• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition*

    2021-01-21 02:07:36XuWang王旭JueWang王玨TaoMa馬濤HengLiu劉恒andFangWang王芳
    Chinese Physics B 2021年1期
    關(guān)鍵詞:王玨馬濤王旭

    Xu Wang(王旭), Jue Wang(王玨), Tao Ma(馬濤),2,?, Heng Liu(劉恒),3, and Fang Wang(王芳),2

    1College of Electronic and Electrical Engineering,Henan Normal University,Xinxiang 453007,China

    2Henan Key Laboratory of Optoelectronic Sensing Integrated Application,Xinxiang 453007,China

    3Academician Workstation of Electromagnetic Wave Engineering of Henan Province,Xinxiang 453007,China

    Keywords: surface plasmon polariton,graphene,porous silicon,finite element method(FEM)

    1. Introduction

    Graphene is an atom-thick monolayer two-dimensional(2D) carbon material in which the atoms are arranged in a honeycomb lattice.[1–4]It has remarkable optical properties,such as broadband absorption, tunable Fermi level, and large nonlinearity.[5–8]In the mid-infrared band and THz band,graphene exhibits a strong semi-metal property and supports surface plasmon polariton(SPP).[9–12]Graphene has a strong interaction with light in a wide frequency range and is suitable for active applications. In last decades, different structures based on graphene have been widely reported, such as graphene arrays,[13–15]graphene nano-ribbons,[16]dielectricloaded graphene plasmon waveguide,[17,18]dual-grapheneon-graphene configuration,[19]and multilayer graphene metamaterial.[20]Comparing with the traditional noble metal materials, graphene-based SPP waveguides can achieve high optical performances and low propagation loss.[21]

    Recently, the graphene-coated nanowire waveguides(GCNWs) based on graphene SPP have been proposed,which have better performances including the small loss and high mode field confinement than the conventional dielectric waveguides. A semiconductor-graphene cylinder was investigated to be applied to the transmission of THz waves with a weak effect of light wave broadening in the remote transmission.[22]A GCNW based on an elliptic cylinder instead of a cylinder was investigated to achieve a large propagation length of ~200 μm with a small normalized mode area of ~10-3.[23]A coaxial-like GCNW-based long-range SPP waveguide was designed, which is composed of a cylindrical silicon nanowire core surrounded by an inner graphene layer,a silica layer,and an outer graphene layer from inside to outside.[24]The simulation results showed that an ultrasmall normalized mode area of ~10-5with a propagation length of~8 μm can be achieved at an operating wavelength of 7 μm.The Sommerfeld wave in a single-wire THz waveguide is radially polarized,difficult to excite,and weakly guided,which limits the practical applications of the THz waveguide. To solve the problem, a two-wire terahertz waveguide was proposed,which has lower bending loss than the single-wire THz waveguide.[25]In order to improve the performances of the GCNW,a thin low-index buffer layer was embedded between the GCNW and substrate.[26]It was found that a low propagation loss of 0.312 dB·μm-1with an improved figure of merit(FoM) can be realized when an ultra-small buffer thickness and gap distance are chosen. In addition, two vertically coupling cylindrical GCNWs integrated with a thin high-index dielectric substate are also studied to improve the performances of the GCNW.[27]The results show that the proposed suspended wedge GCNW’s FoM is nearly two-fold higher than that of the plasmon mode in the single GCNW on a substrate.

    Due to the good optical properties, porous silicon (PS)is a suitable candidate for the applications of optoelectronics such as in light-emitting diodes,photodetectors,optical modulators, and optical sensors.[28–32]The large internal surface of PS can enhance the interaction between light and matter.The tunable porosity of PS, which varies with the fabrication parameters,[30]makes its refractive index (RI) vary between the air and the bulk silicon. Moreover,the hybrid structures combining PS with graphene-based materials proved to be helpful in the applications in photonic and energy conversion devices.[33,34]The hybrid PS/graphene-based structures provide a great platform for their applications in optoelectronics,power engineering,and sensing.[31]

    In this paper, a GCNW composed of two suspended graphene-coated wedge PS nanowires with an Ag partition is designed. The plasmonic characteristics and sensing performances of the SPP mode in the designed structure are investigated by using the finite element method(FEM).By sweeping the geometry parameters,the plasmonic characteristics of the suspended wedge GCNW are optimized. To evaluate the sensing performances,the waveguide sensitivity is calculated.The plasmonic characteristics and sensing performances are compared with their counterparts of other different GCNWs.The rest of this paper is organized as follows. In Section 2,the structure of the proposed suspended wedge GCNW is designed.In Section 3,the plasmonic characteristics and sensing performances are analyzed and optimized. Conclusions and perspectives are drawn in Section 4.

    2. Waveguide structure

    Figure 1 shows the schematic of the suspended wedge GCNW composed of two isosceles triangular nanowires coated with graphene symmetrically distributed on both sides of an Ag partition. The thickness of the Ag slab is denoted as t. The three apex angles for each of the wedge dielectric nanowires are chamfered with corner radius r being 25 nm.The height and the apex angle of the triangle are denoted as L and θ, respectively. The gap between the apex angle of the triangular nanowire and the Ag slab is marked as g.The RI of porous silicon is ~1.55.[32]The dielectric constant of the monolayer graphene can be calculated from εg=1+iσg/(ε0ωtg),[35]where tgis the thickness of the monolayer graphene,ω is the angular frequency of the incident light,and ε0is the permittivity in free space. Within the random phase approximation,the dynamic optical response of graphene can be derived from the Kubo’s formula,[36]σg=σintra+σinter,where σintraand σinterare the intra band contribution and inter band contribution, respectively. In the terahertz band and the infrared band,the surface conductivity of graphene can be approximated as[37]

    where τ is the relaxation time, T is the ambient temperature,EFis the Fermi energy,hbis the reduced plank constant,kbis the Boltzmann constant, and e=1.6×10-19C. Here,T =300 K,and τ =0.5 ps.

    Fig.1. Schematic diagram of suspended wedge GCNW.

    The dielectric constant of Ag is described by Drude–Lorentz model[21]

    The mode characteristic, propagation performance and sensing performance of the suspended wedge GCNW are simulated by the commercial software COMSOL Multiphysics based on the FEM which is widely used to calculate the characteristics of integrated photonic devices. The computational domain is discretized into triangular meshes. The scattering boundary condition is used in the simulations. The mesh grid in graphene layer is refined to ensure the accuracy of calculation. Convergence test are done to ensure that the calculation region and mesh size do not interfere with the results.

    3. Plasmonic characteristics

    3.1. Mode field distributions

    The mode field distributions of the modes in the suspended wedge GCNW are shown in Figs. 2(a)–2(c). The results show that the SPP mode is a fundamental mode in the suspended wedge GCNW.The mode energy of the SPP mode is mainly distributed between the porous silicon and Ag partition. However, the guide mode in the porous silicon is restricted due to the small cross-section size of the proposed GCNW (200 nm). Here, L=200 nm,t =40 nm, g=5 nm,and EF=0.5 eV.The normalized electric field(E)along the x direction(y=0)and along the y direction(x=t/2+g/2)of the suspended wedge GCNW are shown in Figs.2(d)–2(f)and Figs.2(g)–2(i),respectively. The normalized E in x direction has a maximum value at the graphene surface due to the SPP effect.

    Fig.2. Mode field distributions of suspended wedge GCNW with(a)g=5 nm,(b)10 nm,and(c)20 nm;normalized E along x direction across(y=0),(d)g=5 nm, (e)g=10 nm, and(f)g=20 nm; normalized E along y direction across(x=t/2+g/2), (g)g=5 nm, (h)0 nm, and(i)20 nm, with other parameters being EF=0.5 eV,T =300 K,τ =0.5 ps,L=200 nm,t=40 nm,and nc=1.0.

    3.2. Mode characteristics

    Generally,the mode characteristics are highly dependent on the geometry parameters of the waveguide. The geometry parameters effect on the mode characteristics including Re(neff), Lp, Am, and FoM are investigated when the operating frequency f0is 30, 40, and 50 THz, separately. Here,EF=0.6 eV,L=200 nm,r=25 nm,θ =60?,and nc=1.0.The influences of g on Re(neff), Lp, Am, and FoM with different frequencies are shown in Figs.3(a)–3(d). As shown in Fig.3(a),Re(neff)decreases with g rising because the coupling between the graphene-coated nanowire and the slab substrate is weakened. In Fig.3(b), Lpfirst increases slightly and then decreases slowly as g increases. As g increases from a small value, the influence of the ohm loss in Ag slab reduces Lp.When g keeps growing, the mode confinement weakens and Lpdecreases. As shown in Fig.3(c),an increasing g will dramatically reduce Am. It indicates that the suspended wedge GCNW has better mode confinement when g is small. As shows in Fig.3(d),a smaller g matches a better FoM.As shown in Figs. 3(a)–3(d), the operating frequency has a great influence on the mode characteristics. The high frequency leads to a large Re(neff)and Am, but a short Lp. The GCNW has a better FoM at the high frequency when g is less than 10 nm.Considering the tradeoff between Lpand FoM,g is chosen to be 10 nm.

    The effects of L on the mode characteristics of the suspended wedge GCNW are shown in Figs. 4(a)–4(d). The increasing of L lead Re(neff)and Lpto slightly increase while Amincreases significantly at a higher operating frequency. Meanwhile, a higher operating frequency corresponds to a smaller Lpand a larger Am. In Figs.5(a)–5(d), the mode characteristics have no decisive dependence on t. As is well known,the mode energy of the SPP mode is mainly distributed at the interface between the dielectric and metal. There is almost no distribution inside the metal(Ag). This can be proved by the mode distributions which have been shown in Figs.2(a)–2(c).Hence, the thickness of the metal (t) has little effect on the mode characteristics.When f0increases,the larger absorption of graphene leads the propagation loss to increase, which reduces Lp. However, Amincreases with frequency increasing.The mode characteristics of the GCNW are not sensitive to t,which implies that the suspended wedge GCNW has a good tolerance to the fabrication error. In the following simulations,t is chosen to be 40 nm.

    Fig.3. Influences of g on(a)Re(neff),(b)Lp,(c)Am,and(d)FoM at f0=30 THz,40 THz,and 50 THz.

    Fig.4. The L-dependent(a)Re(neff),(b)Lp,(c)Am,and(d)FoM for f0=30 THz,40 THz,and 50 THz.

    Fig.5. Influences of t on(a)Re(neff),(b)Lp,(c)Am,and(d)FoM for f0=30,40,and 50 THz.

    According to Eq. (1), σgcan be flexibly tuned through varying EFwhich can be electrically controlled by the bias voltage supplied to the monolayer graphene. To demonstrate the tunability of the suspended wedge GCNW,the mode characteristics as a function of EFare shown in Figs.6(a)–6(d). As shown in Fig.6(a),Re(neff)decreases with EFincreasing,but increases with f0increasing. In Fig.6(b),Lpincreases monotonically with EFincreasing,but decreases with f0increasing.The inter band loss of graphene serving as a dominant factor is low at a large EF,which results in the increase of Lp. Furthermore, the increase of EFwill lead the value of τ to increase,which can further reduce the loss and increase Lp. In Fig.6(c),Amfirst increases and then decreases when EFchanges from 0.2 eV to 0.9 eV, and has a maximum when EF=~0.41 eV due to the smallest permittivity of the graphene. The dependence of FoM on EFis shown in Fig.6(d),which indicates that the overall performance of the suspended wedge GCNW can be improved when EFincreases.

    Fig.6. EF-dependent(a)Re(neff),(b)Lp,(c)Am,and(d)FoM for f0=30,40,and 50 THz.

    Fig.7. Effects of nc on(a)Re(neff),(b)Lp,(c)Am,and(d)FoM for f0=30,40,and 50 THz.

    For the applications in sensing,the effects of the cladding RI(nc)on the mode characteristics are investigated. The valuations of Re(neff),Lp,Am,and FoM with ncin a range from 1.0 to 1.9 are shown in Figs.7(a)–7(d)at different values of f0.Here, we take r=20 nm, L=200 nm, g=10 nm, θ =60?,and EF=0.6 eV. As shown in Fig. 7(a), Re(neff) increases with the ncincreasing monotonically. The changes of Re(neff)show a near-linearly increasing trend which can be used as the homogeneous sensing. The waveguide sensitivity (Swg)can be calculated by the linear fitting, which is defined as Swg=Δneff/Δnc.[44]The results show that a larger Swgcan be achieved when f0is higher. As shown in Figs.7(b)and 7(c),both the Lpand Amdecrease with the ncincreasing due to the decrease of the RI difference between the core and cladding.In Fig. 7(d), the FoM is improved when ncincrease from 1,and then tends to be constant when ncis larger than 1.45.

    3.3. Comparisons among different GCNWs

    In order to compare the mode characteristics and sensing performances among different kinds of waveguides,three different GCNWs are investigated. The three GCNWs are respectively the suspended wedge GCNW, cylindrical GCNW,and isolated GCNW with the same materials. The schematics of the three GCNWs are shown in Figs.8(a)–8(c),respectively.Here, we take L=2R, and the other parameters are the same as those used in the previous simulations. The electrical field distributions of the three waveguides are shown in Figs.8(d)–8(f). The results show that the suspended wedge GCNW and cylindrical GCNW have much higher field confinements than the isolated GCNW.However,the electric field of the mode in the isolated GCNW is mainly concentrated at the interface of the cylindrical nanowire. The electric field distributions of the three GCNW along the x axis are shown in Figs.8(g)–8(i).

    Figures 9(a)and 9(b)show the plots of Lpversus Amfor the three GCNWs with different values of f0and nc.As shown in Fig. 9(a), the Lpdecreases but the Amincreases as the f0increases from 10 THz to 50 THz. The suspended wedge GCNW has a longer Lpthan the other two GCNWs at the same value of Am. In Fig.9(b),considering the tradeoff between Lpand Am,the performances of the suspended wedge GCNW and cylindrical GCNW are much better than those of the isolated GCNW as the ncincreases from 1.0 THz to 1.9 THz. The suspended wedge GCNW has more superior performances than the other two. The variations of Re(neff)with the increase of ncfor the three waveguides are shown in Fig. 9(c). According to the linear fitting,the waveguide sensitivities of the three waveguides can be achieved. The results show that the waveguide sensitivity of the suspended GCNW is higher than that of the isolated GCNW, but lower than that of the cylindrical GCNW.

    Fig. 8. Schematics of (a) wedge GCNW, (b) cylindrical GCNW, and (c) isolated GCNW; mode field distributions in panel (a) wedge GCNW, (b)cylindrical GCNW,and(c)isolated GCNW;normalized electric field E along x direction(y=0)in(a)wedge GCNW,(b)cylindrical GCNW,and(c)isolated GCNW.

    Fig. 9. Comparisons among different GCNWs with different parameters, (a) Lp versus Am for different values of f0, (b) Lp versus Am for different values of nc,and(c)Re(neff)versus nc.

    4. Conclusions and perspectives

    In this work, a suspended wedge GCNW with a thin Ag partition is investigated. The simulation results show that a normalized mode field area of ~10-4and a figure of merit of ~100 can be achieved by optimizing the parameters. The suspended wedge GCNW has a strong interaction between the metal slab and the nanowires, which can have potential applications in the high-density integrated photonic circuits and optoelectronic devices in terahertz frequency band. The plasmonic characteristics can be dynamically adjusted by changing the Fermi energy of graphene which is tuned by a bias voltage. The suspended wedge GCNW has a relatively high waveguide sensitivity, which has potential applications in RI sensing. The suspended structure and large internal surface of the suspended wedge GCNW can improve its sensing performances. The suspended wedge GCNW has promising applications in the electro-optic modulations,optical interconnects,optical switches,and optical sensing.

    猜你喜歡
    王玨馬濤王旭
    與貓貓狗狗親熱須知
    這些涉疫謠言,別信!
    身邊的人防工程你知道嗎?
    Collision site effect on the radiation dynamics of cytosine induced by proton
    Integrated silicon-based suspended racetrack micro-resonator for biological solution sensing with high-order mode*
    陪伴
    北方音樂(2019年10期)2019-07-10 19:13:36
    我校王玨教授受邀為國際權(quán)威期刊特約審稿人
    熱線外低Rayleigh數(shù)自然對流換熱的機理
    王玨作品選
    丹鳳回眸三十載 弘韻放歌迎春來
    ——“弘韻抒懷”箜篌專場音樂會掠影
    音樂生活(2014年9期)2014-09-04 09:29:36
    女的被弄到高潮叫床怎么办| 久久99一区二区三区| 日本午夜av视频| 国产男女内射视频| 在线 av 中文字幕| 一区福利在线观看| 精品免费久久久久久久清纯 | 亚洲国产看品久久| 少妇精品久久久久久久| 久久亚洲国产成人精品v| 亚洲人成网站在线观看播放| 免费在线观看完整版高清| 亚洲视频免费观看视频| 午夜福利免费观看在线| 国产女主播在线喷水免费视频网站| 欧美日韩综合久久久久久| 51午夜福利影视在线观看| 久久99精品国语久久久| 大香蕉久久网| 美女高潮到喷水免费观看| 亚洲成av片中文字幕在线观看| 深夜精品福利| 99国产精品免费福利视频| 精品少妇黑人巨大在线播放| 亚洲,欧美,日韩| 人妻一区二区av| 中文字幕人妻丝袜一区二区 | 男女边吃奶边做爰视频| √禁漫天堂资源中文www| 成人18禁高潮啪啪吃奶动态图| 中文精品一卡2卡3卡4更新| 亚洲精品国产色婷婷电影| 久久国产亚洲av麻豆专区| 亚洲精品国产区一区二| 日韩一区二区视频免费看| 亚洲国产精品999| 亚洲国产看品久久| 国产一区二区三区av在线| 欧美激情极品国产一区二区三区| 一区二区日韩欧美中文字幕| 日韩视频在线欧美| 午夜免费观看性视频| 男女无遮挡免费网站观看| 一本一本久久a久久精品综合妖精| 两个人免费观看高清视频| 午夜福利,免费看| 国产精品二区激情视频| 十八禁网站网址无遮挡| 午夜福利在线免费观看网站| 日韩,欧美,国产一区二区三区| 成人亚洲精品一区在线观看| 欧美人与性动交α欧美精品济南到| 日韩制服骚丝袜av| 精品少妇内射三级| 亚洲专区中文字幕在线 | √禁漫天堂资源中文www| 黄色视频在线播放观看不卡| 久久精品aⅴ一区二区三区四区| 交换朋友夫妻互换小说| 丰满乱子伦码专区| 精品国产超薄肉色丝袜足j| 久久av网站| 国产精品偷伦视频观看了| av天堂久久9| 最近的中文字幕免费完整| 午夜福利乱码中文字幕| 免费人妻精品一区二区三区视频| 色视频在线一区二区三区| 欧美亚洲日本最大视频资源| 国产成人精品在线电影| 成年女人毛片免费观看观看9 | 精品国产超薄肉色丝袜足j| 久久av网站| 国产精品一国产av| 精品久久久精品久久久| 午夜福利一区二区在线看| 日韩av在线免费看完整版不卡| 成人影院久久| 久久久久久久大尺度免费视频| 亚洲国产日韩一区二区| 亚洲伊人久久精品综合| 国产精品熟女久久久久浪| 精品一品国产午夜福利视频| 日本色播在线视频| 久久韩国三级中文字幕| 美女中出高潮动态图| 欧美精品人与动牲交sv欧美| 天美传媒精品一区二区| 精品亚洲成a人片在线观看| 色网站视频免费| e午夜精品久久久久久久| 美国免费a级毛片| 一个人免费看片子| 这个男人来自地球电影免费观看 | 波野结衣二区三区在线| 国产精品三级大全| 热re99久久精品国产66热6| 十八禁网站网址无遮挡| 七月丁香在线播放| 水蜜桃什么品种好| 19禁男女啪啪无遮挡网站| 日韩不卡一区二区三区视频在线| 最近手机中文字幕大全| 国产av一区二区精品久久| 丝袜人妻中文字幕| 欧美日韩视频高清一区二区三区二| 亚洲精品国产区一区二| 香蕉丝袜av| 中文精品一卡2卡3卡4更新| 水蜜桃什么品种好| 中文字幕人妻丝袜一区二区 | 日韩电影二区| 视频在线观看一区二区三区| 久久国产亚洲av麻豆专区| 国产一区二区 视频在线| 久久这里只有精品19| 亚洲自偷自拍图片 自拍| 在线观看一区二区三区激情| 亚洲人成电影观看| 日日摸夜夜添夜夜爱| 三上悠亚av全集在线观看| 国产成人精品在线电影| 免费av中文字幕在线| 日韩一区二区三区影片| 欧美黑人欧美精品刺激| 日本vs欧美在线观看视频| 亚洲欧美清纯卡通| 免费看不卡的av| 国产一区二区三区av在线| 卡戴珊不雅视频在线播放| 女人高潮潮喷娇喘18禁视频| 欧美日韩综合久久久久久| 啦啦啦在线观看免费高清www| 侵犯人妻中文字幕一二三四区| 欧美黄色片欧美黄色片| 最新在线观看一区二区三区 | 热re99久久精品国产66热6| 国产在线免费精品| 国产亚洲欧美精品永久| 在线亚洲精品国产二区图片欧美| 纵有疾风起免费观看全集完整版| 国精品久久久久久国模美| 国产野战对白在线观看| 久久性视频一级片| 美国免费a级毛片| 午夜福利乱码中文字幕| 日本午夜av视频| 午夜91福利影院| 青春草视频在线免费观看| 亚洲av国产av综合av卡| xxxhd国产人妻xxx| 国产又爽黄色视频| 婷婷色综合大香蕉| 精品久久久精品久久久| 人妻 亚洲 视频| 亚洲美女黄色视频免费看| 亚洲婷婷狠狠爱综合网| 宅男免费午夜| 一本—道久久a久久精品蜜桃钙片| 久久久久网色| 久久av网站| 日韩一卡2卡3卡4卡2021年| 一本大道久久a久久精品| 秋霞伦理黄片| 日韩一卡2卡3卡4卡2021年| 9热在线视频观看99| 免费在线观看完整版高清| 看非洲黑人一级黄片| 我的亚洲天堂| 啦啦啦啦在线视频资源| 亚洲成人av在线免费| xxx大片免费视频| 亚洲五月色婷婷综合| 国产在线视频一区二区| 啦啦啦在线观看免费高清www| 建设人人有责人人尽责人人享有的| 五月开心婷婷网| 亚洲国产欧美在线一区| 晚上一个人看的免费电影| 人体艺术视频欧美日本| 国产日韩一区二区三区精品不卡| 晚上一个人看的免费电影| 免费女性裸体啪啪无遮挡网站| 亚洲精品国产色婷婷电影| 九九爱精品视频在线观看| 最近最新中文字幕大全免费视频 | 精品国产超薄肉色丝袜足j| 天天添夜夜摸| 黑人欧美特级aaaaaa片| 波多野结衣av一区二区av| 亚洲精品日韩在线中文字幕| 亚洲综合精品二区| 亚洲精品一二三| 精品国产一区二区久久| 少妇人妻精品综合一区二区| 叶爱在线成人免费视频播放| 青青草视频在线视频观看| 涩涩av久久男人的天堂| 黄片无遮挡物在线观看| 黄色视频在线播放观看不卡| 在线天堂最新版资源| 制服人妻中文乱码| av线在线观看网站| 久久性视频一级片| 国产片特级美女逼逼视频| 人人妻人人爽人人添夜夜欢视频| av网站在线播放免费| 蜜桃国产av成人99| 中文天堂在线官网| 亚洲国产欧美网| 国产不卡av网站在线观看| 精品国产一区二区久久| 999精品在线视频| 在线天堂最新版资源| 久久热在线av| 一区二区日韩欧美中文字幕| 精品一区二区免费观看| 精品国产超薄肉色丝袜足j| 一级毛片黄色毛片免费观看视频| 午夜免费鲁丝| 国产午夜精品一二区理论片| 亚洲美女视频黄频| 老司机靠b影院| 夫妻性生交免费视频一级片| 99久久精品国产亚洲精品| 日韩成人av中文字幕在线观看| 视频区图区小说| 男女高潮啪啪啪动态图| 国产 精品1| av在线app专区| 久久精品国产亚洲av涩爱| 又大又爽又粗| 激情五月婷婷亚洲| 久久久久精品性色| 天天影视国产精品| 亚洲av电影在线进入| 日本一区二区免费在线视频| 国产人伦9x9x在线观看| 老司机深夜福利视频在线观看 | 亚洲一级一片aⅴ在线观看| 天堂8中文在线网| 亚洲av综合色区一区| 国产精品久久久人人做人人爽| 肉色欧美久久久久久久蜜桃| 操美女的视频在线观看| 亚洲综合精品二区| 狠狠精品人妻久久久久久综合| 国产一区二区激情短视频 | 一区二区三区精品91| 丰满少妇做爰视频| 国产一区二区激情短视频 | 国产男女内射视频| 97在线人人人人妻| 精品国产一区二区久久| 在线亚洲精品国产二区图片欧美| 在线观看免费日韩欧美大片| 国产精品99久久99久久久不卡 | 国产精品99久久99久久久不卡 | 在线免费观看不下载黄p国产| 色网站视频免费| 精品少妇久久久久久888优播| 国产色婷婷99| 国产精品亚洲av一区麻豆 | xxx大片免费视频| 自线自在国产av| 十八禁人妻一区二区| 夜夜骑夜夜射夜夜干| 国产探花极品一区二区| 中国国产av一级| 国产精品麻豆人妻色哟哟久久| 哪个播放器可以免费观看大片| 9热在线视频观看99| 美女脱内裤让男人舔精品视频| 久久青草综合色| av视频免费观看在线观看| 十分钟在线观看高清视频www| 女人被躁到高潮嗷嗷叫费观| 亚洲精品,欧美精品| 色婷婷久久久亚洲欧美| 精品国产露脸久久av麻豆| 中国国产av一级| 精品视频人人做人人爽| 国产精品人妻久久久影院| 三上悠亚av全集在线观看| 欧美亚洲 丝袜 人妻 在线| 2021少妇久久久久久久久久久| 久久精品人人爽人人爽视色| 啦啦啦视频在线资源免费观看| 欧美老熟妇乱子伦牲交| 搡老乐熟女国产| 亚洲第一av免费看| 观看av在线不卡| 亚洲综合精品二区| 嫩草影院入口| 欧美精品亚洲一区二区| 巨乳人妻的诱惑在线观看| 亚洲精品aⅴ在线观看| 青春草亚洲视频在线观看| 在线亚洲精品国产二区图片欧美| 肉色欧美久久久久久久蜜桃| 亚洲国产av影院在线观看| 中文字幕av电影在线播放| 如何舔出高潮| 国产av精品麻豆| 精品少妇久久久久久888优播| 国产成人午夜福利电影在线观看| 多毛熟女@视频| 一级爰片在线观看| 中国三级夫妇交换| 少妇精品久久久久久久| 中文字幕色久视频| 日本欧美视频一区| 成人三级做爰电影| 在线观看一区二区三区激情| 中文字幕色久视频| 国产又爽黄色视频| 久久久国产一区二区| 国产野战对白在线观看| 十分钟在线观看高清视频www| 自线自在国产av| 亚洲一卡2卡3卡4卡5卡精品中文| 老汉色∧v一级毛片| 亚洲一码二码三码区别大吗| 免费不卡黄色视频| www日本在线高清视频| 中文字幕人妻丝袜一区二区 | 国产淫语在线视频| 七月丁香在线播放| 99久久人妻综合| 婷婷色综合大香蕉| 国产爽快片一区二区三区| 国产一区二区三区av在线| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩亚洲高清精品| 又大又黄又爽视频免费| 蜜桃国产av成人99| 亚洲一区二区三区欧美精品| 久久综合国产亚洲精品| 日韩视频在线欧美| 日韩大片免费观看网站| 黄网站色视频无遮挡免费观看| 日韩熟女老妇一区二区性免费视频| 男女高潮啪啪啪动态图| 秋霞伦理黄片| 各种免费的搞黄视频| 丝袜在线中文字幕| 亚洲色图 男人天堂 中文字幕| 9热在线视频观看99| 免费观看人在逋| 亚洲色图综合在线观看| 捣出白浆h1v1| 国产免费又黄又爽又色| 最新在线观看一区二区三区 | 一区二区三区激情视频| 日韩人妻精品一区2区三区| 高清欧美精品videossex| 看十八女毛片水多多多| 国精品久久久久久国模美| 午夜福利,免费看| 国产精品 欧美亚洲| 国产精品久久久av美女十八| 成人国产av品久久久| 男人添女人高潮全过程视频| 狂野欧美激情性xxxx| 亚洲av在线观看美女高潮| 男女边摸边吃奶| 中文字幕av电影在线播放| 国产精品久久久久久精品古装| 亚洲久久久国产精品| 精品一区二区三区四区五区乱码 | 永久免费av网站大全| 欧美久久黑人一区二区| 国产在线一区二区三区精| 国产成人精品无人区| av国产精品久久久久影院| 两个人免费观看高清视频| 99精品久久久久人妻精品| 嫩草影院入口| 亚洲人成网站在线观看播放| 精品国产乱码久久久久久小说| 男人爽女人下面视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产露脸久久av麻豆| av又黄又爽大尺度在线免费看| 美女国产高潮福利片在线看| 欧美在线黄色| 欧美亚洲 丝袜 人妻 在线| 亚洲精品久久午夜乱码| 18禁观看日本| 亚洲av电影在线进入| 亚洲av福利一区| 亚洲熟女毛片儿| 国产探花极品一区二区| 国产成人欧美在线观看 | 成人亚洲欧美一区二区av| 91精品国产国语对白视频| 女人久久www免费人成看片| av国产精品久久久久影院| 五月开心婷婷网| 国产免费一区二区三区四区乱码| 精品免费久久久久久久清纯 | 午夜免费男女啪啪视频观看| 久久综合国产亚洲精品| 五月开心婷婷网| 丝袜美足系列| 久久人妻熟女aⅴ| 亚洲一区中文字幕在线| 麻豆av在线久日| 亚洲欧美日韩另类电影网站| 青草久久国产| 九九爱精品视频在线观看| 日日撸夜夜添| 精品一品国产午夜福利视频| 精品第一国产精品| 大香蕉久久网| 又黄又粗又硬又大视频| 国产精品 国内视频| 国产日韩欧美视频二区| 成人黄色视频免费在线看| 亚洲精品国产av蜜桃| 人人妻人人澡人人看| 乱人伦中国视频| 桃花免费在线播放| 午夜福利乱码中文字幕| 我的亚洲天堂| 国产高清不卡午夜福利| 国产精品久久久久久精品电影小说| 亚洲精品视频女| 精品国产超薄肉色丝袜足j| 少妇被粗大猛烈的视频| 精品人妻一区二区三区麻豆| 一边亲一边摸免费视频| 欧美黑人欧美精品刺激| 99久久99久久久精品蜜桃| 久久人妻熟女aⅴ| 九色亚洲精品在线播放| 黄片无遮挡物在线观看| 久久精品国产a三级三级三级| 亚洲精品乱久久久久久| 国产精品国产av在线观看| 午夜免费鲁丝| 青草久久国产| 飞空精品影院首页| 成人国语在线视频| h视频一区二区三区| 国产视频首页在线观看| 美女高潮到喷水免费观看| 午夜福利影视在线免费观看| 亚洲av欧美aⅴ国产| 亚洲欧美激情在线| 少妇被粗大猛烈的视频| 国产精品久久久av美女十八| 国产精品一区二区在线不卡| 成人免费观看视频高清| 国产老妇伦熟女老妇高清| 亚洲av国产av综合av卡| 天天躁夜夜躁狠狠躁躁| 自拍欧美九色日韩亚洲蝌蚪91| 另类亚洲欧美激情| 久久久久久久久久久久大奶| 99国产综合亚洲精品| 欧美日韩亚洲国产一区二区在线观看 | 老汉色∧v一级毛片| 日韩av在线免费看完整版不卡| 中文乱码字字幕精品一区二区三区| 国产有黄有色有爽视频| 色播在线永久视频| 亚洲精品美女久久av网站| 9色porny在线观看| 免费看不卡的av| 欧美国产精品一级二级三级| 精品一区二区三卡| 国产成人免费观看mmmm| 男人舔女人的私密视频| 免费观看a级毛片全部| 一级a爱视频在线免费观看| 满18在线观看网站| 王馨瑶露胸无遮挡在线观看| 成年人免费黄色播放视频| 午夜福利影视在线免费观看| 久久免费观看电影| 中文字幕制服av| 亚洲av男天堂| kizo精华| 精品国产国语对白av| 交换朋友夫妻互换小说| 蜜桃国产av成人99| 国产成人欧美在线观看 | 午夜福利网站1000一区二区三区| 国产老妇伦熟女老妇高清| 国产极品天堂在线| 九九爱精品视频在线观看| 久久久国产一区二区| 中文字幕人妻丝袜一区二区 | 又大又爽又粗| 久久精品国产a三级三级三级| 国产精品免费大片| 亚洲,欧美精品.| 国产免费一区二区三区四区乱码| 色精品久久人妻99蜜桃| 久久人人97超碰香蕉20202| 大码成人一级视频| 久久精品国产亚洲av涩爱| 夜夜骑夜夜射夜夜干| 免费高清在线观看视频在线观看| 亚洲国产精品国产精品| 国产视频首页在线观看| 午夜福利在线免费观看网站| 97精品久久久久久久久久精品| 国产欧美日韩综合在线一区二区| 久久精品熟女亚洲av麻豆精品| 天堂8中文在线网| 精品国产乱码久久久久久男人| 亚洲精品成人av观看孕妇| 少妇人妻 视频| 久久精品aⅴ一区二区三区四区| 国产av国产精品国产| 免费女性裸体啪啪无遮挡网站| 麻豆精品久久久久久蜜桃| 亚洲av男天堂| 免费在线观看完整版高清| 天天躁日日躁夜夜躁夜夜| 丝袜人妻中文字幕| videos熟女内射| 亚洲国产精品一区三区| 欧美日韩一区二区视频在线观看视频在线| 国产亚洲一区二区精品| 少妇的丰满在线观看| 国产精品二区激情视频| 国产精品熟女久久久久浪| 亚洲熟女精品中文字幕| 日本91视频免费播放| 亚洲av福利一区| 赤兔流量卡办理| 国产成人欧美在线观看 | 欧美日韩一区二区视频在线观看视频在线| 最近的中文字幕免费完整| 午夜老司机福利片| 午夜免费男女啪啪视频观看| 日韩欧美精品免费久久| 91国产中文字幕| 欧美精品高潮呻吟av久久| 天堂8中文在线网| 欧美xxⅹ黑人| 久久久久久久大尺度免费视频| 高清av免费在线| 女性生殖器流出的白浆| 少妇 在线观看| 99久久精品国产亚洲精品| 欧美激情 高清一区二区三区| 亚洲精品国产av成人精品| 超色免费av| 亚洲国产毛片av蜜桃av| 最近中文字幕高清免费大全6| 男女下面插进去视频免费观看| 三上悠亚av全集在线观看| 夫妻午夜视频| 国产男女超爽视频在线观看| 一区二区三区激情视频| 国产一区亚洲一区在线观看| 黄色视频不卡| 国产精品一区二区精品视频观看| 亚洲欧美成人综合另类久久久| 国产又色又爽无遮挡免| 日韩免费高清中文字幕av| 日本av免费视频播放| 美女午夜性视频免费| av在线播放精品| 久久免费观看电影| 国产亚洲精品第一综合不卡| 日韩成人av中文字幕在线观看| 国产成人精品无人区| 嫩草影视91久久| 久久影院123| 欧美日韩一区二区视频在线观看视频在线| 国产一级毛片在线| 多毛熟女@视频| 99精国产麻豆久久婷婷| 蜜桃国产av成人99| 国产成人啪精品午夜网站| 黑丝袜美女国产一区| 免费看av在线观看网站| 熟女少妇亚洲综合色aaa.| 美女高潮到喷水免费观看| 99热全是精品| 亚洲av福利一区| videosex国产| 久久久精品区二区三区| 中文精品一卡2卡3卡4更新| 看十八女毛片水多多多| 建设人人有责人人尽责人人享有的| 大码成人一级视频| 国产免费现黄频在线看| 国产乱来视频区| 啦啦啦在线观看免费高清www| videosex国产| 精品国产超薄肉色丝袜足j| 高清av免费在线| 大陆偷拍与自拍| 悠悠久久av| 国产亚洲最大av| 亚洲欧美一区二区三区黑人| 国产欧美日韩一区二区三区在线| 男女国产视频网站| 欧美xxⅹ黑人| 亚洲图色成人| 午夜免费鲁丝| 麻豆av在线久日| 天天影视国产精品| 丝袜美足系列| 国产 一区精品| 亚洲人成网站在线观看播放| 超碰成人久久| 亚洲国产av影院在线观看| 91精品三级在线观看|