• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phonon dispersion relations of crystalline solids based on LAMMPS package?

    2021-11-23 07:28:30ZhiyongWei魏志勇TianhangQi戚天航WeiyuChen陳偉宇andYunfeiChen陳云飛
    Chinese Physics B 2021年11期
    關(guān)鍵詞:陳云

    Zhiyong Wei(魏志勇) Tianhang Qi(戚天航) Weiyu Chen(陳偉宇) and Yunfei Chen(陳云飛)

    1Jiangsu Key Laboratory for Design&Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering,Southeast University,Nanjing 211189,China

    2College of Mechanical and Electronic Engineering,Nanjing Forestry University,Nanjing 210037,China

    Keywords: phonon dispersion relation,molecular dynamics,force constant,potential function

    1. Introduction

    Phonons are collective excitations and main energy carriers in crystalline solids, and also have important effects on many physical properties.[1,2]For example,phonon dispersion and scattering can determine the thermal conductivity of insulators and semiconductors.[3-5]When two solids come together to form an interface, the overlap of the phonon density of states between the two solids can influence the heat flux across the interface.[6-8]In addition, many other physical properties of solid, such as the sound velocity and the elastic constants, can be obtained from the low-frequency region of the phonon dispersion relation.[9]Several recently found physical phenomena or results are also closely related to phonon dispersion, such as hydrodynamic phonon transport,[10]curvature-related phonon transport,[11]and resonant scattering.[12]Harmonic lattice dynamics is a simple model that approximates the interactions among atoms as springs without considering the higher-order interactions,which have been established in the 1920s and 1930s by Bonn and Huang.[13]From the harmonic lattice dynamics theory,one can calculate the frequency and eigenvector of any phonon mode in the first Brillouin zone(FBZ)of the crystal,and can further obtain the phonon group velocity,capacity,irradiation heat flux,[14]etc. The optical phonon modes at some particular location (such as the center or boundary) of the FBZ would be relevant to the IR or Raman information.[15]Therefore, the rapid and accurate acquisition of phonon dispersion relations of materials or structures is of great significance for understanding the mechanical,thermal,and optical properties of solids.

    The General Utility Lattice Program(GULP)package[16]is a commonly used tool to calculate the phonon properties of crystalline solids. This package can use a large number of potential functions or force constants as input to obtain the phonon dispersion relation. However, all the internal functions of this software package are integrated together, which makes it difficult for researchers to modify the code to adapt to some new potential functions. The Phonopy package[17]is another commonly used tool to calculate the phonon properties of crystalline solids. This package can use force constants obtained from various external packages, including first principle packages (VASP[18]and QUANTUM ESPRESSO,[19]etc.) and MD package(LAMMPS),as input to get the phonon dispersion relation. However,the interfaces between Phonopy and these external packages are not easy to set up, which needs to prepare many intermediate process files. Since the LAMMPS package[20]is widely used to simulate phonon or thermal transport of crystalline solids, the MD simulation results,such as the thermal conductivity and the thermal boundary conductance, can be self-consistently interpreted if the phonon dispersion relations of the structure are obtained directly using the same potential function in the LAMMPSbased MD simulation. As far as we know, a command to calculate phonon dispersion relation has been included in the LAMMPS package,[21]but it requires constructing a large simulation system to accommodate the number of wave vectors in the FBZ.If the simulation time is short,the calculation error is also large. In addition,when the size of the unit cell is large,such as phononic crystals,the calculation is often timeconsuming.

    In this study, a new tool based on the LAMMPS package is proposed to obtain the phonon dispersion relation of crystalline solids according to the harmonic lattice dynamics principle. The main advantage of this approach is that any potential function or force field that is integrated with the LAMMPS package can be used to calculate the phonon dispersion relation corresponding to it, and the calculation is much faster even for the large unit cells. In the second section, we present the detailed method and calculation process to obtain the phonon dispersion relation based on the LAMMPS package,including the acquisition of force constant,the construction of dynamic matrix, and so on. The phonon dispersion relations of several typical materials are demonstrated in the third section. The relevant home-made code and script can be found in the supporting information.

    2. Method

    Suppose a simulation system containsLunit cells, and each unit cell containsbatoms. Then, there are totallyL×batoms in the simulation system.When all the atoms in the system are in an equilibrium state, the applied force on thej-th atom,Fj,is

    Here,Fjiis the applied force ofi-th atom on thej-th atom,kjipresents the interaction force constant matrix betweenj-th andi-th atoms,rjiis the relative displacement betweenj-th andi-th atoms. When the simulation system reaches the minimum potential energy point,the force applied to each atom is zero. Under this condition, if moving thei-th atom by a tiny distance dxalong thexdirection while keeping the positions of all other atoms still in their equilibrium positions,then the changed force ?Fjon thej-th atom can be written as

    Thus,the spring stiffness componentskjixx,kjiyx,kjizxbetweenj-th andi-th atoms can be obtained as

    In the same way,the remained six spring stiffness components can also be obtained by moving thei-th atoms along theyandzdirections,respectively. Due to the translation symmetry of the crystal,the force constant between thei-th atom and itself can be obtained by the following equation:[22]

    In the LAMMPS package, we can easily move the displacement of atoms one by one in a specified unit cell and calculate the force on all the other atoms using a loop script. The corresponding LAMMPS script can be found in the supporting information. Thus, we can quickly obtain the force constant matrix between any pair of atoms corresponding to the used potential functions with the help of the LAMMPS package.

    After obtaining all the force constant matrices, the dynamics matrixDof the simulation system can be constructed from the lattice dynamics theory as

    Figure 1 shows the flow chart for calculating the phonon dispersion relation based on the LAMMPS package. First,the simulation system should be prepared with the same atomic order in each unit cell according to the equilibrium lattice parameters of the crystal. The equilibrium lattice parameters are equivalent to the equilibrium distances between neighboring atoms at the lowest potential energy in a crystal. Note that the equilibrium lattice parameter of one crystalline solid may be not the same when simulating with different potentials or force fields. For example,the predicted carbon-carbon(C-C)bond length from the Tersoff potential in 1988 is about 1.46 ?A,while the corresponding length is 1.44 ?A from the Tersoff potential in 2010.[23]Both of them are greater than the experimentally observed value of 1.42 ?A. In order to obtain the equilibrium lattice parameters for the specified potential,one can calculate the potential energy of the simulation system as a function of the lattice parameter. The equilibrium lattice parameter is the value corresponding to the minimum potential energy. Then,a home-made LAMMPS script(see the supporting information(SI))is run to calculate the force on each atom when moving the position of the atoms of the first unit cell one by one with tiny displacement. The typical tiny displacement ranges from 0.01 to 0.001 ?A.After running this script with the LAMMPS package,several files,including the force on each atom,can be obtained. With these files as the input,Eq.(3)is used to calculate the force constant matrix between any pair of atoms,and Eq. (4) for the force constant matrix between one atom and itself according to the translational invariance of the crystal.The relevant code that deals with the output files of LAMMPS and calculates the force constant matrix can be found in the SI.After all the force constants are determined,Eq.(5)is used to construct the dynamics matrix. Lastly,after a series of phonon wavevectors are given, the eigenvalues (or the square of the phonon frequency) of the dynamic matrix corresponding to the wavevector can be solved numerically. The relation between phonon frequency and phonon wavevector, namely the phonon dispersion relation,can be obtained.The relevant code that constructs the dynamics matrix and obtains the phonon dispersion can be found in the SI.

    Fig.1. The flow chart for the calculation of phonon dispersion of crystals. The given input script for LAMMPS and the relevant codes(in the supporting information)are for the single-layer graphene model of two-atom unit cell. Some key parameters or details that need to change for other materials and structure have been explained in the comment lines of the script and codes.

    Note that the basic theory to construct the dynamical matrix in Ref. [21] is different from this work, although both are from the LAMMPS package. The former is based on the fluctuation-dissipation theory. It requires a long equilibrium molecular dynamics simulation to obtain the atomic trajectories,and the effective phonon modes depend on the simulation size. Our method is based on the lattice dynamics theory. It only needs the force constants among atom pairs. Compared with Ref.[21],our method cannot identify the temperature effect on the dispersion,but the calculation time will be several orders of magnitude shorter because it does not need the long equilibrium molecular dynamics simulations.

    3. Case studies

    3.1. Phonon dispersion of graphene

    Graphene is a two-dimensional crystalline solid that contains two atoms in the unit cell. The Tersoff potential in 2010,[23]which is fairly efficient to simulate the graphene in MD simulation due to its analytical forms,is first used to check the validity of the proposed technique for the calculation of phonon dispersion relation. First, the potential energy of every atom in the simulation system as a function of the lattice parameter is obtained in Fig. 2(a). It is found that the potential energy reaches the local minimum when the lattice parameter is 1.44 ?A, indicating that the equilibrium lattice parameter is 1.44 ?A. Then, an atomic model with the equilibrium lattice constantag=1.44 ?A is prepared for the graphene, in which 64 atoms are large enough as long as the simulation system satisfies the periodic boundary conditions. The black solid lines in Fig. 2(b) present the calculated phonon dispersion relation of graphene according to the flow chart of Fig.1.Since the parameters of the Tersoff potential in 2010 are already optimized by Lindsay and Broido,the obtained phonon dispersion agrees well with that calculated from DFT(the red solid lines in Fig.2(b)). The phonon dispersion relation calculated from the proposed technique is almost the same as previous publications.[23]The phonon density of states is also very easy to obtain by sampling the phonon wavevectors uniformly throughout the FBZ and then calculating the corresponding phonon frequencies,as shown in Fig.2(c).

    Fig. 2. Equilibrium lattice parameter (a), phonon dispersion relation(b)and vibrational density of states(c)of graphene calculated from the proposed method with the Tersoff potential in 2010. The black solid lines in(b)are the phonon dispersion of graphene from the DFT.

    Although the MD simulation is often used to model the graphene as well as its composite due to their superior physical properties and potential applications, one of the most important problems in MD simulation is the low reliability of the calculation. Since the only uncertainty in MD simulation is the atomic interactions, the accuracy of MD depends directly on the selection of the potential function used in the simulation. There have been more than five different potentials in the LAMMPS package that can be used to model graphene.Since the phonon dispersion relation is an important factor determining the mechanical and thermal properties of materials,we will use the proposed method to calculate the phonon dispersion relation of graphene and evaluate the advantages and disadvantages of these potential functions.

    Besides the above referred Tersoff potential in 2010,[23]other four commonly used potentials for MD simulation of the graphene in LAMMPS,including Tersoff potential in 1988,[23]AIREBO,[24]REAXFF,[25]and polymer consistent force field(PCFF),[26]are selected to calculate and compare the phonon dispersion relation of graphene. Tersoff potential in 1988 is mainly used to model the short-range covalent bond interactions among carbon atoms. Figure 3(a) shows that the obtained optical phonon frequency can be as high as 70 THz,which is much higher than the result of the DFT calculation(see the black solid lines in Fig.2(b)).Compared with the Tersoff potential, the AIREBO potential not only can model the short-range C-C covalent interactions but also can model the long-range interactions,such as the interlayer interactions between different graphene layers in multi-layer graphene film or bulk graphite. The obtained phonon dispersion relation from AIREBO,as shown in Fig.3(b),is also very close to the results of the DFT.However,one disadvantage of AIREBO potential is the longer simulation time. Our previous simulations have shown that the cost simulation time with the AIREBO potential is about six times longer than that with the Tersoff potential for the same three-dimensional graphene model.[27]The force field of REAXFF potential is fitted from the quantum mechanics calculation. The existed potential files in the LAMMPS can be used to model the atomic system that includes the C,O, Si, Al, etc. Figure 3(c) shows that the obtained phonon dispersion relation of graphene from REAXFF potential deviated greatly from the results of DFT,especially for the optical phonon and longitudinal acoustic phonon branches. In addition to the above three potentials, the PCFF potential is often used to model the graphene composite system[28]by dealing with atomic interactions as simple bond spring, angle spring,etc. Figure 3(d) shows that the optical phonon frequency atΓpoint from PCFF potential is slightly higher than the corresponding value from the DFT calculation. In addition, the predicted ZA phonon dispersion from PCFF potential is linear, which is also not consistent with the calculation of DFT.Therefore, it is suggested that the Tersoff potential in 2010(see Fig. 2(b)) is more suitable for simulating graphene according to the comparison between the phonon dispersion relation from the DFT calculation and those predicted by the five classical potential functions.

    Fig. 3. Comparison of phonon dispersion of graphene from Tersoff (a) in 1988, AIREBO (b), REAXFF (c) and PCFF (d) potentials. These results are compared with that of DFT to easily evaluate the accuracy of the empirical potential functions.

    3.2. Phonon dispersion of superlattice

    In this section, the validity of the proposed technique is tested for phonon dispersion relation of the crystalline solids with the large unit cells,such as the phononic crystal or superlattice. Here,the in-plane and the cross-plane phonon dispersions of SinGensuperlattice are calculated using the proposed technique. To simplify the calculation, the Stillinger-Weber(SW)potential[29]for silicon is used to model the atomic interactions between all atoms. The masses of Si and Ge atom are set to 28 g/mol and 73 g/mol,respectively. Figure 4 shows the atomic structure of the SinGenwithn=1. The corresponding periodic length along the cross-plane direction isL=2n·asi,whereasiis the conventional unit cell size of bulk silicon.

    Fig.4. The atomic model of SinGen superlattice with n=1. The corresponding periodic length along the cross-direction(or c-axis)is L=2n·asi.

    Fig.5. The in-plane(a)and cross-plane(b)phonon dispersions of SinGen superlattice for the Si1Ge1,and the in-plane(c)and cross-plane(d)phonon dispersions for the Si10Ge10. The atomic numbers in the unit cell of the Si1Ge1 and Si10Ge10 are 16 and 160,respectively.

    For the superlattice withL= 2asi, there are totally 16 atoms in the unit cell, and thus 48 phonon branches for each wavevector.Figures 5(a)and 5(b)show the calculated in-plane and cross-plane phonon dispersions,respectively. The results indicate that there are many phonon bandgaps above 10.5 THz along the cross-plane direction,while there is only one phonon bandgap around 11 THz along the in-plane direction. A similar technique is also performed to calculate the phonon dispersion relation of superlattice structures withL=20asias shown in Figs.5(c)and 5(d). The atom numberNin the unit cell of Si10Ge10isN=160. The running timetfor the LAMMPS script is aboutt=305 s in a laptop with an Intel single-core CPU@2.7 THz.Figure 6 presents the time needed to calculate the phonon dispersion of SinGensuperlattice with variable unit cell sizes using the same laptop. It indicates that the needed time is less than one minute when the atomic number in the unit cell is less than 100.For larger unit cells,parallel computing with multiple cores in LAMMPS can be used conveniently to reduce the running time. Therefore,the proposed tool also can be used for the fast calculation of the phonon dispersion with large unit cells.

    Fig.6. The needed time t for the dispersion of SinGen superlattice with variable periodic length L or atomic number N in the unit cell. The data is obtained by a laptop with an Intel single-core CPU@2.7 THz.

    4. Conclusions

    In summary, we have proposed a simple and fast tool to calculate the phonon dispersion relation of crystalline solids.When the LAMMPS package is used to simulate crystalline solids,this technique can obtain the interatomic force constant matrix corresponding to the used potential by moving atomic displacements. After obtaining the interatomic force constant matrix,the phonon dispersion relation can be obtained by constructing the dynamic matrix and solving the eigenvalue of the dynamic matrix. Therefore, the proposed technique for the calculation of the phonon dispersion relation can be used to compare and verify the reliability of the potential functions before MD simulation.

    We have also used the proposed technique to compare the phonon dispersion relation of graphene with several commonly used potentials. It is found that the Tersoff potential in 2010 and the AIREBO potential can better predict the phonon dispersion relation of graphene than the force field potential,such as REAXFF and PCFF potential. We also use this technique to predict the in-plane and cross-plane phonon dispersions of SinGensuperlattices with much larger unit cells.It is found that there is no phonon band gap along the inplane direction, while there exists a phonon band gap along the cross-plane direction. After obtaining the phonon dispersion relation of the crystal, the sound velocity along the high-symmetry directions of solid and the corresponding elastic constant components can be obtained. In addition, the interatomic force constant matrix would also be used to calculate the thermal conductance from the non-equilibrium Green function technique[30]within the framework of local equilibrium.

    猜你喜歡
    陳云
    加快構(gòu)建旅游產(chǎn)業(yè)創(chuàng)新生態(tài)系統(tǒng)
    Biased random walk with restart for essential proteins prediction
    Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
    基于大數(shù)據(jù)分析與審計(jì)的關(guān)系研究
    My plan for new term
    向陳云學(xué)習(xí)錘煉“筆力”
    陳云:我黨干部的楷模
    A Study of ρ-ω Mixing in Resonance Chiral Theory?
    陳云貴:你是泥土你是光
    海峽姐妹(2016年2期)2016-02-27 15:15:59
    TransitivityandCharacterization:AnalysisonDickinTenderisTheNight
    亚洲成色77777| 日韩精品有码人妻一区| 日本午夜av视频| 亚洲精品乱码久久久v下载方式| 色播亚洲综合网| 搡老妇女老女人老熟妇| 超碰av人人做人人爽久久| 欧美性感艳星| 色综合站精品国产| 亚洲av一区综合| 日本免费a在线| 天天躁日日操中文字幕| 性插视频无遮挡在线免费观看| 日本免费a在线| 性色avwww在线观看| 午夜福利视频1000在线观看| 日本欧美国产在线视频| 婷婷色av中文字幕| 一级av片app| 日韩一区二区视频免费看| 一级毛片黄色毛片免费观看视频| 亚洲精品乱久久久久久| 精品久久久久久久末码| 内地一区二区视频在线| 老司机影院毛片| freevideosex欧美| 国产精品日韩av在线免费观看| 亚洲四区av| 久久精品国产亚洲av天美| 亚洲无线观看免费| 久久国产乱子免费精品| 一二三四中文在线观看免费高清| 免费黄网站久久成人精品| 色5月婷婷丁香| 在线观看av片永久免费下载| 听说在线观看完整版免费高清| 在线 av 中文字幕| 大又大粗又爽又黄少妇毛片口| av福利片在线观看| 在线免费观看的www视频| 欧美成人a在线观看| 男人狂女人下面高潮的视频| 黄色一级大片看看| 日韩精品有码人妻一区| 亚洲婷婷狠狠爱综合网| 欧美成人午夜免费资源| h日本视频在线播放| 日韩中字成人| 日韩av在线大香蕉| 女人被狂操c到高潮| 国产精品人妻久久久久久| 国产有黄有色有爽视频| av又黄又爽大尺度在线免费看| 毛片一级片免费看久久久久| 乱码一卡2卡4卡精品| 老司机影院毛片| 菩萨蛮人人尽说江南好唐韦庄| 久久6这里有精品| 美女高潮的动态| 亚洲精华国产精华液的使用体验| 国产午夜精品久久久久久一区二区三区| 国产精品无大码| 美女xxoo啪啪120秒动态图| 久99久视频精品免费| 国产综合懂色| 全区人妻精品视频| av免费在线看不卡| 一级毛片久久久久久久久女| 校园人妻丝袜中文字幕| 免费观看在线日韩| 免费看不卡的av| 在线a可以看的网站| 2022亚洲国产成人精品| 亚洲国产欧美在线一区| 激情 狠狠 欧美| 性色avwww在线观看| 久久久久精品性色| 在线 av 中文字幕| 在现免费观看毛片| 久久国内精品自在自线图片| 国产精品嫩草影院av在线观看| 精品一区二区三区视频在线| 免费在线观看成人毛片| 亚洲精品影视一区二区三区av| 午夜爱爱视频在线播放| 免费黄网站久久成人精品| 午夜视频国产福利| 亚洲国产高清在线一区二区三| 久久国产乱子免费精品| 高清av免费在线| 舔av片在线| 国产一级毛片七仙女欲春2| 日日啪夜夜撸| 欧美日韩在线观看h| 爱豆传媒免费全集在线观看| 爱豆传媒免费全集在线观看| videossex国产| 中文字幕亚洲精品专区| 十八禁网站网址无遮挡 | 三级男女做爰猛烈吃奶摸视频| 久久久久久久久久人人人人人人| 1000部很黄的大片| 日韩av在线免费看完整版不卡| 高清日韩中文字幕在线| 欧美一区二区亚洲| 亚洲精品第二区| 久久精品久久久久久久性| 国产精品久久久久久久久免| 黄色日韩在线| 精品少妇黑人巨大在线播放| 91午夜精品亚洲一区二区三区| 精品久久久久久电影网| 最近视频中文字幕2019在线8| 偷拍熟女少妇极品色| 亚洲精品影视一区二区三区av| 美女xxoo啪啪120秒动态图| 成人毛片60女人毛片免费| 人体艺术视频欧美日本| 久久精品人妻少妇| 99热网站在线观看| 成人亚洲欧美一区二区av| 国产高清不卡午夜福利| 婷婷色综合大香蕉| 高清av免费在线| 搡老妇女老女人老熟妇| 国产视频内射| 美女被艹到高潮喷水动态| 亚洲最大成人中文| 大话2 男鬼变身卡| 七月丁香在线播放| 一区二区三区免费毛片| 女人被狂操c到高潮| 成人综合一区亚洲| 精品久久久久久久人妻蜜臀av| 中文字幕人妻熟人妻熟丝袜美| 少妇猛男粗大的猛烈进出视频 | 日产精品乱码卡一卡2卡三| 亚洲精品视频女| 精品人妻视频免费看| 国产黄a三级三级三级人| 九色成人免费人妻av| 亚洲国产欧美在线一区| 午夜亚洲福利在线播放| 人妻系列 视频| 国产 一区 欧美 日韩| 亚洲无线观看免费| 久久久久久九九精品二区国产| 日本猛色少妇xxxxx猛交久久| 大片免费播放器 马上看| 国产69精品久久久久777片| 日韩成人伦理影院| 精品熟女少妇av免费看| 欧美日韩在线观看h| 97在线视频观看| 亚洲精品国产成人久久av| 免费观看的影片在线观看| 三级国产精品片| 欧美三级亚洲精品| 极品少妇高潮喷水抽搐| 日韩成人伦理影院| 免费观看av网站的网址| 欧美日韩在线观看h| 精品一区在线观看国产| 亚洲精品国产av成人精品| 又爽又黄无遮挡网站| 91精品一卡2卡3卡4卡| 寂寞人妻少妇视频99o| 亚洲伊人久久精品综合| 97在线视频观看| 国产精品国产三级国产av玫瑰| 久久久久久久国产电影| 亚洲一区高清亚洲精品| 天堂av国产一区二区熟女人妻| 国产男女超爽视频在线观看| 精品一区二区三区人妻视频| av免费在线看不卡| 五月天丁香电影| 亚洲人成网站在线观看播放| 亚洲精品视频女| 免费观看a级毛片全部| 自拍偷自拍亚洲精品老妇| 一级毛片 在线播放| 欧美成人a在线观看| 麻豆精品久久久久久蜜桃| 亚洲国产精品国产精品| 国产精品.久久久| 国产精品av视频在线免费观看| 一级毛片我不卡| 老女人水多毛片| 成人高潮视频无遮挡免费网站| 一区二区三区高清视频在线| 精品人妻偷拍中文字幕| 免费在线观看成人毛片| 一级毛片久久久久久久久女| 美女内射精品一级片tv| 午夜精品在线福利| 成人亚洲精品av一区二区| 91精品一卡2卡3卡4卡| 日产精品乱码卡一卡2卡三| 久久99热这里只有精品18| 免费观看无遮挡的男女| 美女高潮的动态| 国产精品麻豆人妻色哟哟久久 | 亚洲性久久影院| 在现免费观看毛片| h日本视频在线播放| 日韩精品青青久久久久久| 99久久精品热视频| 卡戴珊不雅视频在线播放| 最近视频中文字幕2019在线8| 好男人在线观看高清免费视频| 亚洲av不卡在线观看| 国产探花极品一区二区| av播播在线观看一区| 国产精品爽爽va在线观看网站| 免费观看的影片在线观看| 亚洲成人一二三区av| 久久精品熟女亚洲av麻豆精品 | 如何舔出高潮| 久久国产乱子免费精品| 精品一区二区免费观看| 观看美女的网站| 成人鲁丝片一二三区免费| 如何舔出高潮| 人人妻人人澡人人爽人人夜夜 | 嫩草影院入口| 天堂网av新在线| 亚洲精品乱码久久久久久按摩| 国产亚洲最大av| 最近2019中文字幕mv第一页| 99re6热这里在线精品视频| www.色视频.com| 深爱激情五月婷婷| 亚洲成人久久爱视频| 99热这里只有是精品在线观看| 97超碰精品成人国产| 国产一级毛片七仙女欲春2| 久久这里只有精品中国| 午夜视频国产福利| 99久国产av精品| 高清在线视频一区二区三区| 亚洲在久久综合| 一级毛片黄色毛片免费观看视频| 久久久欧美国产精品| 国产毛片a区久久久久| 夜夜看夜夜爽夜夜摸| 一级毛片黄色毛片免费观看视频| 80岁老熟妇乱子伦牲交| 99久国产av精品| 亚洲三级黄色毛片| 国产av码专区亚洲av| 国产三级在线视频| 蜜桃久久精品国产亚洲av| 欧美成人午夜免费资源| 99re6热这里在线精品视频| 久久精品人妻少妇| 精品久久国产蜜桃| 国产美女午夜福利| 欧美变态另类bdsm刘玥| 夜夜爽夜夜爽视频| 日韩强制内射视频| 免费av毛片视频| 最后的刺客免费高清国语| 国产人妻一区二区三区在| 秋霞在线观看毛片| 亚洲成人久久爱视频| 日韩视频在线欧美| videos熟女内射| 精品久久久久久久人妻蜜臀av| 欧美日韩精品成人综合77777| 99久国产av精品国产电影| 综合色丁香网| 国产久久久一区二区三区| 纵有疾风起免费观看全集完整版 | 日韩,欧美,国产一区二区三区| 身体一侧抽搐| 男女下面进入的视频免费午夜| 国精品久久久久久国模美| 成人二区视频| 亚洲最大成人中文| 男人舔女人下体高潮全视频| 午夜福利视频精品| 欧美极品一区二区三区四区| 亚洲最大成人中文| 午夜免费男女啪啪视频观看| 夜夜看夜夜爽夜夜摸| 色吧在线观看| 国产三级在线视频| 高清在线视频一区二区三区| 日韩一区二区视频免费看| 国产精品不卡视频一区二区| 波野结衣二区三区在线| 人妻制服诱惑在线中文字幕| 色5月婷婷丁香| 中文字幕免费在线视频6| 男女下面进入的视频免费午夜| 中文字幕av在线有码专区| 国内精品美女久久久久久| 国产精品一区二区三区四区久久| 久久国内精品自在自线图片| 日本三级黄在线观看| 黄色一级大片看看| 欧美日韩精品成人综合77777| 亚洲av成人精品一二三区| 国产av不卡久久| 亚洲人成网站在线观看播放| 超碰97精品在线观看| 国产精品麻豆人妻色哟哟久久 | 在线免费观看的www视频| 国产成人aa在线观看| 成人亚洲精品一区在线观看 | 久久国内精品自在自线图片| 听说在线观看完整版免费高清| 熟女电影av网| 午夜福利在线观看免费完整高清在| xxx大片免费视频| 在线免费观看不下载黄p国产| 国产91av在线免费观看| 亚洲经典国产精华液单| 日本-黄色视频高清免费观看| 天堂中文最新版在线下载 | 久久精品国产亚洲网站| 又黄又爽又刺激的免费视频.| 亚洲精品自拍成人| 边亲边吃奶的免费视频| 国产欧美日韩精品一区二区| 精品99又大又爽又粗少妇毛片| 搡老妇女老女人老熟妇| 人妻系列 视频| 亚洲成色77777| 国产国拍精品亚洲av在线观看| 51国产日韩欧美| 午夜久久久久精精品| 欧美日韩在线观看h| 我的老师免费观看完整版| 国产日韩欧美在线精品| 观看美女的网站| 亚洲国产最新在线播放| 高清在线视频一区二区三区| 99视频精品全部免费 在线| 国产不卡一卡二| av天堂中文字幕网| www.色视频.com| 毛片女人毛片| 99久国产av精品| 国内精品一区二区在线观看| 日韩精品有码人妻一区| videossex国产| 亚洲av在线观看美女高潮| 80岁老熟妇乱子伦牲交| 久久鲁丝午夜福利片| 亚洲内射少妇av| 久久久久久久午夜电影| 亚洲国产精品成人综合色| 久久久久网色| 国产色爽女视频免费观看| 神马国产精品三级电影在线观看| 美女黄网站色视频| 国产成人精品久久久久久| 国产精品一区二区三区四区久久| 水蜜桃什么品种好| 欧美最新免费一区二区三区| 国产av不卡久久| 18禁动态无遮挡网站| 人体艺术视频欧美日本| xxx大片免费视频| 在线免费十八禁| 免费看不卡的av| 国产毛片a区久久久久| 久久精品夜色国产| 国产高清国产精品国产三级 | 国产精品美女特级片免费视频播放器| 成人欧美大片| 国产精品福利在线免费观看| 69av精品久久久久久| 九九爱精品视频在线观看| 亚洲av国产av综合av卡| 亚洲欧美清纯卡通| 小蜜桃在线观看免费完整版高清| 日本午夜av视频| 亚洲精品日本国产第一区| 国产伦理片在线播放av一区| 九色成人免费人妻av| 最近最新中文字幕大全电影3| 最新中文字幕久久久久| 99热全是精品| 亚洲欧美一区二区三区黑人 | 久久久久久久久久成人| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品久久久久久精品电影| 99热这里只有是精品在线观看| 国产熟女欧美一区二区| 91久久精品国产一区二区成人| 看黄色毛片网站| 一边亲一边摸免费视频| 亚洲av不卡在线观看| 亚洲av国产av综合av卡| 亚洲精品影视一区二区三区av| 99re6热这里在线精品视频| 国产一区二区在线观看日韩| 淫秽高清视频在线观看| 全区人妻精品视频| 国产久久久一区二区三区| 久久精品熟女亚洲av麻豆精品 | 国产成人精品久久久久久| 亚洲欧洲日产国产| 熟妇人妻不卡中文字幕| 神马国产精品三级电影在线观看| or卡值多少钱| 男女边吃奶边做爰视频| 日韩人妻高清精品专区| or卡值多少钱| 精品久久久噜噜| 国产黄色免费在线视频| 亚洲高清免费不卡视频| 国产色爽女视频免费观看| 亚洲精品日韩在线中文字幕| 欧美性感艳星| 日韩一区二区三区影片| 99热6这里只有精品| 国产单亲对白刺激| 国产av在哪里看| 秋霞伦理黄片| 欧美区成人在线视频| 99九九线精品视频在线观看视频| 在线免费观看不下载黄p国产| 亚洲图色成人| 国产成人精品久久久久久| 在线免费观看的www视频| 狂野欧美白嫩少妇大欣赏| 国产伦一二天堂av在线观看| 熟女电影av网| 国产成人福利小说| 色综合亚洲欧美另类图片| 亚洲精品乱码久久久久久按摩| 美女黄网站色视频| 欧美xxxx性猛交bbbb| 国产亚洲精品av在线| av播播在线观看一区| 亚洲最大成人手机在线| 伦精品一区二区三区| 国产 亚洲一区二区三区 | 91久久精品国产一区二区三区| 欧美xxxx性猛交bbbb| 纵有疾风起免费观看全集完整版 | 青春草视频在线免费观看| 亚洲伊人久久精品综合| 干丝袜人妻中文字幕| 亚洲国产高清在线一区二区三| 亚洲精品影视一区二区三区av| 国产伦一二天堂av在线观看| 精品一区在线观看国产| 精品久久久噜噜| 九九久久精品国产亚洲av麻豆| 人妻一区二区av| 国产视频内射| 久久久久久九九精品二区国产| 男插女下体视频免费在线播放| 白带黄色成豆腐渣| 日日干狠狠操夜夜爽| 少妇熟女aⅴ在线视频| 欧美激情在线99| 欧美人与善性xxx| 日韩av免费高清视频| 亚洲久久久久久中文字幕| 久久精品人妻少妇| 性色avwww在线观看| 欧美不卡视频在线免费观看| 床上黄色一级片| videos熟女内射| 1000部很黄的大片| 大片免费播放器 马上看| 内射极品少妇av片p| 国产一区二区三区av在线| 在线免费观看不下载黄p国产| 久久久亚洲精品成人影院| 一本久久精品| 99re6热这里在线精品视频| 激情 狠狠 欧美| 欧美高清性xxxxhd video| 91aial.com中文字幕在线观看| 一本一本综合久久| 少妇高潮的动态图| 一个人观看的视频www高清免费观看| 亚洲经典国产精华液单| 女人十人毛片免费观看3o分钟| www.av在线官网国产| 成人特级av手机在线观看| 国产在线一区二区三区精| 男女下面进入的视频免费午夜| 国产精品伦人一区二区| 久久久午夜欧美精品| 麻豆乱淫一区二区| 国产午夜精品久久久久久一区二区三区| 嫩草影院入口| 精品不卡国产一区二区三区| 欧美xxxx黑人xx丫x性爽| 女人久久www免费人成看片| 久久精品综合一区二区三区| 极品教师在线视频| 深夜a级毛片| 欧美成人精品欧美一级黄| 免费观看a级毛片全部| 干丝袜人妻中文字幕| 国产 一区精品| 女的被弄到高潮叫床怎么办| 亚洲成人精品中文字幕电影| 99热6这里只有精品| 婷婷色麻豆天堂久久| 在线 av 中文字幕| 久久久亚洲精品成人影院| 99热这里只有是精品在线观看| 国产三级在线视频| 日本黄色片子视频| 国产黄色免费在线视频| 久久久久精品性色| 国产精品久久久久久久电影| 最近中文字幕高清免费大全6| 亚洲人成网站高清观看| 亚洲自偷自拍三级| 国产精品熟女久久久久浪| 高清午夜精品一区二区三区| 亚洲va在线va天堂va国产| 三级经典国产精品| 好男人视频免费观看在线| 精品熟女少妇av免费看| 午夜精品在线福利| 三级国产精品欧美在线观看| 亚洲av免费高清在线观看| 欧美xxⅹ黑人| 亚洲四区av| 成年女人看的毛片在线观看| 淫秽高清视频在线观看| 日韩一区二区视频免费看| 777米奇影视久久| 国产一区有黄有色的免费视频 | 淫秽高清视频在线观看| 久久久欧美国产精品| 一级二级三级毛片免费看| 国产激情偷乱视频一区二区| 2018国产大陆天天弄谢| 午夜精品一区二区三区免费看| 亚洲熟妇中文字幕五十中出| 男女那种视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 国产69精品久久久久777片| 久久久午夜欧美精品| 干丝袜人妻中文字幕| 欧美bdsm另类| 日日啪夜夜爽| 亚洲精品,欧美精品| 中文字幕亚洲精品专区| 免费av毛片视频| 成年女人在线观看亚洲视频 | 久久97久久精品| 久久精品久久久久久久性| 午夜日本视频在线| 国产精品一二三区在线看| 亚洲熟女精品中文字幕| 久久久久久久大尺度免费视频| 高清日韩中文字幕在线| 免费少妇av软件| 欧美另类一区| 中国美白少妇内射xxxbb| 亚洲精品久久午夜乱码| 99热这里只有精品一区| 久久99热这里只有精品18| 丝袜喷水一区| 777米奇影视久久| 一级爰片在线观看| 国产精品人妻久久久影院| 亚洲三级黄色毛片| 亚洲av成人精品一二三区| 别揉我奶头 嗯啊视频| 日日撸夜夜添| 在线观看人妻少妇| 亚洲精品乱久久久久久| 国产日韩欧美在线精品| 日韩大片免费观看网站| 真实男女啪啪啪动态图| 国产亚洲午夜精品一区二区久久 | 欧美潮喷喷水| 国产精品一区二区三区四区久久| 人人妻人人看人人澡| 搡老乐熟女国产| 精品酒店卫生间| 少妇猛男粗大的猛烈进出视频 | 日韩av不卡免费在线播放| 久久人人爽人人片av| 亚洲欧美日韩无卡精品| 亚洲精品乱码久久久v下载方式| 日韩三级伦理在线观看| 欧美变态另类bdsm刘玥| 国产精品av视频在线免费观看| 97热精品久久久久久| 欧美+日韩+精品| 日韩成人av中文字幕在线观看| 午夜视频国产福利| 舔av片在线| 18+在线观看网站| av免费在线看不卡| 成人欧美大片| 啦啦啦中文免费视频观看日本| 午夜视频国产福利| 视频中文字幕在线观看| av天堂中文字幕网| 日本欧美国产在线视频| 80岁老熟妇乱子伦牲交| 十八禁网站网址无遮挡 | 亚洲成人一二三区av| 美女国产视频在线观看| 成人午夜精彩视频在线观看| 激情 狠狠 欧美| 精品久久久久久久人妻蜜臀av| 日日摸夜夜添夜夜爱|