• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition*

    2021-01-21 02:07:36XuWang王旭JueWang王玨TaoMa馬濤HengLiu劉恒andFangWang王芳
    Chinese Physics B 2021年1期
    關(guān)鍵詞:王玨馬濤王旭

    Xu Wang(王旭), Jue Wang(王玨), Tao Ma(馬濤),2,?, Heng Liu(劉恒),3, and Fang Wang(王芳),2

    1College of Electronic and Electrical Engineering,Henan Normal University,Xinxiang 453007,China

    2Henan Key Laboratory of Optoelectronic Sensing Integrated Application,Xinxiang 453007,China

    3Academician Workstation of Electromagnetic Wave Engineering of Henan Province,Xinxiang 453007,China

    Keywords: surface plasmon polariton,graphene,porous silicon,finite element method(FEM)

    1. Introduction

    Graphene is an atom-thick monolayer two-dimensional(2D) carbon material in which the atoms are arranged in a honeycomb lattice.[1–4]It has remarkable optical properties,such as broadband absorption, tunable Fermi level, and large nonlinearity.[5–8]In the mid-infrared band and THz band,graphene exhibits a strong semi-metal property and supports surface plasmon polariton(SPP).[9–12]Graphene has a strong interaction with light in a wide frequency range and is suitable for active applications. In last decades, different structures based on graphene have been widely reported, such as graphene arrays,[13–15]graphene nano-ribbons,[16]dielectricloaded graphene plasmon waveguide,[17,18]dual-grapheneon-graphene configuration,[19]and multilayer graphene metamaterial.[20]Comparing with the traditional noble metal materials, graphene-based SPP waveguides can achieve high optical performances and low propagation loss.[21]

    Recently, the graphene-coated nanowire waveguides(GCNWs) based on graphene SPP have been proposed,which have better performances including the small loss and high mode field confinement than the conventional dielectric waveguides. A semiconductor-graphene cylinder was investigated to be applied to the transmission of THz waves with a weak effect of light wave broadening in the remote transmission.[22]A GCNW based on an elliptic cylinder instead of a cylinder was investigated to achieve a large propagation length of ~200 μm with a small normalized mode area of ~10-3.[23]A coaxial-like GCNW-based long-range SPP waveguide was designed, which is composed of a cylindrical silicon nanowire core surrounded by an inner graphene layer,a silica layer,and an outer graphene layer from inside to outside.[24]The simulation results showed that an ultrasmall normalized mode area of ~10-5with a propagation length of~8 μm can be achieved at an operating wavelength of 7 μm.The Sommerfeld wave in a single-wire THz waveguide is radially polarized,difficult to excite,and weakly guided,which limits the practical applications of the THz waveguide. To solve the problem, a two-wire terahertz waveguide was proposed,which has lower bending loss than the single-wire THz waveguide.[25]In order to improve the performances of the GCNW,a thin low-index buffer layer was embedded between the GCNW and substrate.[26]It was found that a low propagation loss of 0.312 dB·μm-1with an improved figure of merit(FoM) can be realized when an ultra-small buffer thickness and gap distance are chosen. In addition, two vertically coupling cylindrical GCNWs integrated with a thin high-index dielectric substate are also studied to improve the performances of the GCNW.[27]The results show that the proposed suspended wedge GCNW’s FoM is nearly two-fold higher than that of the plasmon mode in the single GCNW on a substrate.

    Due to the good optical properties, porous silicon (PS)is a suitable candidate for the applications of optoelectronics such as in light-emitting diodes,photodetectors,optical modulators, and optical sensors.[28–32]The large internal surface of PS can enhance the interaction between light and matter.The tunable porosity of PS, which varies with the fabrication parameters,[30]makes its refractive index (RI) vary between the air and the bulk silicon. Moreover,the hybrid structures combining PS with graphene-based materials proved to be helpful in the applications in photonic and energy conversion devices.[33,34]The hybrid PS/graphene-based structures provide a great platform for their applications in optoelectronics,power engineering,and sensing.[31]

    In this paper, a GCNW composed of two suspended graphene-coated wedge PS nanowires with an Ag partition is designed. The plasmonic characteristics and sensing performances of the SPP mode in the designed structure are investigated by using the finite element method(FEM).By sweeping the geometry parameters,the plasmonic characteristics of the suspended wedge GCNW are optimized. To evaluate the sensing performances,the waveguide sensitivity is calculated.The plasmonic characteristics and sensing performances are compared with their counterparts of other different GCNWs.The rest of this paper is organized as follows. In Section 2,the structure of the proposed suspended wedge GCNW is designed.In Section 3,the plasmonic characteristics and sensing performances are analyzed and optimized. Conclusions and perspectives are drawn in Section 4.

    2. Waveguide structure

    Figure 1 shows the schematic of the suspended wedge GCNW composed of two isosceles triangular nanowires coated with graphene symmetrically distributed on both sides of an Ag partition. The thickness of the Ag slab is denoted as t. The three apex angles for each of the wedge dielectric nanowires are chamfered with corner radius r being 25 nm.The height and the apex angle of the triangle are denoted as L and θ, respectively. The gap between the apex angle of the triangular nanowire and the Ag slab is marked as g.The RI of porous silicon is ~1.55.[32]The dielectric constant of the monolayer graphene can be calculated from εg=1+iσg/(ε0ωtg),[35]where tgis the thickness of the monolayer graphene,ω is the angular frequency of the incident light,and ε0is the permittivity in free space. Within the random phase approximation,the dynamic optical response of graphene can be derived from the Kubo’s formula,[36]σg=σintra+σinter,where σintraand σinterare the intra band contribution and inter band contribution, respectively. In the terahertz band and the infrared band,the surface conductivity of graphene can be approximated as[37]

    where τ is the relaxation time, T is the ambient temperature,EFis the Fermi energy,hbis the reduced plank constant,kbis the Boltzmann constant, and e=1.6×10-19C. Here,T =300 K,and τ =0.5 ps.

    Fig.1. Schematic diagram of suspended wedge GCNW.

    The dielectric constant of Ag is described by Drude–Lorentz model[21]

    The mode characteristic, propagation performance and sensing performance of the suspended wedge GCNW are simulated by the commercial software COMSOL Multiphysics based on the FEM which is widely used to calculate the characteristics of integrated photonic devices. The computational domain is discretized into triangular meshes. The scattering boundary condition is used in the simulations. The mesh grid in graphene layer is refined to ensure the accuracy of calculation. Convergence test are done to ensure that the calculation region and mesh size do not interfere with the results.

    3. Plasmonic characteristics

    3.1. Mode field distributions

    The mode field distributions of the modes in the suspended wedge GCNW are shown in Figs. 2(a)–2(c). The results show that the SPP mode is a fundamental mode in the suspended wedge GCNW.The mode energy of the SPP mode is mainly distributed between the porous silicon and Ag partition. However, the guide mode in the porous silicon is restricted due to the small cross-section size of the proposed GCNW (200 nm). Here, L=200 nm,t =40 nm, g=5 nm,and EF=0.5 eV.The normalized electric field(E)along the x direction(y=0)and along the y direction(x=t/2+g/2)of the suspended wedge GCNW are shown in Figs.2(d)–2(f)and Figs.2(g)–2(i),respectively. The normalized E in x direction has a maximum value at the graphene surface due to the SPP effect.

    Fig.2. Mode field distributions of suspended wedge GCNW with(a)g=5 nm,(b)10 nm,and(c)20 nm;normalized E along x direction across(y=0),(d)g=5 nm, (e)g=10 nm, and(f)g=20 nm; normalized E along y direction across(x=t/2+g/2), (g)g=5 nm, (h)0 nm, and(i)20 nm, with other parameters being EF=0.5 eV,T =300 K,τ =0.5 ps,L=200 nm,t=40 nm,and nc=1.0.

    3.2. Mode characteristics

    Generally,the mode characteristics are highly dependent on the geometry parameters of the waveguide. The geometry parameters effect on the mode characteristics including Re(neff), Lp, Am, and FoM are investigated when the operating frequency f0is 30, 40, and 50 THz, separately. Here,EF=0.6 eV,L=200 nm,r=25 nm,θ =60?,and nc=1.0.The influences of g on Re(neff), Lp, Am, and FoM with different frequencies are shown in Figs.3(a)–3(d). As shown in Fig.3(a),Re(neff)decreases with g rising because the coupling between the graphene-coated nanowire and the slab substrate is weakened. In Fig.3(b), Lpfirst increases slightly and then decreases slowly as g increases. As g increases from a small value, the influence of the ohm loss in Ag slab reduces Lp.When g keeps growing, the mode confinement weakens and Lpdecreases. As shown in Fig.3(c),an increasing g will dramatically reduce Am. It indicates that the suspended wedge GCNW has better mode confinement when g is small. As shows in Fig.3(d),a smaller g matches a better FoM.As shown in Figs. 3(a)–3(d), the operating frequency has a great influence on the mode characteristics. The high frequency leads to a large Re(neff)and Am, but a short Lp. The GCNW has a better FoM at the high frequency when g is less than 10 nm.Considering the tradeoff between Lpand FoM,g is chosen to be 10 nm.

    The effects of L on the mode characteristics of the suspended wedge GCNW are shown in Figs. 4(a)–4(d). The increasing of L lead Re(neff)and Lpto slightly increase while Amincreases significantly at a higher operating frequency. Meanwhile, a higher operating frequency corresponds to a smaller Lpand a larger Am. In Figs.5(a)–5(d), the mode characteristics have no decisive dependence on t. As is well known,the mode energy of the SPP mode is mainly distributed at the interface between the dielectric and metal. There is almost no distribution inside the metal(Ag). This can be proved by the mode distributions which have been shown in Figs.2(a)–2(c).Hence, the thickness of the metal (t) has little effect on the mode characteristics.When f0increases,the larger absorption of graphene leads the propagation loss to increase, which reduces Lp. However, Amincreases with frequency increasing.The mode characteristics of the GCNW are not sensitive to t,which implies that the suspended wedge GCNW has a good tolerance to the fabrication error. In the following simulations,t is chosen to be 40 nm.

    Fig.3. Influences of g on(a)Re(neff),(b)Lp,(c)Am,and(d)FoM at f0=30 THz,40 THz,and 50 THz.

    Fig.4. The L-dependent(a)Re(neff),(b)Lp,(c)Am,and(d)FoM for f0=30 THz,40 THz,and 50 THz.

    Fig.5. Influences of t on(a)Re(neff),(b)Lp,(c)Am,and(d)FoM for f0=30,40,and 50 THz.

    According to Eq. (1), σgcan be flexibly tuned through varying EFwhich can be electrically controlled by the bias voltage supplied to the monolayer graphene. To demonstrate the tunability of the suspended wedge GCNW,the mode characteristics as a function of EFare shown in Figs.6(a)–6(d). As shown in Fig.6(a),Re(neff)decreases with EFincreasing,but increases with f0increasing. In Fig.6(b),Lpincreases monotonically with EFincreasing,but decreases with f0increasing.The inter band loss of graphene serving as a dominant factor is low at a large EF,which results in the increase of Lp. Furthermore, the increase of EFwill lead the value of τ to increase,which can further reduce the loss and increase Lp. In Fig.6(c),Amfirst increases and then decreases when EFchanges from 0.2 eV to 0.9 eV, and has a maximum when EF=~0.41 eV due to the smallest permittivity of the graphene. The dependence of FoM on EFis shown in Fig.6(d),which indicates that the overall performance of the suspended wedge GCNW can be improved when EFincreases.

    Fig.6. EF-dependent(a)Re(neff),(b)Lp,(c)Am,and(d)FoM for f0=30,40,and 50 THz.

    Fig.7. Effects of nc on(a)Re(neff),(b)Lp,(c)Am,and(d)FoM for f0=30,40,and 50 THz.

    For the applications in sensing,the effects of the cladding RI(nc)on the mode characteristics are investigated. The valuations of Re(neff),Lp,Am,and FoM with ncin a range from 1.0 to 1.9 are shown in Figs.7(a)–7(d)at different values of f0.Here, we take r=20 nm, L=200 nm, g=10 nm, θ =60?,and EF=0.6 eV. As shown in Fig. 7(a), Re(neff) increases with the ncincreasing monotonically. The changes of Re(neff)show a near-linearly increasing trend which can be used as the homogeneous sensing. The waveguide sensitivity (Swg)can be calculated by the linear fitting, which is defined as Swg=Δneff/Δnc.[44]The results show that a larger Swgcan be achieved when f0is higher. As shown in Figs.7(b)and 7(c),both the Lpand Amdecrease with the ncincreasing due to the decrease of the RI difference between the core and cladding.In Fig. 7(d), the FoM is improved when ncincrease from 1,and then tends to be constant when ncis larger than 1.45.

    3.3. Comparisons among different GCNWs

    In order to compare the mode characteristics and sensing performances among different kinds of waveguides,three different GCNWs are investigated. The three GCNWs are respectively the suspended wedge GCNW, cylindrical GCNW,and isolated GCNW with the same materials. The schematics of the three GCNWs are shown in Figs.8(a)–8(c),respectively.Here, we take L=2R, and the other parameters are the same as those used in the previous simulations. The electrical field distributions of the three waveguides are shown in Figs.8(d)–8(f). The results show that the suspended wedge GCNW and cylindrical GCNW have much higher field confinements than the isolated GCNW.However,the electric field of the mode in the isolated GCNW is mainly concentrated at the interface of the cylindrical nanowire. The electric field distributions of the three GCNW along the x axis are shown in Figs.8(g)–8(i).

    Figures 9(a)and 9(b)show the plots of Lpversus Amfor the three GCNWs with different values of f0and nc.As shown in Fig. 9(a), the Lpdecreases but the Amincreases as the f0increases from 10 THz to 50 THz. The suspended wedge GCNW has a longer Lpthan the other two GCNWs at the same value of Am. In Fig.9(b),considering the tradeoff between Lpand Am,the performances of the suspended wedge GCNW and cylindrical GCNW are much better than those of the isolated GCNW as the ncincreases from 1.0 THz to 1.9 THz. The suspended wedge GCNW has more superior performances than the other two. The variations of Re(neff)with the increase of ncfor the three waveguides are shown in Fig. 9(c). According to the linear fitting,the waveguide sensitivities of the three waveguides can be achieved. The results show that the waveguide sensitivity of the suspended GCNW is higher than that of the isolated GCNW, but lower than that of the cylindrical GCNW.

    Fig. 8. Schematics of (a) wedge GCNW, (b) cylindrical GCNW, and (c) isolated GCNW; mode field distributions in panel (a) wedge GCNW, (b)cylindrical GCNW,and(c)isolated GCNW;normalized electric field E along x direction(y=0)in(a)wedge GCNW,(b)cylindrical GCNW,and(c)isolated GCNW.

    Fig. 9. Comparisons among different GCNWs with different parameters, (a) Lp versus Am for different values of f0, (b) Lp versus Am for different values of nc,and(c)Re(neff)versus nc.

    4. Conclusions and perspectives

    In this work, a suspended wedge GCNW with a thin Ag partition is investigated. The simulation results show that a normalized mode field area of ~10-4and a figure of merit of ~100 can be achieved by optimizing the parameters. The suspended wedge GCNW has a strong interaction between the metal slab and the nanowires, which can have potential applications in the high-density integrated photonic circuits and optoelectronic devices in terahertz frequency band. The plasmonic characteristics can be dynamically adjusted by changing the Fermi energy of graphene which is tuned by a bias voltage. The suspended wedge GCNW has a relatively high waveguide sensitivity, which has potential applications in RI sensing. The suspended structure and large internal surface of the suspended wedge GCNW can improve its sensing performances. The suspended wedge GCNW has promising applications in the electro-optic modulations,optical interconnects,optical switches,and optical sensing.

    猜你喜歡
    王玨馬濤王旭
    與貓貓狗狗親熱須知
    這些涉疫謠言,別信!
    身邊的人防工程你知道嗎?
    Collision site effect on the radiation dynamics of cytosine induced by proton
    Integrated silicon-based suspended racetrack micro-resonator for biological solution sensing with high-order mode*
    陪伴
    北方音樂(2019年10期)2019-07-10 19:13:36
    我校王玨教授受邀為國際權(quán)威期刊特約審稿人
    熱線外低Rayleigh數(shù)自然對流換熱的機理
    王玨作品選
    丹鳳回眸三十載 弘韻放歌迎春來
    ——“弘韻抒懷”箜篌專場音樂會掠影
    音樂生活(2014年9期)2014-09-04 09:29:36
    日韩大尺度精品在线看网址| 我要看日韩黄色一级片| 婷婷六月久久综合丁香| www.色视频.com| 我的女老师完整版在线观看| 黄片小视频在线播放| 国产高清视频在线观看网站| 五月玫瑰六月丁香| 天堂√8在线中文| 国产av不卡久久| 一个人免费在线观看的高清视频| 一级毛片久久久久久久久女| 99国产综合亚洲精品| 一个人免费在线观看电影| 中亚洲国语对白在线视频| 久久性视频一级片| 国产成人aa在线观看| 美女 人体艺术 gogo| 首页视频小说图片口味搜索| 一卡2卡三卡四卡精品乱码亚洲| 久久久久精品国产欧美久久久| 久久久精品大字幕| 免费在线观看日本一区| 久久久久久久久中文| 搞女人的毛片| 又紧又爽又黄一区二区| 精品国产亚洲在线| 亚洲av成人不卡在线观看播放网| 美女免费视频网站| 国产精品一及| 亚洲熟妇熟女久久| 极品教师在线免费播放| 欧美成人a在线观看| 超碰av人人做人人爽久久| 亚洲精品影视一区二区三区av| 国产欧美日韩一区二区精品| 欧美色欧美亚洲另类二区| 国产精品久久久久久久久免 | 欧美高清性xxxxhd video| 中文在线观看免费www的网站| 中文字幕久久专区| 99精品在免费线老司机午夜| 亚洲一区二区三区不卡视频| 麻豆成人av在线观看| 免费在线观看影片大全网站| 亚洲美女黄片视频| 一区福利在线观看| 国产精品一区二区三区四区久久| a级毛片a级免费在线| 狠狠狠狠99中文字幕| 久久久久国内视频| 日韩有码中文字幕| 亚洲欧美精品综合久久99| 尤物成人国产欧美一区二区三区| 脱女人内裤的视频| 日日摸夜夜添夜夜添av毛片 | 白带黄色成豆腐渣| 久久香蕉精品热| 中文亚洲av片在线观看爽| 欧美一区二区精品小视频在线| 亚洲成人精品中文字幕电影| 九九久久精品国产亚洲av麻豆| 国产精品一区二区三区四区久久| 国产欧美日韩精品亚洲av| 最近中文字幕高清免费大全6 | 国产黄a三级三级三级人| 噜噜噜噜噜久久久久久91| 久久天躁狠狠躁夜夜2o2o| 99精品久久久久人妻精品| 亚洲第一欧美日韩一区二区三区| 又黄又爽又刺激的免费视频.| 人人妻人人看人人澡| 中文亚洲av片在线观看爽| 欧美日本亚洲视频在线播放| 我的女老师完整版在线观看| 噜噜噜噜噜久久久久久91| 国产激情偷乱视频一区二区| 国产av麻豆久久久久久久| 久久精品国产亚洲av涩爱 | 亚洲自拍偷在线| 亚洲精华国产精华精| 成人无遮挡网站| 热99re8久久精品国产| 亚洲美女搞黄在线观看 | 欧美在线一区亚洲| 国产精华一区二区三区| 狂野欧美白嫩少妇大欣赏| 欧美国产日韩亚洲一区| 国产精品野战在线观看| 看十八女毛片水多多多| 日韩免费av在线播放| av国产免费在线观看| 亚洲内射少妇av| 色播亚洲综合网| 国产精品嫩草影院av在线观看 | 欧美成狂野欧美在线观看| 欧美中文日本在线观看视频| 国产 一区 欧美 日韩| 精品久久久久久久人妻蜜臀av| 一级黄色大片毛片| 精品人妻1区二区| 免费电影在线观看免费观看| 美女xxoo啪啪120秒动态图 | 一级黄色大片毛片| 国产av在哪里看| 男女床上黄色一级片免费看| 观看美女的网站| 在现免费观看毛片| 国产精品久久久久久久久免 | 神马国产精品三级电影在线观看| 搡女人真爽免费视频火全软件 | 人妻丰满熟妇av一区二区三区| 内射极品少妇av片p| 国产乱人视频| 久久久久久久久大av| 亚洲av一区综合| 日韩亚洲欧美综合| 99久国产av精品| 真人做人爱边吃奶动态| 国产精品国产高清国产av| 97碰自拍视频| 婷婷六月久久综合丁香| 露出奶头的视频| 午夜免费激情av| 久久草成人影院| 国产探花在线观看一区二区| 国产成+人综合+亚洲专区| 色哟哟哟哟哟哟| 日本 av在线| 国内毛片毛片毛片毛片毛片| 禁无遮挡网站| 欧美极品一区二区三区四区| 啦啦啦观看免费观看视频高清| 国产乱人伦免费视频| 国产精品久久久久久亚洲av鲁大| 国产精品一及| 亚洲七黄色美女视频| 麻豆成人午夜福利视频| 久久伊人香网站| 亚洲无线观看免费| 国产精品综合久久久久久久免费| 黄片小视频在线播放| 日日干狠狠操夜夜爽| 无人区码免费观看不卡| 国产在视频线在精品| 人妻制服诱惑在线中文字幕| 大型黄色视频在线免费观看| 亚洲激情在线av| 一个人免费在线观看电影| 18禁黄网站禁片午夜丰满| 午夜久久久久精精品| 亚洲最大成人中文| 中文字幕av成人在线电影| 国产精品一及| 亚洲国产精品成人综合色| 国产中年淑女户外野战色| 夜夜躁狠狠躁天天躁| .国产精品久久| 国产三级在线视频| 国产一区二区在线av高清观看| 日韩高清综合在线| 蜜桃亚洲精品一区二区三区| 国产在线男女| 精品国产亚洲在线| 欧美bdsm另类| 偷拍熟女少妇极品色| 日韩有码中文字幕| av在线老鸭窝| 国语自产精品视频在线第100页| 久久国产乱子伦精品免费另类| 色综合站精品国产| 久久久国产成人免费| 国产综合懂色| 亚洲一区二区三区不卡视频| 好男人电影高清在线观看| 国产高清视频在线观看网站| 欧美黑人巨大hd| 亚洲欧美精品综合久久99| 91九色精品人成在线观看| 午夜福利高清视频| 99久久精品热视频| 欧美性感艳星| 三级毛片av免费| 窝窝影院91人妻| 1000部很黄的大片| 香蕉av资源在线| 69av精品久久久久久| 麻豆av噜噜一区二区三区| 天堂av国产一区二区熟女人妻| 不卡一级毛片| 91麻豆精品激情在线观看国产| 老鸭窝网址在线观看| 男女那种视频在线观看| 特级一级黄色大片| 99国产极品粉嫩在线观看| 久久人人爽人人爽人人片va | 99热这里只有是精品50| 又紧又爽又黄一区二区| 日本 av在线| 69人妻影院| 一级av片app| 亚洲无线观看免费| 91字幕亚洲| 床上黄色一级片| 麻豆成人午夜福利视频| 久久久精品大字幕| 成年女人看的毛片在线观看| 他把我摸到了高潮在线观看| 欧美激情在线99| 亚洲欧美精品综合久久99| 欧美激情国产日韩精品一区| 久久欧美精品欧美久久欧美| 国产三级黄色录像| 国产欧美日韩一区二区精品| 真实男女啪啪啪动态图| 久久香蕉精品热| 久久久久久久久大av| 中国美女看黄片| 亚洲第一电影网av| 成年版毛片免费区| 美女大奶头视频| 天美传媒精品一区二区| 成年免费大片在线观看| 亚洲av不卡在线观看| 精品99又大又爽又粗少妇毛片 | 简卡轻食公司| 欧美色欧美亚洲另类二区| 国产成人欧美在线观看| 欧美日韩亚洲国产一区二区在线观看| 日日摸夜夜添夜夜添小说| 99久久99久久久精品蜜桃| 欧美日韩瑟瑟在线播放| 亚洲精品一卡2卡三卡4卡5卡| 成年女人看的毛片在线观看| 精品人妻偷拍中文字幕| 97人妻精品一区二区三区麻豆| 一进一出好大好爽视频| 国产成年人精品一区二区| 亚洲精品影视一区二区三区av| 日本在线视频免费播放| 亚洲经典国产精华液单 | 午夜久久久久精精品| 成人特级黄色片久久久久久久| 久久中文看片网| 久久性视频一级片| 美女被艹到高潮喷水动态| 久久热精品热| 成年女人永久免费观看视频| 少妇人妻精品综合一区二区 | 午夜免费男女啪啪视频观看 | 亚洲av成人精品一区久久| 日本黄大片高清| 长腿黑丝高跟| 国产真实乱freesex| 亚洲av中文字字幕乱码综合| 久久欧美精品欧美久久欧美| 美女xxoo啪啪120秒动态图 | 午夜福利18| 91在线精品国自产拍蜜月| 亚洲av电影不卡..在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲,欧美精品.| 午夜精品在线福利| 免费观看精品视频网站| 大型黄色视频在线免费观看| or卡值多少钱| 中出人妻视频一区二区| 国内精品一区二区在线观看| 日本 av在线| 日本一二三区视频观看| 午夜精品一区二区三区免费看| ponron亚洲| or卡值多少钱| 中出人妻视频一区二区| 国语自产精品视频在线第100页| 日韩欧美一区二区三区在线观看| 99久久无色码亚洲精品果冻| 国产大屁股一区二区在线视频| 亚洲人成网站在线播放欧美日韩| 黄片小视频在线播放| 午夜精品久久久久久毛片777| 在线国产一区二区在线| 国产真实伦视频高清在线观看 | 久久久色成人| 又黄又爽又刺激的免费视频.| 每晚都被弄得嗷嗷叫到高潮| 丰满人妻一区二区三区视频av| 日韩亚洲欧美综合| 色综合婷婷激情| 一级a爱片免费观看的视频| 免费搜索国产男女视频| 九色国产91popny在线| 我的老师免费观看完整版| 综合色av麻豆| 成人亚洲精品av一区二区| 国产亚洲精品久久久久久毛片| 久久这里只有精品中国| 国产亚洲精品久久久com| 亚洲av中文字字幕乱码综合| 国产午夜精品久久久久久一区二区三区 | a级一级毛片免费在线观看| 久久热精品热| 国产黄色小视频在线观看| 日本三级黄在线观看| 亚洲第一区二区三区不卡| 成年女人永久免费观看视频| 美女高潮的动态| 久久国产精品影院| 变态另类丝袜制服| 亚洲美女搞黄在线观看 | 嫩草影院入口| 欧美最黄视频在线播放免费| 国产精品影院久久| 五月玫瑰六月丁香| aaaaa片日本免费| 看免费av毛片| 人人妻,人人澡人人爽秒播| 一区二区三区四区激情视频 | 国产精品亚洲一级av第二区| 少妇的逼好多水| 国产精品亚洲av一区麻豆| 白带黄色成豆腐渣| 亚洲自偷自拍三级| 97超级碰碰碰精品色视频在线观看| 成人国产综合亚洲| 日韩欧美三级三区| 51国产日韩欧美| 久久久久国产精品人妻aⅴ院| 91麻豆精品激情在线观看国产| 欧美xxxx性猛交bbbb| 99国产精品一区二区三区| 天堂动漫精品| 桃色一区二区三区在线观看| 在线a可以看的网站| 欧美黄色片欧美黄色片| 国产人妻一区二区三区在| 欧美国产日韩亚洲一区| 国产精品亚洲美女久久久| 在线观看av片永久免费下载| 男人舔奶头视频| 亚洲精品色激情综合| 欧美在线一区亚洲| 日本黄色片子视频| 高潮久久久久久久久久久不卡| 欧美不卡视频在线免费观看| av天堂在线播放| 麻豆国产97在线/欧美| 日韩高清综合在线| 午夜福利成人在线免费观看| 在线观看舔阴道视频| ponron亚洲| 男女床上黄色一级片免费看| 中亚洲国语对白在线视频| 又爽又黄无遮挡网站| 亚洲av中文字字幕乱码综合| 又紧又爽又黄一区二区| 精品久久久久久,| 九九热线精品视视频播放| 一本一本综合久久| 久久伊人香网站| 国产精品乱码一区二三区的特点| 欧美+亚洲+日韩+国产| 变态另类丝袜制服| 男人和女人高潮做爰伦理| 国产在视频线在精品| 日本成人三级电影网站| 亚洲综合色惰| 欧美色欧美亚洲另类二区| 国产视频一区二区在线看| 18禁在线播放成人免费| 黄色丝袜av网址大全| 91午夜精品亚洲一区二区三区 | 久久久久九九精品影院| 看黄色毛片网站| 黄色女人牲交| 免费在线观看成人毛片| 国产精品1区2区在线观看.| 露出奶头的视频| 级片在线观看| 国产野战对白在线观看| 午夜福利视频1000在线观看| 搡老熟女国产l中国老女人| 91麻豆精品激情在线观看国产| 日本撒尿小便嘘嘘汇集6| 亚洲人成网站在线播放欧美日韩| 亚洲最大成人av| 国产大屁股一区二区在线视频| 欧美日本亚洲视频在线播放| 久久性视频一级片| 日韩国内少妇激情av| 亚洲熟妇中文字幕五十中出| 国产精品亚洲av一区麻豆| 精品一区二区三区视频在线观看免费| 欧美性感艳星| 精品久久久久久久久久免费视频| 三级男女做爰猛烈吃奶摸视频| 久久久久久久久久黄片| 亚洲一区高清亚洲精品| 成年女人看的毛片在线观看| 亚洲av第一区精品v没综合| 国产av麻豆久久久久久久| 国产精品av视频在线免费观看| 在线免费观看不下载黄p国产 | 亚洲一区二区三区色噜噜| 69人妻影院| 精品久久久久久久人妻蜜臀av| 欧美午夜高清在线| 国产亚洲欧美98| 不卡一级毛片| 欧美在线一区亚洲| 亚洲成av人片在线播放无| 丰满人妻一区二区三区视频av| 如何舔出高潮| 亚洲 国产 在线| 一本一本综合久久| 欧美不卡视频在线免费观看| 免费大片18禁| 夜夜躁狠狠躁天天躁| 一a级毛片在线观看| 精品免费久久久久久久清纯| 乱码一卡2卡4卡精品| 久久伊人香网站| 亚洲成av人片在线播放无| 亚洲成人中文字幕在线播放| 精品熟女少妇八av免费久了| 精品不卡国产一区二区三区| 一区二区三区四区激情视频 | 在线播放国产精品三级| 成年女人永久免费观看视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲人成网站在线播放欧美日韩| 国产一区二区三区在线臀色熟女| 国产人妻一区二区三区在| 亚洲欧美日韩高清在线视频| 久久久久久久久大av| 久久精品国产99精品国产亚洲性色| 三级国产精品欧美在线观看| 亚洲精华国产精华精| 午夜免费男女啪啪视频观看 | x7x7x7水蜜桃| 亚洲精品在线美女| 国产精品久久久久久人妻精品电影| 嫁个100分男人电影在线观看| 欧美精品啪啪一区二区三区| 淫秽高清视频在线观看| 在线播放国产精品三级| 亚洲国产精品999在线| 永久网站在线| 国产免费一级a男人的天堂| 成人av一区二区三区在线看| 亚洲五月天丁香| 欧美+日韩+精品| 精品人妻1区二区| 亚洲成av人片免费观看| 国语自产精品视频在线第100页| 免费看美女性在线毛片视频| 国产私拍福利视频在线观看| 亚洲男人的天堂狠狠| 亚洲乱码一区二区免费版| 观看美女的网站| 久久久久久久久中文| 国产高潮美女av| 免费搜索国产男女视频| 乱码一卡2卡4卡精品| 男人舔女人下体高潮全视频| 国产精品三级大全| 夜夜躁狠狠躁天天躁| 日本 av在线| 国产精品久久久久久久久免 | 国产主播在线观看一区二区| 亚洲成人久久爱视频| 亚洲精品在线美女| 成人特级黄色片久久久久久久| 嫩草影院入口| 成年版毛片免费区| 男女下面进入的视频免费午夜| 一进一出抽搐动态| 欧美日韩黄片免| 国产成人福利小说| 免费观看精品视频网站| 丰满人妻一区二区三区视频av| 国产精品久久久久久久久免 | www.999成人在线观看| 国产亚洲欧美98| 国产精品一区二区性色av| 十八禁人妻一区二区| 国产精品亚洲一级av第二区| 久久香蕉精品热| 欧美黑人巨大hd| 国产精品99久久久久久久久| 欧美性猛交╳xxx乱大交人| 九色国产91popny在线| 亚洲第一区二区三区不卡| 嫁个100分男人电影在线观看| 人人妻人人看人人澡| 欧美一区二区国产精品久久精品| 欧美成狂野欧美在线观看| 在线a可以看的网站| 精品久久久久久久末码| 赤兔流量卡办理| 久久精品国产清高在天天线| 乱码一卡2卡4卡精品| 男女下面进入的视频免费午夜| 欧美另类亚洲清纯唯美| 麻豆一二三区av精品| 国产一区二区亚洲精品在线观看| 天堂网av新在线| 2021天堂中文幕一二区在线观| 欧美成狂野欧美在线观看| 国产伦在线观看视频一区| 国内毛片毛片毛片毛片毛片| 国产亚洲精品综合一区在线观看| 好男人电影高清在线观看| 日韩 亚洲 欧美在线| ponron亚洲| 熟女人妻精品中文字幕| 国产精品综合久久久久久久免费| 有码 亚洲区| av专区在线播放| 国产黄a三级三级三级人| 丰满人妻熟妇乱又伦精品不卡| 午夜a级毛片| 久久午夜亚洲精品久久| 精品国产亚洲在线| 久久久色成人| 午夜两性在线视频| 女生性感内裤真人,穿戴方法视频| 国产欧美日韩精品一区二区| 日韩欧美一区二区三区在线观看| 内地一区二区视频在线| 成年女人看的毛片在线观看| 免费人成视频x8x8入口观看| 一级黄色大片毛片| 嫁个100分男人电影在线观看| 在线观看免费视频日本深夜| 69av精品久久久久久| 中文字幕久久专区| 99在线人妻在线中文字幕| 天堂网av新在线| 亚洲熟妇熟女久久| 老司机福利观看| 欧美一区二区精品小视频在线| 狂野欧美白嫩少妇大欣赏| 精品福利观看| 99国产精品一区二区蜜桃av| 白带黄色成豆腐渣| 日韩欧美精品免费久久 | 高清日韩中文字幕在线| 一本精品99久久精品77| 亚洲精品色激情综合| 脱女人内裤的视频| 国产精品一及| 久久精品国产99精品国产亚洲性色| 久久热精品热| 久久99热6这里只有精品| 午夜福利18| 在线观看美女被高潮喷水网站 | 看黄色毛片网站| 日本精品一区二区三区蜜桃| 免费在线观看成人毛片| 国产av在哪里看| 亚洲av电影不卡..在线观看| 久久久成人免费电影| 深爱激情五月婷婷| 亚洲一区二区三区不卡视频| 搡老妇女老女人老熟妇| 亚洲一区二区三区不卡视频| 亚洲无线在线观看| 老司机深夜福利视频在线观看| 偷拍熟女少妇极品色| 黄色一级大片看看| 97热精品久久久久久| 亚洲av五月六月丁香网| 18美女黄网站色大片免费观看| 国产色婷婷99| 久久久久久国产a免费观看| 欧美乱色亚洲激情| 在线观看美女被高潮喷水网站 | 欧美三级亚洲精品| 免费搜索国产男女视频| 亚洲国产高清在线一区二区三| 国产成年人精品一区二区| 麻豆一二三区av精品| 天美传媒精品一区二区| 又黄又爽又免费观看的视频| a在线观看视频网站| 亚洲 欧美 日韩 在线 免费| 性色av乱码一区二区三区2| 亚洲精品一卡2卡三卡4卡5卡| 在线观看午夜福利视频| 久久香蕉精品热| 熟女人妻精品中文字幕| 身体一侧抽搐| 国产美女午夜福利| 97人妻精品一区二区三区麻豆| 尤物成人国产欧美一区二区三区| 亚洲熟妇中文字幕五十中出| 中文字幕人妻熟人妻熟丝袜美| 一二三四社区在线视频社区8| 色综合婷婷激情| av在线天堂中文字幕| 网址你懂的国产日韩在线| 给我免费播放毛片高清在线观看| 亚洲国产精品久久男人天堂| 天堂动漫精品| 亚洲国产日韩欧美精品在线观看| 搞女人的毛片| www.www免费av| 国内精品美女久久久久久| 久久久久性生活片| 黄色女人牲交| 成人欧美大片| 国产伦人伦偷精品视频| 又黄又爽又免费观看的视频| 欧美乱妇无乱码|