• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Oxygen vacancy control of electrical,optical,and magnetic properties of Fe0.05Ti0.95O2 epitaxial films*

    2021-11-23 07:31:34QingTaoXia夏清濤ZhaoHuiLi李召輝LeQingZhang張樂清FengLingZhang張鳳玲XiangKunLi李祥琨HengJunLiu劉恒均FangChaoGu顧方超TaoZhang張濤QiangLi李強andQingHaoLi李慶浩
    Chinese Physics B 2021年11期
    關(guān)鍵詞:劉恒樂清張濤

    Qing-Tao Xia(夏清濤), Zhao-Hui Li(李召輝), Le-Qing Zhang(張樂清),Feng-Ling Zhang(張鳳玲), Xiang-Kun Li(李祥琨), Heng-Jun Liu(劉恒均),Fang-Chao Gu(顧方超), Tao Zhang(張濤), Qiang Li(李強), and Qing-Hao Li(李慶浩)

    College of Physics,University-Industry Joint Center for Ocean Observation and Broadband Communication,Qingdao University,Qingdao 266071,China

    Keywords: ferromagnetic materials,semiconductors,epitaxial films,rutile TiO2

    1. Introduction

    Dilute magnetic semiconductors (DMSs) have been extensively studied in the past decades, because they provide a promising method to inject spin polarized carriers into non-magnetic semiconductors.[1-11]The strong interaction between carriers and transition metal dopants enables synergetic use of both charge and spin degrees of freedom in one substance, which provides potential applications in spindependent electronics.[12-19]However,practical spintronic devices require DMS to have high Curie temperature (above room temperature (RT)), high spin polarization, intrinsic ferromagnetic origin and compatibility with semiconductor techniques. In order to realize RT DMS, various wide band gap oxides and nitrides have been extensively studied[20-32]based on the theoretical prediction by Dietl.[33]Particularly,3d transition-metal-doped TiO2has been considered as one of the most promising candidates, for it possesses RT ferromagnetism, excellent transparency, stability, high n-type carrier mobility and low cost.[27,32-35]

    Since the discovery of RT ferromagnetism in Co-doped TiO2,[34]large numbers of studies of TiO2-based DMS have been performed so far.[2,27,36,37]RT ferromagnetism has been reported in 3d transition-metal-doped TiO2in rutile, anatase and even amorphous phase; however, the origin of ferromagnetism remains controversial.[2,37,38]While most of researches support the intrinsic nature of ferromagnetism(FM)mediated by carriers or defects, some reports claimed that the segregation and formation of transition metal clusters or defects contribute to the FM signal.[39]In order to investigate fundamental properties and clarify inner mechanism of magnetic coupling, single crystal Fe:TiO2thin films are more favorable for the research. However, in the deposited thin films,the effects of lattice mismatch strain and interfacial dislocation between thin film and the substrate play an important role in determining the crystallinity, microstructure, and physics properties. Up to now, most of studies on TiO2-based DMS have been performed on Si,MgO,LaAlO3,SrTiO3,or Al2O3substrates;[36,40-43]either tensile strain or compressive strain can be introduced into the thin film,depending on lattice mismatch type. Notably, the strain effect can be utilized to tailor or optimize the properties of DMS thin films and help understand the interaction mechanism between charge carriers and magnetic impurity ions,even though a systematic and thorough understanding of strain effect is still unavailable and challenging.[41,42]

    Rutile MgF2(a=4.62 ?A,b=4.62 ?A,c=3.051 ?A)has the same crystal structure as quite small lattice mismatch with rutile TiO2(a=4.593 ?A,b=4.593 ?A,c=2.959 ?A),as a result, MgF2is expected to be a most appropriate substrate for the epitaxial growth of rutile TiO2, which has been seldom utilized.[44]In this work, high-quality thin films of 5% Fedoped rutile TiO2were epitaxially grown on MgF2substrates by the pulsed laser deposition (PLD). The structural, optical,magnetic and transport properties of deposited films were investigated systematically.Structural analyses obtained from xray diffraction(XRD),Raman spectra,and transmission electron microscopy(TEM)proved that they are pure rutile phase epitaxial films of TiO2,and had no impurity clusters detected.The UV-visible(UV-vis)transmittance study is characterized to infer the substitution of Fe in TiO2lattice corresponding to the band gap shift. The RT ferromagnetism and the variation in magnetization with deposition oxygen pressure are characterized by alternative gradient magnetometer(AGM).The RT FM and its oxygen pressure dependence is discussed with reference to the role of oxygen vacancy doping in TiO2lattice.These experimental results indicated that the oxygen vacancy doping concentration has a great influence on the FM behavior and band gap shift. This work demonstrates the potential applications of Fe-doped TiO2on MgF2substrates.

    2. Materials and methods

    The stoichiometric target was synthesized by standard solid state reaction of high-purity Fe2O3and TiO2(99.99%)powders. The well ground powder was compressed into pellet with a radius of 4 cm and a thickness of 1 cm. Then the target was sintered at 1300°C for 10 h. Considering the solubility limit of transition metal elements in TiO2lattice structure,here the magnetic dopant ion concentration was selected to be 5%, thus making the target a stoichiometric material Fe0.05Ti0.95O2. The Ablation of the ceramic target was carried out using a KrF excimer laser(λ=248 nm)with 300-mJ pulse at a repetition rate of 2 Hz.[36,43]Prior to the deposition, the MgF2substrate was ultrasonically cleaned in acetone and rinsed in ethanol. The temperature during growth of the films was maintained to be at 600°C while the atmosphere varied under poor oxygen condition (5.0×10?5Pa,9.0×10?5Pa, 1.4×10?4Pa, and 3.0×10?4Pa, denoted as Fe:TiO2(5.0×10?5Pa), Fe:TiO2(9.0×10?5Pa), Fe:TiO2(1.4×10?4Pa),Fe:TiO2(3.0×10?4Pa)respectively). Prior to film deposition, a buffer layer deposition of Fe:TiO2at 600°C and 0.5 Pa was carried out to improve the crystallization of subsequent epitaxial layer. After the deposition,the samples were cooled down to room temperature under the same oxygen pressure as film growth.

    The crystal structure of the obtained films was characterized by XRD (PG Instruments Ltd., Beijing, China) with CuKαradiation(λ=0.15406 nm)and Raman scattering spectra ranging from 100 cm?1to 1000 cm?1(NEXUS 670,Thermo Nicolet Co.,USA).High-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction(SAED)were employed to study the cross section microstructure of the interface with a Tecnai F30 transmission electron microscope operated at 300 kV.The optical transmittance measurements were performed using UV-vis spectrophotometer in a wavelength range from 200 nm to 800 nm(TU-1900,PG Instruments,Ltd.).The magnetic properties of the samples were measured by using an alternative gradient magnetometer (Micro Mag TM 2900, Prince-ton Measurement Corporation). Transport parameters (carrier concentration, resistivity and Hall mobility)were characterized by Hall effect with typical Van der Pauw configuration using a Keithley 2400 source meter. All the measurements were performed at room temperature.

    3. Results and discussion

    Theθ-2θXRD patterns of 5% Fe-doped TiO2epitaxial films on MgF2(110)substrates are shown in Fig.1 in log scale. The XRD patterns reveal only peaks due to rutile TiO2as well as those due to MgF2substrate. The Fe-doped TiO2thin films are preferentially oriented in the(110)direction,in accordance with the(110)substrate utilized in this case. The inset in Fig.1 shows the enlarged XRD pattern in the 2θrange of 56.1°-57.6°. The peak separation between TiO2(220)and MgF2(220) is about 0.16°. The full width at half maximum(FWHM) of TiO2(220) is about 0.12°, as highlighted in the inset of Fig. 1 from two-peak fitting, which is comparable to that of single crystal MgF2substrate with an FWHM value of about 0.15°. The high-quality crystallization of the thin film comes from the small lattice mismatch between MgF2substrate and rutile TiO2.[39]The XRD pattern of MgF2substrate is also added for comparison,and neither secondary phase nor impurity forming is detected within the resolution limits of XRD,which implies the successful incorporation of substituting Fe cations into rutile TiO2lattice.

    Fig. 1. XRD patterns of Fe:TiO2 thin films deposited on MgF2 substrates at various oxygen pressures,obtained by PLD(in log scale),with XRD pattern of MgF2 substrate added here for comparison, and inset showing the enlarged region from 56.1°to 57.6°(in normal scale).Well separated MgF2 (220)and TiO2 (220)can be seen.

    Raman spectrum is one of the most effective tools for the study of crystallinity,defects structure associated with the materials. Figure 2 presents the Raman spectra of Fe-doped TiO2thin films at various oxygen pressures in a range of 100 cm?1-1000 cm?1. Rutile is tetragonal and belongs to the space group(P42/mnm)with two TiO2molecules per unit cell. The first-order Raman spectrum of single crystal rutile TiO2shows four Raman active fundamental modes: B1g(143 cm?1), Eg(447 cm?1), A1g(612 cm?1), and B2g(826 cm?1). Furthermore, the Raman spectra of rutile exhibit the intense secondorder scattering feature.[45-47]In the Fe-doped TiO2thin film the main feature is the Egmode and the A1gmode, and the next feature is the second-order peaks centered at 241.5 cm?1and 718.1 cm?1. Note that the main feature of Fe-doped TiO2thin films is well consistent with that of pure rutile TiO2reference spectrum. In addition,two spiky peaks centered at about 297.8 cm?1and 415.2 cm?1can be attributed to MgF2substrate in our case, which can be well aligned with the reference spectrum of MgF2substrate. Reference spectra of pure hematite Fe2O3and magnetite Fe3O4are added in Fig. 2 for the peak alignment.These components are typical iron oxides,which may well emerge as secondary phases in the system.However, neither characteristic vibration modes of hematite Fe2O3nor magnetite Fe3O4can be found in the Raman spectra of Fe-doped TiO2, which clearly indicates successful Fe incorporation into the host TiO2lattice instead of forming secondary phases.

    Fig. 2. Raman spectra of Fe:TiO2 thin films deposited on MgF2 substrates at various oxygen pressures, with e reference spectra of MgF2 substrate,pure rutile TiO2,hematite Fe2O3,and magnetite Fe3O4 added for detailed assign of each Raman peak.

    Results from the cross sectional HRTEM image of Fedoped TiO2film (1.4×10?4Pa) near the interface region is shown in Fig. 3(a). The thin film has a thickness of around 30 nm and the incident electron beam is parallel to the [001]direction of the MgF2substrate and Fe-doped TiO2film. It is obvious that well-ordered single crystal film is epitaxially grown on the MgF2substrate oriented in the (110) direction,with an out-of-plane lattice parameter of 0.319 nm and an inplane lattice parameter of 0.335 nm. The hetero interface between Fe-doped TiO2film and MgF2substrate indicated by arrows is indistinct.[44]Typical selected area electron diffraction pattern(SEAD)obtained from corresponding interface region is shown in Fig.3(b). The fourfold symmetry reveals the tetragonal structure of TiO2and MgF2. It is clear that there are no extra spots or splitting of reflections but only (001)zone axis pattern. Further analysis from the HRTEM and the SAED analysis indicate that the deposited thin film on MgF2substrate is of single crystalline rutile phase,with an epitaxial relationship of (110)[-110] TiO2‖(110)[-110] MgF2, which originates from the small lattice mismatch between TiO2and MgF2substrate. These features confirm the high-quality and perfect epitaxy of Fe-doped TiO2thin film on MgF2substrate in the rutile phase,consistent with the XRD and Raman spectra.

    Fig.3. (a)Cross section TEM image of interface between Fe:TiO2 thin film and MgF2 substrate viewed in the[001]direction;(b)selected area electron diffraction patterns for Fe-doped TiO2 film on MgF2 substrate.

    Figure 4 shows the room temperature UV-vis transmittance spectra of Fe-doped TiO2thin films deposited at varying growth oxygen pressures. Note that MgF2substrate shows a large transmittance of above 95% in the region of 200 nm-600 nm, hence the spectra here present mostly the intrinsic features of the deposited DMS thin films. In general,all the films are well transparent in the visible light region from 200 nm to 600 nm in our case, with an average transmittance of about 50%. Strong light absorption appears at about 320 nm due to the transition from the valence band top to conduction band bottom. The corresponding optical band gap can be determined from absorption coefficient and photon energy[48-51]and can be directly visualized from the absorption edge shift. Note that with the increase of growth oxygen pressure,the absorption edge shifts to longer wavelength and the corresponding band gaps of all samples decrease monotonically. The narrowing of band gap with the increase of oxygen pressure has been previously reported in deposited TiO2thin films.[52,53]Such a red shift can be explained as being mainly due to the band shift from the shallow donor level of oxygen non-stoichiometry under lower oxygen pressure, meanwhile the slight crystallization evolution and parental lattice variation may play a significant part.[52,53]

    The magnetic properties of Fe-doped TiO2thin films are investigated by using AGM at room temperature,with external magnetic field being perpendicular to the film surface. Distinct ferromagnetic behaviors can be observed in all the films as shown in Fig. 5. Note that with the increase of deposition oxygen pressure,the saturation magnetization of thin film decreases monotonically from 25 emu/cm3to 7 emu/cm3as shown in the inset of Fig. 5. Considering a constant transition metal dopant concentration of 5% and the flourishing of oxygen vacancy under a lower growth oxygen pressure, the monotonic decrease of saturation magnetization implies the strong correlation between ferromagnetic coupling effect and the oxygen deficiency lattice.

    Fig.4. Ultraviolet-visible transmittance spectra of epitaxial TiO2 films deposited on MgF2 substrates at different oxygen pressures,where absorption edge shows monotonic shift to larger wavelength with oxygen pressure increasing.

    Fig. . Magnetic hysteresis loops of Fe-doped TiO2 thin film on MgF2 substrates at different growth oxygen pressures,where inset shows saturation magnetization of Fe-doped TiO2 film at growth oxygen pressure.The unit 1 Oe=79.5775 A·m?1.

    In order to clarify the origin of ferromagnetic property of Fe-doped TiO2thin film on MgF2substrate, Hall effect characterization is employed to study the transport properties of corresponding films.The results of film resistivity,carrier concentration and mobility are shown in Figs. 6(a)-6(c), respectively. Note that with the increase of growth oxygen pressure,film resistivity increases almost linearly from 0.1 Ω/cm to 4.6 Ω/cm,while the measured carrier concentration decreases significantly. Meanwhile the carrier mobility keeps almost constant,specifically it slightly increases with growth oxygen pressure rising. The low resistivity and high carrier concentration demonstrate the potential applications of the films in semiconductor devices.

    Fig. 6. Transport properties of Fe:TiO2 thin film on MgF2 substrate,showing variation of its(a)resistivity,(b)carrier concentration,and(c)mobility with oxygen pressure.

    Considering the relatively low doping concentration of transition metal cations of 5%, which is far below the percolation threshold, traditional double exchange or super exchange model cannot explain the strong FM in this material.In the DMS system, bounded magnetic polaron (BMP) scenario is widely accepted to explain the FM.[54-56]The exchange interaction between localized magnetic cations and itinerant sp electrons, if it once percolates throughout the entire film, may well lead to the experimental detected macroscopic RT FM. Besides the magnetic properties, Chouet al.further proposed a modified BMP model to include the correlation between electric transport and magnetic properties in DMS.[57]The modified BMP model can be utilized to explain the magnetic coupling in this system. As the concentration of oxygen vacancies increases, the number of BMP spheres increases.. Meanwhile, the increase of carrier concentration also enlarges the radius of BMP sphere.[36]These correlated factors brings about the phenomenal FM string enhancement on Fe-doped TiO2film deposited on MgF2substrate with the decrease of growth oxygen pressure.In previous research,secondary phase formation has been proposed as another possible origin of RTFM in a typical DMS system.[40]Based on our structural characterizations, no foreign phase formation is detected to the resolution limit, particularly magnetic active hematite and magnetite phases can be excluded in Raman spectra. The correlation between oxygen pressure and optical,magnetic,transport properties further implies single phase Fe-doped TiO2as the origin of intrinsic multifunctional properties. The integrating of multifunction properties into one system provides promising potential for future applications in multifunctional electronic devices.

    4. Conclusions

    In this work, 5%-Fe-doped TiO2thin films in rutile phase are epitaxially deposited on MgF2substrate by the PLD method. The small mismatch between rutile TiO2and MgF2substrate determines the high crystalline quality of DMS films,which is demonstrated by XRD,Raman spectra,and HRTEM.The deposition oxygen pressure plays an important role in determining the optical,transport,and magnetic properties. Optical band gap, carrier concentration, and magnetization can be well dependent on the oxygen deficiency atmosphere. The RT FM observed in all the DMS films shows that it is strongly correlated with the carrier concentration introduced by oxygen vacancy, which can be explained by a modified BMP model.This work demonstrates the high-quality Fe-doped TiO2DMS film deposited on MgF2substrate,which is required for potential applications in magneto-optical and magneto-electric devices,and also for fundamental study of DMS coupling mechanism.

    猜你喜歡
    劉恒樂清張濤
    張濤書法作品
    冰城“方艙”開建!
    Integrated silicon-based suspended racetrack micro-resonator for biological solution sensing with high-order mode*
    Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition*
    第二十屆樂清模具設(shè)備塑機工業(yè)自動化展圓滿落幕
    模具制造(2019年4期)2019-12-29 05:18:58
    莫讓語文空對月
    周樂清戲曲活動及交游考
    中華戲曲(2016年2期)2016-01-22 08:19:09
    樂清灣海洋生態(tài)系統(tǒng)服務(wù)價值評估
    Analysis of the Rupture of Sino—Soviet Alliance
    科技視界(2015年9期)2015-04-07 11:07:33
    《怪誕星期五》
    av在线天堂中文字幕| 老女人水多毛片| 亚洲国产精品999| 欧美三级亚洲精品| 99热网站在线观看| 一个人观看的视频www高清免费观看| 人妻系列 视频| 久久久a久久爽久久v久久| 国产精品.久久久| 2022亚洲国产成人精品| 噜噜噜噜噜久久久久久91| 一区二区三区四区激情视频| 亚洲精品中文字幕在线视频 | 国产精品精品国产色婷婷| 日韩亚洲欧美综合| 青春草视频在线免费观看| 色网站视频免费| 少妇被粗大猛烈的视频| 91久久精品国产一区二区成人| 99热这里只有是精品在线观看| 美女被艹到高潮喷水动态| 黄色日韩在线| 七月丁香在线播放| 一二三四中文在线观看免费高清| 精品99又大又爽又粗少妇毛片| 高清视频免费观看一区二区| 成人黄色视频免费在线看| 亚洲最大成人av| 国产 精品1| 国产日韩欧美在线精品| 久久精品国产亚洲av涩爱| 成人亚洲欧美一区二区av| .国产精品久久| 成人毛片60女人毛片免费| av在线蜜桃| 精品国产露脸久久av麻豆| 国产爱豆传媒在线观看| 成人黄色视频免费在线看| 国产欧美亚洲国产| 久久久色成人| 精品人妻熟女av久视频| 成人亚洲精品av一区二区| 黄色怎么调成土黄色| 一级a做视频免费观看| 国产av不卡久久| 超碰av人人做人人爽久久| 亚洲无线观看免费| 国产成人精品一,二区| 国产色婷婷99| 国产伦精品一区二区三区四那| av在线亚洲专区| 成年女人在线观看亚洲视频 | 91aial.com中文字幕在线观看| 一区二区三区精品91| 在线观看一区二区三区| 18禁裸乳无遮挡动漫免费视频 | 国产毛片在线视频| 一个人看视频在线观看www免费| 99re6热这里在线精品视频| 黄色一级大片看看| 亚洲第一区二区三区不卡| 国内少妇人妻偷人精品xxx网站| 久久国产乱子免费精品| 免费av毛片视频| 青春草亚洲视频在线观看| 日韩欧美精品免费久久| 午夜精品一区二区三区免费看| av.在线天堂| 国产精品国产三级国产av玫瑰| 18禁在线无遮挡免费观看视频| 午夜精品国产一区二区电影 | 丰满人妻一区二区三区视频av| 97热精品久久久久久| 内地一区二区视频在线| 亚洲电影在线观看av| 18禁裸乳无遮挡动漫免费视频 | 中文欧美无线码| 嫩草影院新地址| 嘟嘟电影网在线观看| 亚洲欧美日韩东京热| 日韩中字成人| 国产在视频线精品| 99久久精品一区二区三区| 国内少妇人妻偷人精品xxx网站| 欧美少妇被猛烈插入视频| 狂野欧美白嫩少妇大欣赏| 午夜免费男女啪啪视频观看| 97人妻精品一区二区三区麻豆| 日本av手机在线免费观看| 国产一级毛片在线| 最近中文字幕2019免费版| 亚洲av男天堂| 水蜜桃什么品种好| 精品少妇黑人巨大在线播放| 一本色道久久久久久精品综合| 最近手机中文字幕大全| 亚洲三级黄色毛片| 日本与韩国留学比较| 观看美女的网站| 国产精品蜜桃在线观看| 国产精品久久久久久久电影| 一级毛片电影观看| 特大巨黑吊av在线直播| 亚洲欧美一区二区三区黑人 | 爱豆传媒免费全集在线观看| 韩国av在线不卡| 国产探花极品一区二区| 高清日韩中文字幕在线| 51国产日韩欧美| 亚洲欧美成人精品一区二区| 亚洲欧洲国产日韩| 亚洲精品日本国产第一区| 可以在线观看毛片的网站| 午夜日本视频在线| 在线观看免费高清a一片| 国产乱人偷精品视频| 肉色欧美久久久久久久蜜桃 | 欧美人与善性xxx| 黄片wwwwww| 六月丁香七月| av专区在线播放| 91午夜精品亚洲一区二区三区| 中国国产av一级| 亚洲国产成人一精品久久久| 身体一侧抽搐| 午夜免费鲁丝| 国产免费又黄又爽又色| 亚洲成人精品中文字幕电影| 一级毛片我不卡| 女人被狂操c到高潮| 18+在线观看网站| 身体一侧抽搐| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲欧美成人综合另类久久久| 日本wwww免费看| 精品久久久久久久末码| 97精品久久久久久久久久精品| 亚洲不卡免费看| 九九爱精品视频在线观看| 国产 一区 欧美 日韩| 熟女av电影| 日日啪夜夜撸| 综合色av麻豆| 在现免费观看毛片| 欧美高清性xxxxhd video| 国产在线男女| 人人妻人人澡人人爽人人夜夜| 日日啪夜夜爽| 国产v大片淫在线免费观看| 久久精品熟女亚洲av麻豆精品| 成人高潮视频无遮挡免费网站| 国产熟女欧美一区二区| 中文欧美无线码| 国产精品人妻久久久影院| 国产综合精华液| 亚洲欧美一区二区三区国产| 人人妻人人看人人澡| 寂寞人妻少妇视频99o| 免费观看av网站的网址| 国产午夜精品久久久久久一区二区三区| 久久久久久久久大av| 校园人妻丝袜中文字幕| 国产乱来视频区| 在线观看人妻少妇| 国产黄频视频在线观看| 男插女下体视频免费在线播放| 波多野结衣巨乳人妻| 欧美日韩精品成人综合77777| 国模一区二区三区四区视频| 在线播放无遮挡| 26uuu在线亚洲综合色| 婷婷色综合www| 赤兔流量卡办理| 日韩伦理黄色片| 色婷婷久久久亚洲欧美| 亚洲色图av天堂| 少妇的逼好多水| 亚洲成人一二三区av| 高清午夜精品一区二区三区| 91在线精品国自产拍蜜月| 国产日韩欧美亚洲二区| 亚洲自拍偷在线| 久久久久九九精品影院| 久久精品国产亚洲av涩爱| 18禁裸乳无遮挡动漫免费视频 | 欧美精品一区二区大全| 国产免费一区二区三区四区乱码| 色5月婷婷丁香| 日韩制服骚丝袜av| 国产黄色视频一区二区在线观看| 亚洲经典国产精华液单| 中国国产av一级| av黄色大香蕉| 国产精品无大码| 午夜老司机福利剧场| 人妻 亚洲 视频| 黄片wwwwww| 丝袜脚勾引网站| 伊人久久精品亚洲午夜| 亚洲内射少妇av| 美女视频免费永久观看网站| 欧美精品一区二区大全| 性色avwww在线观看| 欧美老熟妇乱子伦牲交| 九色成人免费人妻av| 久久久久久久大尺度免费视频| 免费观看av网站的网址| 在线观看免费高清a一片| 99久久精品一区二区三区| 最新中文字幕久久久久| 久久精品国产亚洲网站| 1000部很黄的大片| 久久午夜福利片| 97超碰精品成人国产| 亚洲av.av天堂| 亚洲精品成人av观看孕妇| .国产精品久久| 激情 狠狠 欧美| 国产在线一区二区三区精| 神马国产精品三级电影在线观看| 免费观看的影片在线观看| 色5月婷婷丁香| 97超视频在线观看视频| 免费看日本二区| 国产有黄有色有爽视频| 女人十人毛片免费观看3o分钟| 亚洲丝袜综合中文字幕| 99热网站在线观看| 午夜精品国产一区二区电影 | 春色校园在线视频观看| 少妇高潮的动态图| 99九九线精品视频在线观看视频| 久热这里只有精品99| 国产一区二区在线观看日韩| 亚洲精品成人av观看孕妇| 国产av码专区亚洲av| 久久人人爽av亚洲精品天堂 | 亚洲欧美精品自产自拍| av卡一久久| 久久亚洲国产成人精品v| 色吧在线观看| 香蕉精品网在线| 麻豆久久精品国产亚洲av| 久久97久久精品| 免费人成在线观看视频色| 黄片wwwwww| 少妇人妻精品综合一区二区| 99视频精品全部免费 在线| 久久人人爽av亚洲精品天堂 | 久久久久久九九精品二区国产| 国产精品久久久久久av不卡| 伊人久久精品亚洲午夜| 欧美性感艳星| 18+在线观看网站| 各种免费的搞黄视频| 亚洲成人一二三区av| 男的添女的下面高潮视频| 69av精品久久久久久| 波多野结衣巨乳人妻| 免费电影在线观看免费观看| 亚洲国产精品国产精品| 3wmmmm亚洲av在线观看| 色视频www国产| 寂寞人妻少妇视频99o| 午夜福利视频精品| 看免费成人av毛片| 一级二级三级毛片免费看| 国产精品麻豆人妻色哟哟久久| 26uuu在线亚洲综合色| 日韩一区二区三区影片| 亚洲精品自拍成人| 亚洲人与动物交配视频| 边亲边吃奶的免费视频| 亚洲精品日本国产第一区| 久久女婷五月综合色啪小说 | 国产亚洲精品久久久com| 国产成人a区在线观看| 三级国产精品欧美在线观看| 九色成人免费人妻av| 欧美3d第一页| 观看免费一级毛片| 欧美激情久久久久久爽电影| 黄片无遮挡物在线观看| 偷拍熟女少妇极品色| 国产精品久久久久久久久免| 亚洲欧美日韩东京热| 亚洲国产av新网站| 婷婷色综合www| 久久精品熟女亚洲av麻豆精品| 成人毛片a级毛片在线播放| 国产精品女同一区二区软件| 亚洲精品国产av蜜桃| 全区人妻精品视频| 久久人人爽人人爽人人片va| 久久人人爽人人片av| 岛国毛片在线播放| 啦啦啦在线观看免费高清www| 99热6这里只有精品| 亚洲色图av天堂| 爱豆传媒免费全集在线观看| 免费黄色在线免费观看| 日韩一区二区视频免费看| av在线观看视频网站免费| 国产精品久久久久久av不卡| 中文字幕免费在线视频6| 国产探花极品一区二区| 亚洲怡红院男人天堂| 久久国内精品自在自线图片| 国产精品国产av在线观看| 3wmmmm亚洲av在线观看| 男插女下体视频免费在线播放| 久久久精品欧美日韩精品| 美女视频免费永久观看网站| 国产男女超爽视频在线观看| 一级片'在线观看视频| 久久久久性生活片| 久久久久久久久久久免费av| 九色成人免费人妻av| 国产精品蜜桃在线观看| 夜夜看夜夜爽夜夜摸| 91久久精品国产一区二区成人| 91精品一卡2卡3卡4卡| 午夜激情久久久久久久| 午夜精品一区二区三区免费看| 高清日韩中文字幕在线| 最近最新中文字幕大全电影3| 国产精品av视频在线免费观看| 亚洲成人一二三区av| 国产精品国产三级专区第一集| 国产片特级美女逼逼视频| 精品国产一区二区三区久久久樱花 | 交换朋友夫妻互换小说| 国产老妇伦熟女老妇高清| 亚洲电影在线观看av| 最后的刺客免费高清国语| 少妇高潮的动态图| 国产精品久久久久久av不卡| 免费av不卡在线播放| 亚洲欧美日韩卡通动漫| 白带黄色成豆腐渣| 毛片一级片免费看久久久久| 黄色日韩在线| 最后的刺客免费高清国语| av天堂中文字幕网| 欧美日韩国产mv在线观看视频 | 国产成人免费观看mmmm| 内地一区二区视频在线| 最新中文字幕久久久久| 直男gayav资源| 少妇人妻 视频| 成年av动漫网址| 哪个播放器可以免费观看大片| 成人二区视频| 少妇被粗大猛烈的视频| 国产久久久一区二区三区| 看非洲黑人一级黄片| 男人狂女人下面高潮的视频| 黄片wwwwww| 亚洲国产成人一精品久久久| 国产伦精品一区二区三区视频9| 熟妇人妻不卡中文字幕| 国产成人91sexporn| 尤物成人国产欧美一区二区三区| 一本色道久久久久久精品综合| 老女人水多毛片| 免费电影在线观看免费观看| 伊人久久国产一区二区| 亚洲精品久久久久久婷婷小说| 热99国产精品久久久久久7| 精品国产露脸久久av麻豆| 插阴视频在线观看视频| 身体一侧抽搐| 狂野欧美白嫩少妇大欣赏| 久久精品人妻少妇| 日本黄色片子视频| 美女主播在线视频| 熟妇人妻不卡中文字幕| av免费在线看不卡| 男人添女人高潮全过程视频| a级毛片免费高清观看在线播放| 波多野结衣巨乳人妻| 久久久精品94久久精品| 国产成人一区二区在线| 日本爱情动作片www.在线观看| 天天一区二区日本电影三级| 丝袜美腿在线中文| 欧美最新免费一区二区三区| 99久久精品国产国产毛片| 你懂的网址亚洲精品在线观看| 能在线免费看毛片的网站| 欧美日韩综合久久久久久| 精品久久久精品久久久| 亚洲欧美一区二区三区黑人 | 午夜福利视频1000在线观看| 日本黄大片高清| av女优亚洲男人天堂| 精品人妻偷拍中文字幕| 久久精品久久久久久久性| 亚洲精品,欧美精品| 一级av片app| 看非洲黑人一级黄片| 高清毛片免费看| 日本wwww免费看| 国产大屁股一区二区在线视频| 最近最新中文字幕免费大全7| 免费黄频网站在线观看国产| 大片电影免费在线观看免费| 日韩在线高清观看一区二区三区| 免费观看性生交大片5| 黄色配什么色好看| 一区二区三区免费毛片| 麻豆久久精品国产亚洲av| 亚洲成人久久爱视频| 日韩av在线免费看完整版不卡| 建设人人有责人人尽责人人享有的 | 我的老师免费观看完整版| 黄色视频在线播放观看不卡| 免费高清在线观看视频在线观看| 亚洲国产成人一精品久久久| 我的女老师完整版在线观看| 久久久a久久爽久久v久久| 又粗又硬又长又爽又黄的视频| 精品视频人人做人人爽| 久久ye,这里只有精品| 欧美激情国产日韩精品一区| 亚洲国产精品成人综合色| 最近中文字幕2019免费版| 日韩亚洲欧美综合| 国产极品天堂在线| 如何舔出高潮| 亚洲伊人久久精品综合| 精品一区二区三卡| 久久综合国产亚洲精品| 免费av不卡在线播放| 日本欧美国产在线视频| 在线观看av片永久免费下载| 免费看日本二区| 亚洲怡红院男人天堂| 亚洲人成网站高清观看| 国产av不卡久久| kizo精华| 一个人观看的视频www高清免费观看| 熟女电影av网| 少妇人妻精品综合一区二区| 黄片wwwwww| 亚洲天堂国产精品一区在线| 一边亲一边摸免费视频| 亚洲,欧美,日韩| 日日摸夜夜添夜夜爱| 老司机影院毛片| 精品一区二区三区视频在线| 日产精品乱码卡一卡2卡三| 中文字幕亚洲精品专区| 亚洲精品色激情综合| 欧美潮喷喷水| 超碰av人人做人人爽久久| 一个人看的www免费观看视频| 成人亚洲欧美一区二区av| 禁无遮挡网站| 免费高清在线观看视频在线观看| 熟妇人妻不卡中文字幕| 高清av免费在线| 91狼人影院| 天天躁日日操中文字幕| 两个人的视频大全免费| 国产亚洲一区二区精品| 久久99热这里只有精品18| 国产色婷婷99| 午夜亚洲福利在线播放| 老司机影院毛片| 国产精品久久久久久精品电影小说 | 亚洲av二区三区四区| 超碰av人人做人人爽久久| 国产成人a区在线观看| 中国三级夫妇交换| 丝袜喷水一区| 亚洲欧洲国产日韩| 免费看av在线观看网站| 亚洲av中文av极速乱| 热99国产精品久久久久久7| 夫妻性生交免费视频一级片| 啦啦啦中文免费视频观看日本| 日韩在线高清观看一区二区三区| 欧美国产精品一级二级三级 | 亚洲精品影视一区二区三区av| 日本熟妇午夜| 欧美性感艳星| 日日摸夜夜添夜夜添av毛片| 亚洲最大成人av| 赤兔流量卡办理| 精品久久国产蜜桃| 可以在线观看毛片的网站| 日韩av免费高清视频| 午夜精品一区二区三区免费看| 亚洲av福利一区| 精品人妻一区二区三区麻豆| 国产伦精品一区二区三区视频9| 欧美极品一区二区三区四区| 在线观看三级黄色| 人妻一区二区av| 亚洲精品影视一区二区三区av| 永久免费av网站大全| 美女高潮的动态| 我的女老师完整版在线观看| 欧美老熟妇乱子伦牲交| 丰满少妇做爰视频| 亚洲精品乱码久久久久久按摩| 亚洲精品国产av蜜桃| 久久人人爽人人爽人人片va| 久久鲁丝午夜福利片| 99久国产av精品国产电影| 亚洲欧美精品专区久久| av黄色大香蕉| 久久影院123| 欧美日韩综合久久久久久| 免费黄色在线免费观看| 日韩制服骚丝袜av| 午夜免费男女啪啪视频观看| 国产免费一区二区三区四区乱码| 婷婷色麻豆天堂久久| 内地一区二区视频在线| 国产一区二区亚洲精品在线观看| www.av在线官网国产| 亚洲四区av| 国产精品福利在线免费观看| 真实男女啪啪啪动态图| 少妇裸体淫交视频免费看高清| 色网站视频免费| 麻豆乱淫一区二区| 成人国产av品久久久| 日本猛色少妇xxxxx猛交久久| 久久鲁丝午夜福利片| 中文乱码字字幕精品一区二区三区| 久久国产乱子免费精品| 中文字幕久久专区| 丝袜美腿在线中文| 天天躁夜夜躁狠狠久久av| 免费黄网站久久成人精品| 亚洲国产欧美人成| 99久久九九国产精品国产免费| 国产人妻一区二区三区在| 精品久久久久久久久亚洲| 国产成人a区在线观看| 日本av手机在线免费观看| 日本黄大片高清| 特大巨黑吊av在线直播| 一级a做视频免费观看| 亚洲色图av天堂| 最近的中文字幕免费完整| 菩萨蛮人人尽说江南好唐韦庄| 免费看不卡的av| 18禁裸乳无遮挡免费网站照片| 国产精品偷伦视频观看了| 男女那种视频在线观看| 亚洲精品久久午夜乱码| 欧美精品一区二区大全| 亚洲精品乱码久久久v下载方式| 激情五月婷婷亚洲| 精品国产露脸久久av麻豆| 久久精品久久久久久久性| 亚洲自偷自拍三级| 岛国毛片在线播放| 少妇人妻精品综合一区二区| 国产精品一及| 一个人看视频在线观看www免费| 国产片特级美女逼逼视频| 久久精品久久久久久噜噜老黄| 午夜视频国产福利| 国产综合精华液| 亚洲av日韩在线播放| 亚洲精品国产av蜜桃| 亚洲精品国产色婷婷电影| 在线天堂最新版资源| 欧美丝袜亚洲另类| xxx大片免费视频| 天天一区二区日本电影三级| 国产精品一区www在线观看| 成人国产麻豆网| 日韩在线高清观看一区二区三区| 久久国内精品自在自线图片| 看非洲黑人一级黄片| 人人妻人人看人人澡| 春色校园在线视频观看| 日韩中字成人| 18+在线观看网站| 免费观看的影片在线观看| eeuss影院久久| 可以在线观看毛片的网站| 一区二区三区免费毛片| 欧美日韩在线观看h| 欧美潮喷喷水| 午夜老司机福利剧场| 哪个播放器可以免费观看大片| 人妻 亚洲 视频| 亚洲欧美清纯卡通| eeuss影院久久| 国产精品人妻久久久久久| 久久国内精品自在自线图片| 男女下面进入的视频免费午夜| 国产精品人妻久久久久久| 亚洲四区av| 一区二区av电影网| 高清视频免费观看一区二区| 国产人妻一区二区三区在| 久久久久久久久大av| 国产成人freesex在线| 少妇人妻精品综合一区二区| 亚洲精品色激情综合| 看十八女毛片水多多多| 免费在线观看成人毛片| 亚洲国产欧美在线一区| 国产精品.久久久| 美女高潮的动态| 夫妻午夜视频| 成年女人看的毛片在线观看|