作用于和的5'UTR區(qū)、RPF3[66]作用于的5?UTR區(qū)、RPF5[67]作用于和26S RNAs的5?UTR區(qū),促進(jìn)鄰近的5?端形成。鑒于線粒體5?→3?核酸外切酶的缺失,這些蛋白功能喪失后,通常形成5?端異常長(zhǎng)的轉(zhuǎn)錄本。
除此之外,一些包含DYW結(jié)構(gòu)域的PPR蛋白本身就具有核酸內(nèi)切酶的活性。CRR2是一個(gè)DYW型的PPR蛋白,可作為一種核酸內(nèi)切酶,切割基因間區(qū),參與的成熟[68],CRR22和CRR28在體外也被證實(shí)具有核酸內(nèi)切酶的活性[69]。此外,PPR蛋白家族的一小部分成員C端包含SMR (small MutS-related)結(jié)構(gòu)域,SMR結(jié)構(gòu)域具有核酸內(nèi)切酶活性[70]。目前PPR成員中,只發(fā)現(xiàn)SOT1的C段SMR結(jié)構(gòu)域具有內(nèi)切酶的活性,AtSOT1可識(shí)別23S–4.5S rRNA前體5?末端13 bp的序列,正確切割前體末端形成成熟的23S及4.5S rRNA[71]。ZmPPR53是AtSOT1的同源蛋白,PPR53直接結(jié)合于23S rRNA 5?端上游70 nt的位點(diǎn),穩(wěn)定23S rRNA不被5?→3?外切酶切割,也可直接結(jié)合于5?端上游66 nt的位點(diǎn),增加的翻譯效率,但是其C端的SMR結(jié)構(gòu)域功能還未能解釋清楚[72]。
PPR蛋白參與mRNA的翻譯通常結(jié)合于底物的5?UTR區(qū),促進(jìn)底物RNA與核糖體的結(jié)合,從而激活或者抑制翻譯。ZmPPR10[44]、AtPGR3[49]、ZmATP4[47]可分別激活的翻譯過(guò)程,ZmCRP1[45]可同時(shí)激活和的翻譯。
葉綠體中,PPR蛋白參與mRNA翻譯的經(jīng)典例子是PPR10。PPR10激活翻譯的研究為了解葉綠體PPR介導(dǎo)的翻譯激活的潛在機(jī)制提供了基礎(chǔ)。在PPR10未結(jié)合的情況下,PPR10的結(jié)合位點(diǎn)和的核糖體結(jié)合位點(diǎn)(ribosome binding site, RBS)形成一個(gè)RNA發(fā)夾結(jié)構(gòu),PPR10結(jié)合后,可使RBS暴露,促進(jìn)和核糖體結(jié)合,激活翻譯,同時(shí)結(jié)合到該位點(diǎn)的PPR10也阻斷5?→3?外切核糖核酸酶活性,從而兼具穩(wěn)定的作用[43]。
線粒體中,PPR蛋白影響翻譯的研究較少,且線粒體mRNA的核糖體結(jié)合位點(diǎn)不能被清楚認(rèn)定[73],這就需要UTR特異性結(jié)合的PPR和其他蛋白質(zhì)識(shí)別這些結(jié)合位點(diǎn),對(duì)線粒體基因表達(dá)進(jìn)行特異性的調(diào)節(jié),例如ZmMPPR6結(jié)合于線粒體mRNA的5?UTR的3?末端,5?UTR的RNA二級(jí)結(jié)構(gòu)遮擋了起始密碼子,從而抑制翻譯起始,MPPR6可使這種二級(jí)結(jié)構(gòu)松散,從而保證了與核糖體的正確結(jié)合,激活翻譯[74]。
除了激活翻譯外,參與mRNA切割的RF蛋白可抑制底物RNA的翻譯。蘿卜的不育花器官中成熟毒蛋白ORF138的含量比根中高10倍,而含育性恢復(fù)基因Rfo的可育植株中,花器官和其他組織的毒蛋白含量均顯著下降。但是,不管在可育或不育的植株中,轉(zhuǎn)錄物含量不受影響,這表明Rfo影響了的翻譯或翻譯后進(jìn)程,使蛋白表達(dá)量在不育和可育植株中含量不同,但是調(diào)控翻譯的機(jī)制還未可知[60]。
RNA編輯是一種發(fā)生在轉(zhuǎn)錄后核苷酸特異位點(diǎn)的加工修飾現(xiàn)象,包括核苷酸的插入、刪除和轉(zhuǎn)換,其中核苷酸的轉(zhuǎn)換包括兩種方式,A→I和C→U。A→I的編輯僅由作用于RNA的腺苷脫氨酶(adenosine deaminase acting on RNA, ADAR)完成,主要發(fā)生在動(dòng)物、真菌及細(xì)菌中[75];高等植物中RNA編輯主要發(fā)生在線粒體與葉綠體中,C→U核苷酸替換的RNA編輯是高等植物中的普遍方式,該方式是由RNA編輯體統(tǒng)籌,通過(guò)對(duì)初始轉(zhuǎn)錄物編碼的C殘基進(jìn)行脫氨基來(lái)完成的[76]。C→U的改變,(1)一般發(fā)生在密碼子的第一個(gè)或者第二個(gè)堿基位點(diǎn),造成氨基酸的改變;(2)產(chǎn)生新的AUG起始密碼子或者消除初始轉(zhuǎn)錄物的無(wú)義終止密碼子,從而形成穩(wěn)定成熟的mRNA,翻譯為有功能的蛋白;(3)編輯后的位點(diǎn)可能產(chǎn)生RNA二級(jí)結(jié)構(gòu),影響mRNA的剪接和穩(wěn)定[77]。C→U RNA 編輯可以影響細(xì)胞器蛋白質(zhì)的序列、改變調(diào)節(jié)基序、RNA-蛋白質(zhì)相互作用或RNA二級(jí)結(jié)構(gòu),在RNA 加工過(guò)程中發(fā)揮重要作用[77]。目前的研究已確定水稻、玉米、擬南芥中所有的編輯位點(diǎn),以水稻為例,線粒體共485個(gè)編輯位點(diǎn),分布在36個(gè)線粒體基因上(https://www.ncbi. nlm.nih.gov/nucleotide/BA000029);葉綠體共21個(gè)編輯位點(diǎn),分布在11個(gè)葉綠體基因上[78],本文列出了目前在水稻、玉米、擬南芥中報(bào)道的部分參與RNA編輯的PPR蛋白及對(duì)應(yīng)的編輯位點(diǎn)[79~102](表1)。
RNA編輯體統(tǒng)籌RNA編輯過(guò)程,組成成員包括:PPR蛋白、MORFs (multiple organellar rna editing factors)蛋白、ORRM (organelle RNA recognition motif-containing)蛋白、PPO1 (protoporphyrinogen IX oxidase 1)蛋白、OZ1 (organelle zinc finger 1)蛋白[75]。其中PPR蛋白的PLS家族成員就是其中一種,主要作為反式作用因子,結(jié)合到編輯位點(diǎn)上游5~20個(gè)核苷酸的順式作用元件上,使編輯位點(diǎn)被辨認(rèn)出來(lái),招募RNA編輯酶催化C→U的反應(yīng)[91]。PLS家族成員C端的E1和E2結(jié)構(gòu)域類似于PPR基序,可能通過(guò)蛋白互作或者結(jié)合RNA底物的方式參與編輯過(guò)程[103]。DYW結(jié)構(gòu)域具有脫氨酶活性,可直接參與C→U編輯。
一個(gè)PPR蛋白可參與多個(gè)底物RNA的多個(gè)位點(diǎn)的編輯,同時(shí)某個(gè)特定RNA的編輯位點(diǎn),可被不同的PPR蛋白識(shí)別。RNA編輯位點(diǎn)的編輯效率并不是100%,平均約有80%。不同組織或不同發(fā)育條件下,RNA編輯效率均會(huì)受影響[104]。
此外,PPR蛋白可與MORFs蛋白互作共同協(xié)作完成RNA的編輯過(guò)程。MORFs是葉綠體和線粒體編輯體成員,擬南芥中共10個(gè)成員,其中MORF1、3、4、6、7定位于線粒體,MORF2、9定位于葉綠體,MORF5、8雙定位于線粒體和葉綠體。不同于PPR蛋白,MORF蛋白參與RNA編輯的過(guò)程是非特異性的,一個(gè)MORF蛋白即可參與相應(yīng)細(xì)胞器中所有編輯位點(diǎn)的編輯過(guò)程。PPR蛋白的P基序或E1、E2結(jié)構(gòu)域與MORF蛋白的N端或者中間區(qū)域互作,在不同的編輯位點(diǎn)可裝配特異的蛋白復(fù)合體。MORF蛋白還可與PPR蛋白的L基序互作,減小PPR蛋白構(gòu)象上P基序和S基序的距離,增加PLS結(jié)構(gòu)域與底物RNA的親和性[105]。
表1 水稻、玉米和擬南芥中部分參與葉綠體和線粒體RNA編輯的PPR蛋白
PPR蛋白的P、L、S基序分別具有保守的氨基酸位點(diǎn),能區(qū)分不同的基序類別,并確定每個(gè)PPR重復(fù)的起始氨基酸[3]。Cheng等[106]發(fā)現(xiàn),PPR基序識(shí)別下游RNA底物具有特異的分子機(jī)制。若PPR基序第五位的氨基酸是天冬酰胺(N),則對(duì)應(yīng)的PPR基序結(jié)合嘧啶,若為絲氨酸(S)或蘇氨酸(T),則結(jié)合嘌呤。此外,PPR基序的最后一位氨基酸是天冬氨酸(D),則結(jié)合尿嘧啶或鳥(niǎo)嘌呤,若為天冬酰胺(N),則結(jié)合胞嘧啶或腺苷酸。綜上所述,每個(gè)PPR基序的第五位和最后一位氨基酸決定了所結(jié)合的RNA堿基?;诖艘?guī)律,改變擬南芥PPR10對(duì)應(yīng)位置的氨基酸就會(huì)改變對(duì)應(yīng)的RNA識(shí)別位點(diǎn)[107]。
這種識(shí)別方式也適用于PLS型PPR蛋白,該類型蛋白最后一個(gè)S基序與編輯位點(diǎn)前的第4位核苷酸結(jié)合,該位置允許胞苷脫氨酶活性特異性作用于待編輯的胞苷。位于編輯位點(diǎn)上游5~20個(gè)核苷酸的順式作用元件是PLS型PPR蛋白的識(shí)別位點(diǎn)[77]。PPR56可作為PLS型PPR蛋白特異性識(shí)別底物的模式蛋白,PPR56第五位與最后一位氨基酸的組合與相對(duì)應(yīng)堿基可歸納為以下規(guī)律:T/S+N: A, T/S+D: G, N+N: C/U, N+S: C>U, N+ D: U>C,這與其底物和對(duì)應(yīng)的順式作用元件相吻合[77]。
值得注意的是,這種結(jié)合機(jī)制并不適合所有的PPR蛋白。一些P類家族成員在每個(gè)重復(fù)之間可能存在多余的氨基酸殘基,并不是保守的每35個(gè)氨基酸重復(fù)緊密相連。而且每個(gè)重復(fù)第五位的氨基酸和最后一個(gè)氨基酸并不是保守地按照上述規(guī)律排列,不同的PPR蛋白差異很大,所以還需進(jìn)一步補(bǔ)充這種分子機(jī)制,完善PPR蛋白結(jié)合底物RNA的規(guī)律。
幾乎所有PPR突變體表現(xiàn)出的表型均是由一種或幾種線粒體或葉綠體基因產(chǎn)物的功能缺失。盡管PPR家族成員很多,但不同家族成員之間的功能幾乎沒(méi)有冗余,不同物種中某些同源的PPR蛋白也具有不同的作用底物。PPR突變體的表型主要包括:光合缺陷[35,45,48,68]、葉片發(fā)育異常[108]、色素積累[109,110]、生長(zhǎng)受阻[8]、胚或胚乳發(fā)育異常[7,9,10]、脫落酸信號(hào)途徑受損[111]和胞質(zhì)雄性不育[58~62]。
在真核細(xì)胞中,線粒體是一種半自主性細(xì)胞器,有自身的基因組。在進(jìn)化過(guò)程中,線粒體大部分基因整合到宿主細(xì)胞核基因組中,經(jīng)過(guò)轉(zhuǎn)錄翻譯后,轉(zhuǎn)運(yùn)到線粒體,參與線粒體代謝和線粒體基因表達(dá)調(diào)控[112]。陸生植物線粒體基因組包含60~70個(gè)基因,這些基因編碼的蛋白包括tRNAs、rRNAs、核糖體蛋白、復(fù)合體I(NADH脫氫酶)亞基、復(fù)合體III(細(xì)胞色素C還原酶)亞基、復(fù)合體IV(細(xì)胞色素C氧化酶)亞基、ATP合酶亞基和細(xì)胞色素C合成酶亞基等。
線粒體為植物發(fā)育提供了能量,其功能喪失對(duì)植物生長(zhǎng)有害。線粒體PPR蛋白分子功能的確定有助于闡明RNA加工機(jī)制以及氧化磷酸化機(jī)制的組裝。復(fù)合體I嵌入線粒體內(nèi)膜并介導(dǎo)電子從NADH轉(zhuǎn)移至泛醌[113],是電子進(jìn)入電子傳輸鏈的主要入口點(diǎn),多個(gè)研究表明PPR參與的剪接缺陷能影響復(fù)合體I的裝配和穩(wěn)定[13,114,115]。Nad1、Nad2和Nad4蛋白是復(fù)合物I的膜臂成分[116],Nad1形成醌結(jié)合位點(diǎn),Nad2是復(fù)合物I中質(zhì)子轉(zhuǎn)移的位點(diǎn),而Nad4、Nad5形成質(zhì)子易位子之一,并且在結(jié)構(gòu)上與K或Na+/H+逆向運(yùn)輸?shù)鞍子嘘P(guān)。由于需要復(fù)合物I中Nad1、Nad2、Nad4、Nad5參與質(zhì)子轉(zhuǎn)移和醌鍵結(jié)合,PPR蛋白表達(dá)受阻而導(dǎo)致的、異常轉(zhuǎn)錄都會(huì)嚴(yán)重降低復(fù)合物I的含量,使活性顯著降低[10,12,22,25]。
PPR蛋白ZmEMP8、ZmDEK43、AtPPR19[12,23,52]功能異常時(shí),復(fù)合體I亞基功能的缺失還可導(dǎo)致細(xì)胞色素途徑受損,線粒體氧化磷酸化效率降低,導(dǎo)致植物出現(xiàn)代謝問(wèn)題[117],誘發(fā)交替途徑起始[24],導(dǎo)致交替氧化酶基因的轉(zhuǎn)錄水平提高。此外,OsNPPR1、OsFlo10[8,118]突變后,由于電子傳遞效率降低,使得呼吸鏈產(chǎn)生的ATP含量顯著下降[117]。氧化磷酸化中產(chǎn)生的活性氧(reactive oxygen species, ROS)在觸發(fā)植物細(xì)胞程序性死亡(programmed cell death, PCD)中起關(guān)鍵作用[119]。通常,PCD從胚乳的中部開(kāi)始,然后擴(kuò)散到外圍[120]。PPR突變體由于氧化磷酸化進(jìn)程的異常,導(dǎo)致產(chǎn)生過(guò)量的ROS,使突變體胚乳比野生型更早的發(fā)生PCD,這會(huì)干擾淀粉和貯藏蛋白的合成[121],所以定位于線粒體的PPR蛋白突變通常會(huì)造成胚乳粉質(zhì)和皺縮的表型??梢?jiàn),線粒體PPR功能缺陷型突變體,會(huì)導(dǎo)致線粒體發(fā)育受損,影響線粒體功能。
真核細(xì)胞中,葉綠體是光合作用的主要場(chǎng)所,其基因組包含約100個(gè)基因左右,這些基因主要參與光合作用、ATP合成和基質(zhì)中蛋白的轉(zhuǎn)錄翻譯和降解過(guò)程。葉綠體光合作用需要光合電子傳遞鏈,由3種復(fù)合物PS I、PS II和Cytb6f組成。PPR蛋白HCF152[46]、MRL1[48]、PGR3[49]等突變,通過(guò)影響光合電子傳遞鏈復(fù)合物的成員轉(zhuǎn)錄后加工,從而造成葉綠體發(fā)育異常;葉綠體ATP合酶是位于類囊體膜上的一個(gè)多亞基復(fù)合體,它利用光合作用電子傳遞產(chǎn)生的質(zhì)子動(dòng)力將ADP轉(zhuǎn)化為ATP。葉綠體ATP合酶由CFo和CF1模塊組成,其中由葉綠體基因參與的亞基產(chǎn)生于兩個(gè)多順?lè)醋尤~綠體轉(zhuǎn)錄單位和[122]。PPR蛋白WSL4[32]、ATP4[47]通過(guò)影響合酶成員的剪接和翻譯,影響葉綠體中ATP的合成過(guò)程;此外,在葉綠體基質(zhì)中存在葉綠體蛋白酶體clp復(fù)合體、葉綠體RNA聚合酶復(fù)合體以及一些核糖體蛋白[56]。PPR蛋白WSL[42]、CRR2[68]、CLB19[109]的突變影響這些途徑葉綠體mRNA的成熟過(guò)程。
有一類特殊的PPR蛋白,亞細(xì)胞定位于細(xì)胞核,包括GRP23、PNM1、SORA1和OsNPPR1。其中GRP23只定位于細(xì)胞核,與RNA聚合酶II亞基III互作,突變后致死[123]。PNM1雙定位于細(xì)胞核和線粒體,其突變體的致死表型只與線粒體定位有關(guān),在細(xì)胞核中PNM1可與轉(zhuǎn)錄因子TCP互作,調(diào)控線粒體氧化磷酸化過(guò)程相關(guān)的核基因表達(dá)[124]。GRP23與細(xì)胞核RNA聚合酶II亞基III互作,PNM1與細(xì)胞核轉(zhuǎn)錄因子TCP8和NAP1互作,說(shuō)明PPR定位于細(xì)胞核可以影響核mRNA的轉(zhuǎn)錄和轉(zhuǎn)錄后調(diào)控進(jìn)程。此外,TCP8轉(zhuǎn)錄因子特異性的轉(zhuǎn)錄與線粒體氧化磷酸化途徑相關(guān)的細(xì)胞核基因[125],說(shuō)明定位于細(xì)胞核的PPR蛋白可能通過(guò)參與定位于細(xì)胞器的核基因的轉(zhuǎn)錄后調(diào)控過(guò)程,參與細(xì)胞器的代謝過(guò)程。在水稻中,OsNPPR1是定位于細(xì)胞核的PPR蛋白,但卻影響了線粒體的功能,猜測(cè)可能是參與了細(xì)胞核中與線粒體發(fā)育相關(guān)基因的轉(zhuǎn)錄后調(diào)控而間接影響線粒體發(fā)育[118];SOAR1雙定位于細(xì)胞核和胞質(zhì),參與ABA信號(hào)途徑,作用于ABAR1下游和ABI5的上游[126]。
本文系統(tǒng)綜述了水稻、玉米、擬南芥中PPR蛋白參與轉(zhuǎn)錄后調(diào)控的分子機(jī)理和性狀表現(xiàn)。PPR蛋白可參與整個(gè)植物生育期的發(fā)育過(guò)程,影響植株的生長(zhǎng),對(duì)植物的正常長(zhǎng)成有重要作用。近年來(lái),對(duì)PPR成員的功能研究也越來(lái)越多。但是,仍有一些重要的科學(xué)問(wèn)題沒(méi)有解決:(1)龐大的PPR蛋白家族成員是否僅調(diào)控100多個(gè)細(xì)胞器基因的表達(dá);(2) E和E+型的PLS PPR蛋白結(jié)合底物后,招募編輯酶的分子機(jī)制還未知;(3)蘿卜的不育花器官中成熟毒蛋白ORF138的含量極高,而含育性恢復(fù)基因Rfo的可育植株中,各組織毒蛋白含量均顯著下降。但是,不管在可育或不育的植株中,轉(zhuǎn)錄物含量不受影響,雖然參與翻譯的過(guò)程,但是調(diào)控翻譯的機(jī)制還不清楚;(4)參與RNA切割的線粒體PPR蛋白的切割機(jī)制還未知;(5)雖然通過(guò)對(duì)PPR10的分子機(jī)理進(jìn)行系統(tǒng)的研究,發(fā)現(xiàn)了可能存在的PPR基序與底物結(jié)合的“密碼”[99],但是由于PPR家族各成員之間保守性相差較大,所以“密碼”并不適用于所有的PPR成員,是否有更精細(xì)明確的結(jié)合方式存在還有待探索。
細(xì)胞器基因的正常表達(dá),需要PPR家族成員協(xié)同工作,研究PPR蛋白可定向控制細(xì)胞器基因的表達(dá),為利用生物工程技術(shù),改良作物光合作用和呼吸作用進(jìn)程提供理論基礎(chǔ)。
[1] Manthey GM, Mcewen JE. The product of the nuclear geneis required for translation of mature mRNA and stability or production of intron-containing RNAs derived from the mitochondriallocus of., 1995, 14(16): 4031–4043.
[2] Coffin JW, Dhillon R, Ritzel RG, Nargang FE. Thenuclear gene encodes a protein with a region of homology to thePET309 protein and is required in a post-transcriptional step for the expression of the mitochondrially encoded COXI protein., 1997, 32(4): 273–280.
[3] Lurin C, Andrés C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Le Ret M, Martin-Magniette ML, Mireau H, Peeters N, Renou JP, Szurek B, Taconnat L, Small I. Genome-wide analysis ofpentatricopeptide repeat proteins reveals their essential role in organelle biogenesis., 2004, 16(8): 2089–2103.
[4] Bonen L.- and-splicing of group II introns in plant mitochondria., 2008, 8(1): 26–34.
[5] Brown GG, des Francs-Small CC, Ostersetzer-Biran O. Group II intron splicing factors in plant mitochondria., 2014, 5: 35.
[6] Huang WH, Zhu YJ, Wu WJ, Li X, Zhang DL, Yin P, Huang JR. The pentatricopeptide repeat protein SOT5/ EMB2279 is required for plastidandintron splicing., 2018, 177(2): 684–697.
[7] De Longevialle AF, Meyer EH, Andrés C, Taylor NL, Lurin C, Millar AH, Small ID. The pentatricopeptide repeat geneis required for-splicing of the mitochondrialintron 1 in., 2007, 19(10): 3256–3265.
[8] Wu MM, Ren YL, Cai MH, Wang YL, Zhu SS, Zhu JP, Hao YY, Teng X, Zhu XP, Jing RN, Zhang H, Zhong MS, Wang YF, Lei CL, Zhang X, Guo XP, Cheng ZJ, Lin QB, Wang J, Jiang L, Bao YQ, Wang YH, Wan JM. Riceencodes a pentatrico-peptide repeat protein that is essential for the- splicing of mitochondrialintron 1 and endosperm development., 2019, 223(2): 736–750.
[9] Ren XM, Pan ZY, Zhao HL, Zhao JL, Cai MJ, Li J, Zhang ZX, Qiu FZ. EMPTY PERICARP11 serves as a factor for splicing of mitochondrialintron and is required to ensure proper seed development in maize., 2017, 68(16): 4571–4581.
[10] Qi WW, Yang Y, Feng XZ, Zhang ML, Song RT. Mitochondrial function and maize kernel development requires Dek2, a pentatricopeptide repeat protein involved inmRNA splicing., 2017, 205(1): 239– 249.
[11] Sun Y, Huang JY, Zhong S, Gu HY, He S, Qu LJ. Novel DYW-type pentatricopeptide repeat (PPR) protein BLX controls mitochondrial RNA editing and splicing essential for early seed development of., 2018, 45(3): 155–168.
[12] Sun F, Zhang XY, Shen Y, Wang HC, Liu R, Wang XM, Gao DH, Yang YZ, Liu YW, Tan BC. The penta-tricopeptide repeat protein EMPTY PERICARP8 is required for the splicing of three mitochondrial introns and seed development in maize., 2018, 95(5): 919–932.
[13] Sun F, Xiu ZH, Jiang RC, Liu YW, Zhang XY, Yang YZ, Li XJ, Zhang X, Wang Y, Tan BC. The mitochondrial pentatricopeptide repeat protein EMP12 is involved in the splicing of threeintrons and seed development in maize., 2019, 70(3): 963–972.
[14] Dai DW, Luan SC, Chen XZ, Wang Q, Feng Y, Zhu CG, Qi WW, Song RT. Maize Dek37 encodes a P-type PPR protein that affects-splicing of mitochondrialintron 1 and seed development., 2018, 208(3): 1069–1082.
[15] Cai MJ, Li SZ, Sun F, Sun Q, Zhao HL, Ren XM, Zhao YX, Tan BC, Zhang ZX, Qiu FZ.encodes a mitochondrial PPR protein that affects the-splicing ofintron 1 and seed development in maize., 2017, 91(1): 132–144.
[16] Zhao P, Wang F, Li N, Shi DQ, Yang WC. Pentatrico-peptide repeat protein MID1 modulatesintron 1 splicing anddevelopment., 2020, 10(1): 2008.
[17] Weissenberger S, Soll J, Carrie C. The PPR protein SLOW GROWTH 4 is involved in editing ofand affects the splicing ofintron 1., 2017, 93(4–5): 355–368.
[18] Liu Y, He JN, Chen ZZ, Ren XZ, Hong XH, Gong ZZ., encoding a pentatrico-peptide repeat protein required for-splicing of mitochondrialintron 3, is involved in the abscisic acid response in., 2010, 63(5): 749–765.
[19] Yang YZ, Ding S, Wang Y, Wang HC, Liu XY, Sun F, Xu CH, Liu BH, Tan BC. PPR20 is required for the-splicing of mitochondrialintron 3 and seed development in maize., 2020, 61(2): 370–380.
[20] Wang CD, Aubé F, Quadrado M, Dargel-Graffin C, Mireau H. Three new pentatricopeptide repeat proteins facilitate the splicing of mitochondrial transcripts and complex I biogenesis in., 2018, 69(21): 5131–5140.
[21] Xiu ZH, Sun F, Shen Y, Zhang XY, Jiang RC, Bonnard G, Zhang JH, Tan BC. EMPTY PERICARP16 is required for mitochondrialintron 4-splicing, complex I assembly and seed development in maize., 2016, 85(4): 507–519.
[22] Ren ZJ, Fan KJ, Fang T, Zhang JJ, Yang L, Wang JH, Wang GY, Liu YJ. Maizeencodes a P-type PPR protein that is essential for seed develop-ment., 2019, 60(8): 1734–1746.
[23] Ren RC, Wang LL, Zhang L, Zhao YJ, Wu JW, Wei YM, Zhang XS, Zhao XY. DEK43 is a P-type penta-tricopeptide repeat (PPR) protein responsible for the-splicing ofin maize mitochondria., 2020, 62(3): 299–313.
[24] Chen XZ, Feng F, Qi WW, Xu LM, Yao DS, Wang Q, Song RT. Dek35 encodes a PPR protein that affects-splicing of mitochondrialintron 1 and seed development in maize., 2017, 10(3): 427– 441.
[25] Pan ZY, Liu M, Xiao ZY, Ren XM, Zhao HL, Gong DM, Liang K, Tan ZD, Shao YQ, Qiu FZ. ZmSMK9, a pentatricopeptide repeat protein, is involved in the-splicing of, kernel development and plant architecture in maize., 2019, 288: 110205.
[26] Des Francs-Small CC, De Longevialle AF, Li YH, Lowe E, Tanz SK, Smith C, Bevan MW, Small I. The pentatricopeptide repeat proteins TANG2 and ORGANELLE TRANSCRIPT PROCESSING439 are involved in the splicing of the multipartitetranscript encoding a subunit of mitochondrial complex I., 2014, 165(4): 1409–1416.
[27] Koprivova A, Des Francs-Small CC, Calder G, Mugford ST, Tanz S, Lee BR, Zechmann B, Small I, Kopriva S. Identification of a pentatricopeptide repeat protein implicated in splicing of intron 1 of mitochondrialtranscripts., 2010, 285(42): 32192–32199.
[28] Ha?li N, Planchard N, Arnal N, Quadrado M, Vrielynck N, Dahan J, Des Francs-Small CC, Mireau H. The MTL1 pentatricopeptide repeat protein is required for both translation and splicing of the mitochondrialmRNA in., 2016, 170(1): 354–366.
[29] De Longevialle AF, Small ID, Lurin C. Nuclearly encoded splicing factors implicated in RNA splicing in higher plant organelles., 2010, 3(4): 691–705.
[30] PYLE AM. Group II Intron Self-Splicing., 2016, 45(1): 183–205.
[31] MICHEL F, UMESONO K, OZEKI H. Comparative and functional anatomy of group II catalytic introns—a review., 1989, 82(1): 5–30.
[32] Wang Y, Ren YL, Zhou KN, Liu LL, Wang JJ, Xu Y, Zhang H, Zhang L, Feng ZM, Wang LW, Ma WW, Wang YL, Guo XP, Zhang X, Lei CL, Cheng ZJ, Wan JM.encodes a novel P-type PPR protein required for chloroplast biogenesis during early leaf development., 2017, 8: 1116.
[33] Beick S, Schmitz-Linneweber C, Williams-Carrier R, Jensen B, Barkan A. The pentatricopeptide repeat protein PPR5 stabilizes a specific tRNA precursor in maize chloroplasts., 2008, 28(17): 5337–5347.
[34] Wang XM, Yang ZP, Zhang Y, Zhou W, Zhang AH, Lu CM. Pentatricopeptide repeat protein PHOTOSYSTEM I BIOGENESIS FACTOR2 is required for splicing of., 2020, 62(11): 1741–1761.
[35] Khrouchtchova A, Monde RA, Barkan A. A short PPR protein required for the splicing of specific group II introns in angiosperm chloroplasts., 2012, 18(6): 1197–1209.
[36] de Longevialle AF, Hendrickson L, Taylor NL, Delannoy E, Lurin C, Badger M, Millar AH, Small I. The pentatricopeptide repeat gene OTP51 with two LAGLIDADG motifs is required for the-splicing of plastidintron 2 in., 2008, 56(1): 157–168.
[37] Chateigner-Boutin AL, Des Francs-Small CC, Delannoy E, Kahlau S, Tanz SK, De Longevialle AF, Fujii S, Small I. OTP70 is a pentatricopeptide repeat protein of the E subgroup involved in splicing of the plastid transcript., 2011, 65(4): 532–542.
[38] Schmitz-Linneweber C, Williams-Carrier RE, Williams- Voelker PM, Kroeger TS, Vichas A, Barkan A. A pen-tatricopeptide repeat protein facilitates the-splicing of the maize chloroplastpre-mRNA., 2006, 18(10): 2650–2663.
[39] Aryamanesh N, Ruwe H, Sanglard LVP, Eshraghi L, Bussell JD, Howell KA, Small I, Des Francs-Small CC. The pentatricopeptide repeat protein EMB2654 Is essential for-splicing of a chloroplast small ribosomal subunit transcript., 2017, 173(2): 1164– 1176.
[40] Lee K, Park SJ, des Francs-Small CC, Whitby M, Small I, Kang H. The coordinated action of PPR4 and EMB2654 on each intron half mediates-splicing oftranscripts in plant chloroplasts., 2019, 100(6): 1193–1207.
[41] Liu X, Lan J, Huang YS, Cao PH, Zhou CL, Ren YK, He NQ, Liu SJ, Tian YL, Nguyen T, Jiang L, Wan JM. Corrigendum: WSL5, a pentatricopeptide repeat protein, is essential for chloroplast biogenesis in rice under cold stress., 2018, 69(18): 4495.
[42] Tan JJ, Tan ZH, Wu FQ, Sheng PK, Heng YQ, Wang XH, Ren YL, Wang JL, Guo XP, Zhang X, Cheng ZJ, Jiang L, Liu XM, Wang HY, Wan JM. A novel chloroplast-localized pentatricopeptide repeat protein involved in splicing affects chloroplast development and abiotic stress response in rice., 2014, 7(8): 1329–1349.
[43] Barkan A, Small I. Pentatricopeptide repeat proteins in plants., 2014, 65: 415–442.
[44] Pfalz J, Bayraktar OA, Prikryl J, Barkan A. Site-specific binding of a PPR protein defines and stabilizes 5' and 3' mRNA termini in chloroplasts., 2009, 28(14): 2042–2052.
[45] Barkan A, Walker M, Nolasco M, Johnson D. A nuclear mutation in maize blocks the processing and translation of several chloroplast mRNAs and provides evidence for the differential translation of alternative mRNA forms., 1994, 13(13): 3170–3181.
[46] Meierhoff K, Felder S, Nakamura T, Bechtold N, Schuster G. HCF152, anRNA binding pentatricopeptide repeat protein involved in the processing of chloroplastRNAs., 2003, 15(6): 1480–1495.
[47] Zoschke R, Kroeger T, Belcher S, Sch?ttler MA, Barkan A, Schmitz-Linneweber C. The pentatricopeptide repeat-SMR protein ATP4 promotes translation of the chloroplastmRNA., 2012, 72(4): 547– 558.
[48] Johnson X, Wostrikoff K, Finazzi G, Kuras R, Schwarz C, Bujaldon S, Nickelsen J, Stern DB, Wollman FA, Vallon O. MRL1, a conserved pentatricopeptide repeat protein, is required for stabilization ofmRNA inand., 2010, 22(1): 234–248.
[49] Cai WH, Okuda K, Peng LW, Shikanai T. PROTON GRADIENT REGULATION 3 recognizes multiple targets with limited similarity and mediates translation and RNA stabilization in plastids., 2011, 67(2): 318–327.
[50] Hammani K, Takenaka M, Miranda R, Barkan A. A PPR protein in the PLS subfamily stabilizes the 5'-end of processedmRNAs in maize chloroplasts., 2016, 44(9): 4278–4288.
[51] Ruwe H, Wang GW, Gusewski S, Schmitz-Linneweber C. Systematic analysis of plant mitochondrial and chloroplast small RNAs suggests organelle-specific mRNA stabilization mechanisms., 2016, 44(15): 7406–7417.
[52] Lee K, Han JH, Park YI, des Francs-Small CC, Small I, Kang H. The mitochondrial pentatricopeptide repeat protein PPR19 is involved in the stabilization oftranscripts and is crucial for mito-chondrial function anddevelop-ment., 2017, 215(1): 202–216.
[53] Wang CD, Aubé F, Planchard N, Quadrado M, Dargel- Graffin C, Nogué F, Mireau H. The pentatricopeptide repeat protein MTSF2 stabilizes aprecursor transcript and defines the 3' end of its 5' -half intron., 2017, 45(10): 6119–6134.
[54] Ha?li N, Arnal N, Quadrado M, Amiar S, Tcherkez G, Dahan J, Briozzo P, des Francs-Small CC, Vrielynck N, Mireau H. The pentatricopeptide repeat MTSF1 protein stabilizes themRNA inmitochondria., 2013, 41(13): 6650–6663.
[55] Zhang YF, Suzuki M, Sun F, Tan BC. The Mitochondrion- Targeted PENTATRICOPEPTIDE REPEAT78 protein is required formature mRNA stability and seed development in maize., 2017, 10(10): 1321– 1333.
[56] Zhang L, Zhou W, Che LP, Rochaix JD, Lu CM, Li WJ, Peng LW. PPR Protein BFA2 is essential for the accumulation of thetranscript in chloroplasts., 2019, 10: 446.
[57] Hanson MR, Bentolila S. Interactions of mitochondrial and nuclear genes that affect male gametophyte deve-lopment., 2004, 16Suppl(Suppl): S154– S169.
[58] Dahan J, Mireau H. The Rf and Rf-like PPR in higher plants, a fast-evolving subclass of PPR genes., 2013, 10(9): 1469–1476.
[59] Bentolila S, Alfonso AA, Hanson MR. A pentatrico-peptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants., 2002, 99(16): 10887–10892.
[60] Brown GG, Formanová N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang JF, Cheung WY, Landry BS. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple penta-tricopeptide repeats., 2003, 35(2): 262–272.
[61] Klein RR, Klein PE, Mullet JE, Minx P, Rooney WL, Schertz KF. Fertility restorer locusof sorghum (L) encodes a pentatrico-peptide repeat protein not present in the colinear region of rice chromosome 12., 2005, 111(6): 994–1012.
[62] Komori T, Ohta S, Murai N, Takakura Y, Kuraya Y, Suzuki S, Hiei Y, Imaseki H, Nitta N. Map-based cloning of a fertility restorer gene,, in rice (L)., 2004, 37(3): 315–325.
[63] Wang ZH, Zou YJ, Li XY, Zhang QY, Chen LT, Wu H, Su DH, Chen YL, Guo JX, Luo D, Long YM, Zhong Y, Liu YG. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing., 2006, 18(3): 676–687.
[64] H?lzle A, Jonietz C, T?rjek O, Altmann T, Binder S, Forner J. A RESTORER OF FERTILITY-like PPR gene is required for 5'-end processing of themRNA in mitochondria of., 2011, 65(5): 737–744.
[65] Jonietz C, Forner J, H?lzle A, Thuss S, Binder S. RNA PROCESSING FACTOR2 is required for 5' end processing ofandmRNAs in mitochondria of., 2010, 22(2): 443–453.
[66] Jonietz C, Forner J, Hildebrandt T, Binder S. RNA PROCESSING FACTOR3 is crucial for the accumula-tion of maturetranscripts in mitochondria ofaccession Columbia., 2011, 157(3): 1430–1439.
[67] Hauler A, Jonietz C, Stoll B, Stoll K, Braun HP, Binder S. RNA processing factor 5 is required for efficient 5' cleavage at a processing site conserved in RNAs of three different mitochondrial genes in., 2013, 74(4): 593–604.
[68] Hashimoto M, Endo T, Peltier G, Tasaka M, Shikanai T. A nucleus-encoded factor, CRR2, is essential for the expression of chloroplastin., 2003, 36(4): 541–549.
[69] Okuda K, Chateigner-Boutin AL, Nakamura T, Delannoy E, Sugita M, Myouga F, Motohashi R, Shinozaki K, Small I, Shikanai T. Pentatricopeptide repeat proteins with the DYW motif have distinct molecular functions in RNA editing and RNA cleavage inchloroplasts., 2009, 21(1): 146–156.
[70] Liu S, Melonek J, Boykin L M, Small I, Howell KA. PPR-SMRs: ancient proteins with enigmatic functions., 2013, 10(9): 1501–1510.
[71] Zhou W, Lu QT, Li QW, Wang L, Ding SH, Zhang AH, Wen XG, Zhang LX, Lu CM. PPR-SMR protein SOT1 has RNA endonuclease activity., 2017, 114(8): E1554–E1563.
[72] Zoschke R, Watkins KP, Miranda RG, Barkan A. The PPR-SMR protein PPR53 enhances the stability and translation of specific chloroplast RNAs in maize., 2016, 85(5): 594–606.
[73] Hazle T, Bonen L. Comparative analysis of sequences preceding protein-coding mitochondrial genes in flowering plants., 2007, 24(5): 1101–1112.
[74] Manavski N, Guyon V, Meurer J, Wienand U, Brettschneider R. An essential pentatricopeptide repeat protein facilitates 5' maturation and translation initiation ofmRNA in maize mitochondria., 2012, 24(7): 3087–3105.
[75] Yan JJ, Zhang QX, Yin P. RNA editing machinery in plant organelles., 2018, 61(2): 162– 169.
[76] Walbot V. RNA editing fixes problems in plant mito-chondrial transcripts., 1991, 7(2): 37–39.
[77] Small ID, Schallenberg-Rudinger M, Takenaka M, Mireau H, Ostersetzer-Biran O. Plant organellar RNA editing: what 30 years of research has revealed., 2020, 101(5): 1040–1056.
[78] Corneille S, Lutz K, Maliga P. Conservation of RNA editing between rice and maize plastids: are most editing events dispensable?, 2000, 264(4): 419–424.
[79] Li XJ, Zhang YF, Hou MM, Sun F, Shen Y, Xiu ZH, Wang XM, Chen ZL, Sun SSM, Small I, Tan BC.encodes a pentatricopeptide repeat protein required for mitochondrialtranscript editing and seed development in maize () and rice ()., 2014, 79(5): 797–809.
[80] Wang HC, Sayyed A, Liu XY, Yang YZ, Sun F, Wang Y, Wang MD, Tan BC. SMALL KERNEL4 is required for mitochondrialtranscript editing and seed development in maize., 2020, 62(6): 777–792.
[81] Liu YJ, Xiu ZH, Meeley R, Tan BC.encodes a pentatricopeptide repeat protein that is required for mitochondrial RNA editing and seed development in maize., 2013, 25(3): 868– 883.
[82] Sun F, Wang XM, Bonnard G, Shen Y, Xiu ZH, Li XJ, Gao DH, Zhang ZH, Tan BC.encodes a mitochondrial E-subgroup pentatricopeptide repeat protein that is required forediting, mitochondrial function and seed development in maize., 2015, 84(2): 283–295.
[83] Yang YZ, Ding S, Wang HC, Sun F, Huang WL, Song S, Xu CH, Tan BC. The pentatricopeptide repeat protein EMP9 is required for mitochondrialandtranscript editing, mitochondrial complex biogenesis and seed development in maize., 2017, 214(2): 782–795.
[84] Li XL, Huang WL, Yang HH, Jiang RC, Sun F, Wang HC, Zhao J, Xu CH, Tan BC. EMP18 functions in mitochondrialandtranscript editing and is essential to seed development in maize., 2019, 221(2): 896–907.
[85] Qi WW, Tian ZR, Lu L, Chen XZ, Chen XZ, Zhang W, Song RT. Editing of mitochondrial transcriptsandby Dek10 is essential for mitochondrial function and maize plant development., 2017, 205(4): 1489–1501.
[86] Li XJ, Gu W, Sun SL, Chen ZL, Chen J, Song WB, Zhao HM, Lai JS.encodes a PPR protein required for seed development in maize., 2018, 60(1): 45–64.
[87] Ding S, Liu XY, Wang HC, Wang Y, Tang JJ, Yang YZ, Tan BC. SMK6 mediates the C-to-U editing at multiple sites in maize mitochondria., 2019, 240: 152992.
[88] Wang Y, Liu XY, Yang YZ, Huang J, Sun F, Lin JS, Gu ZQ, Sayyed A, Xu CH, Tan BC.encodes a novel PPR-DYW protein that is required for mitochondrial RNA editing at multiple sites, complexes I and V biogenesis, and seed development in maize., 2019, 15(8): e1008305.
[89] Doniwa Y, Ueda M, Ueta M, Wada A, Kadowaki KI, Tsutsumi N. The involvement of a PPR protein of the P subfamily in partial RNA editing of anmitochondrial transcript., 2010, 454(1–2): 39–46.
[90] Boussardon C, Salone V, Avon A, Berthomé R, Hammani K, Okuda K, Shikanai T, Small I, Lurin C. Two interacting proteins are necessary for the editing of thesite inplastids., 2012, 24(9): 3684–3694.
[91] Okuda K, Myouga F, Motohashi R, Shinozaki K, Shikanai T. Conserved domain structure of pentatrico-peptide repeat proteins involved in chloroplast RNA editing., 2007, 104(19): 8178–8183.
[92] Sung TY, Tseng CC, Hsieh MH. The SLO1 PPR protein is required for RNA editing at multiple sites with similar upstream sequences inmitochon-dria., 2010, 63(3): 499–511.
[93] Verbitskiy D, van der Merwe JA, Zehrmann A, H?rtel B, Takenaka M. The E-class PPR protein MEF3 ofcan also function in mitochondrial RNA editing with an additional DYW domain., 2012, 53(2): 358–367.
[94] Okuda K, Chateigner-Boutin AL, Nakamura T, Delannoy E, Sugita M, Myouga F, Motohashi R, Shinozaki K, Small I, Shikanai T. Pentatricopeptide repeat proteins with the DYW motif have distinct molecular functions in RNA editing and RNA cleavage inchloroplasts., 2009, 21(1): 146–156.
[95] Okuda K, Hammani K, Tanz SK, Peng LW, Fukao Y, Myouga F, Motohashi R, Shinozaki K, Small I, Shikanai T. The pentatricopeptide repeat protein OTP82 is required for RNA editing of plastidandtranscripts., 2010, 61(2): 339–349.
[96] Hammani K, Okuda K, Tanz SK, Chateigner-Boutin AL, Shikanai T, Small I. A study of newchloroplast RNA editing mutants reveals general features of editing factors and their target sites., 2009, 21(11): 3686–3699.
[97] Zehrmann A, Van Der Merwe J, Verbitskiy D, H?rtel B, Brennicke A, Takenaka M. The DYW-class PPR protein MEF7 is required for RNA editing at four sites in mitochondria of., 2012, 9(2): 155–161.
[98] Takenaka M. MEF9, an E-subclass pentatricopeptide repeat protein, is required for an RNA editing event in thetranscript in mitochondria of., 2010, 152(2): 939–947.
[99] Verbitskiy D, H?rtel B, Zehrmann A, Brennicke A, Takenaka M. The DYW-E-PPR protein MEF14 is required for RNA editing at site-1895 in mitochondria of., 2011, 585(4): 700–704.
[100] Kim SR, Yang JI, Moon S, Ryu CH, An K, Kim KM, Yim J, An G. Rice OGR1 encodes a pentatricopeptide repeat-DYW protein and is essential for RNA editing in mitochondria., 2009, 59(5): 738–749.
[101] Toda T, Fujii S, Noguchi K, Kazama T, Toriyama K. Rice MPR25 encodes a pentatricopeptide repeat protein and is essential for RNA editing oftranscripts in mitochondria., 2012, 72(3): 450–460.
[102] Zhang ZG, Cui XA, Wang YW, Wu JX, Gu XF, Lu TG. The RNA editing factor WSP1 is essential for chloroplast development in rice., 2017, 10(1): 86–98.
[103] Rugen N, Straube H, Franken LE, Braun HP, Eubel H. Complexome profiling reveals association of PPR proteins with ribosomes in the mitochondria of plants., 2019, 18(7): 1345–1362.
[104] Chateigner-Boutin AL, Hanson MR. Developmental co-variation of RNA editing extent of plastid editing sites exhibiting similar-elements., 2003, 31(10): 2586–2594.
[105] Yan JJ, Zhang QX, Guan ZY, Wang Q, Li L, Ruan FY, Lin RC, Zou TT, Yin P. MORF9 increases the RNA-binding activity of PLS-type pentatricopeptide repeat protein in plastid RNA editing., 2017, 3: 17037.
[106] Cheng SF, Gutmann B, Zhong X, Ye YT, Fisher MF, Bai FQ, Castleden I, Song Y, Song B, Huang JY, Liu X, Xu X, Lim BL, Bond CS, Yiu SM, Small I. Redefining the structural motifs that determine RNA binding and RNA editing by pentatricopeptide repeat proteins in land plants., 2016, 85(4): 532–547.
[107] Barkan A, Rojas M, Fujii S, Yap A, Chong YS, Bond CS, Small I. A combinatorial amino acid code for RNA recognition by pentatricopeptide repeat proteins., 2012, 8(8): e1002910.
[108] Petricka JJ, Clay NK, Nelson TM. Vein patterning screens and the defectively organized tributaries mutants in., 2008, 56(2): 251–263.
[109] Chateigner-Boutin AL, Ramos-Vega M, Guevara-García A, Andrés C, De La Luz Gutiérrez-Nava M, Cantero A, Delannoy E, Jiménez LF, Lurin C, Small I, León P. CLB19, a pentatricopeptide repeat protein required for editing ofandchloroplast transcripts., 2008, 56(4): 590–602.
[110] Zhou WB, Cheng YX, Yap A, Chateigner-Boutin AL, Delannoy E, Hammani K, Small I, Huang JR. The Arabidopsis geneencoding a DYW protein is required for editing oftranscripts and the rapid development of chloroplasts during early growth., 2009, 58(1): 82–96.
[111] Mei C, Jiang SC, Lu YF, Wu FQ, Yu YT, Liang S, Feng XJ, Comeras SP, Lu K, Wu Z, Wang XF, Zhang DP.pentatricopeptide repeat protein SOAR1 plays a critical role in abscisic acid signalling., 2014, 65(18): 5317–5330.
[112] Millar AH, Whelan J, Soole KL, Day DA. Organization and regulation of mitochondrial respiration in plants., 2011, 62: 79–104.
[113] Lee CP, Taylor NL, Millar AH. Recent advances in the composition and heterogeneity of themitochondrial proteome., 2013, 4: 4.
[114] Zhu CG, Jin GP, Fang P, Zhang Y, Feng XZ, Tang YP, Qi WW, Song RT. Maize pentatricopeptide repeat protein DEK41 affects-splicing of mitochondrialintron 3 and is required for normal seed development., 2019, 70(15): 3795–3808.
[115] Ren RC, Lu XD, Zhao YJ, Wei YM, Wang LL, Zhang L, Zhang WT, Zhang CY, Zhang XS, Zhao XY. Penta-tricopeptide repeat protein DEK40 is required for mitochondrial function and kernel development in maize., 2019, 70(21): 6163–6179.
[116] Hirst J. Mitochondrial complex I., 2013, 82: 551–575.
[117] Noctor G, De Paepe R, Foyer CH. Mitochondrial redox biology and homeostasis in plants., 2007, 12(3): 125–134.
[118] Hao YY, Wang YL, Wu MM, Zhu XP, Teng X, Sun YL, Zhu JP, Zhang YY, Jing RN, Lei J, Li JF, Bao XH, Wang CM, Wang YH, Wan JM. The nuclear-localized PPR protein OsNPPR1 is important for mitochondrial function and endosperm development in rice., 2019, 70(18): 4705–4720.
[119] Wu J, Sun YF, Zhao YN, Zhang J, Luo L, Li M, Wang JL, Yu H, Liu GF, Yang LS, Xiong GS, Zhou JM, Zuo JR, Wang YH, Li JY. Deficient plastidic fatty acid synthesis triggers cell death by modulating mitochondrial reactive oxygen species., 2015, 25(5): 621– 633.
[120] Young TE, Gallie DR. Regulation of programmed cell death in maize endosperm by abscisic acid., 2000, 42(2): 397–414.
[121] Young TE, Gallie DR, Demason DA. Ethylene-mediated programmed cell death during maize endosperm development of wild-type andgenotypes., 1997, 115(2): 737–751.
[122] Hahn A, Vonck J, Mills DJ, Meier T, Kühlbrandt W. Structure, mechanism, and regulation of the chloroplast ATP synthase., 2018, 360(6389): eaat4318.
[123] Ding YH, Liu NY, Tang ZS, Liu J, Yang WC.is essential for early embryogenesis and encodes a novel nuclear PPR motif protein that interacts with RNA polymerase II subunit III., 2006, 18(4): 815–830.
[124] Hammani K, Gobert A, Hleibieh K, Choulier L, Small I, Giegé P. Andual-localized pentatrico-peptide repeat protein interacts with nuclear proteins involved in gene expression regulation., 2011, 23(2): 730–740.
[125] Martín-Trillo M, Cubas P. TCP genes: a family snapshot ten years later., 2010, 15(1): 31–39.
[126] Mei C, Jiang SC, Lu YF, Wu FQ, Yu YT, Liang S, Feng XJ, Comeras SP, Lu K, Wu Z, Wang XF, Zhang DP.pentatricopeptide repeat protein SOAR1 plays a critical role in abscisic acid signalling., 2014, 65(18): 5317–5330.
The role of PPR proteins in posttranscriptional regulation of organelle components in plants
Yuanyuan Hao, Xiangqian Zhao, Fudeng Huang, Chunshou Li
Pentatricopeptide repeat (PPR) proteins constitute one of the largest protein families in land plants. They are sequence-specific RNA-binding proteins and play key roles in posttranscriptional processes within organelles. Their combined actions have profound effects on chloroplast photosynthetic electron transport chain and mitochondrial respiratory chain, affecting photosynthesis and respiration respectively, and ultimately on yield, fertility, and grain quality. Over the past decade, much has been learned about the molecular functions of these proteins on plant growth and development. However, due to the large size of this protein family, the functions of most membersremain largely unknown.Here, we summarize the molecular mechanisms of PPR proteins functions on organelle genes, and effects on development of organelles and plants. Problems that need to be resolved are also identified. This article will provide a theoretical basis for understanding the functions of PPR protein family and genetic improvements of grain yield and quality.
PPR proteins; post-transcriptional regulation; organelle metabolism; plant growth and development
2021-06-30;
2021-08-20
國(guó)家自然科學(xué)基金項(xiàng)目(編號(hào):32001524)資助[Supported by the National Natural Science Foundation of China (No. 32001524)]
郝媛媛,博士,助理研究員,研究方向:稻米品質(zhì)的改良和分子機(jī)理。E-mail: 499085663@qq.com
李春壽,學(xué)士,研究員,研究方向:秈型雜交稻的選育。E-mail: lichunshou@126.com
10.16288/j.yczz.21-233
2021/10/26 17:08:41
URI: https://kns.cnki.net/kcms/detail/11.1913.R.20211026.1131.002.html
(責(zé)任編委: 宋任濤)