• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A crossed focused vortex beam with application to cold molecules*

    2021-11-23 07:26:30MengXia夏夢(mèng)YalingYin尹亞玲ChunyingPei裴春瑩YuerYe葉玉兒RuoxiGu顧若溪KangYan嚴(yán)康DiWu吳迪YongXia夏勇andJianpingYin印建平
    Chinese Physics B 2021年11期
    關(guān)鍵詞:吳迪夏夢(mèng)建平

    Meng Xia(夏夢(mèng)) Yaling Yin(尹亞玲) Chunying Pei(裴春瑩) Yuer Ye(葉玉兒) Ruoxi Gu(顧若溪)Kang Yan(嚴(yán)康) Di Wu(吳迪) Yong Xia(夏勇) and Jianping Yin(印建平)

    1State Key Laboratory of Precision Apectroscopy,School of Physics and Electronic Science,East China Normal University,Shanghai 200241,China

    2Collaborative Innovation Center of Extreme Optics,Shanxi University,Taiyuan 030006,China

    3NYU-ECNU Institute of Physics at NYU Shanghai,Shanghai 200062,China

    Keywords: cold molecule,crossed focused vortex beam,propagation characteristics,optical potential

    1. Introduction

    Recent advances in laser cooling and quantum state control of diatomic molecules propose a powerful platform for precision measurement, ultracold chemistry and quantum information science.[1,2]Tremendous progress has been made in the magneto-optical trap (MOT) of diatomic molecules, i.e.,SrF,[3]CaF,[4,5]and YO.[6,7]To date,the reported temperature of the cooled diatomic molecule is well below the Doppler limit.[4,8-10]In 2017, Anderegget al. reported that the maximum number of molecules,1.0×105,were captured through radio frequency MOT on CaF molecules.[5]Most applications of ultracold molecules require quantum state control, so the molecules in a MOT were first loaded into a conservative trap,e.g., optical dipole traps,[11]magnetic traps,[12,13]and optical tweezer arrays.[14]In 2018, Anderegget al. loaded the sub-Doppler cooled CaF molecules into a far-detuned optical dipole trap, and the trapped samples lasted for a lifetime of 750 ms at a temperature of 60 μK. The achieved densities were 8×107cm?3and in particular the phase-space densities were 2×10?9, that is, 35 times higher than that from the sub-Doppler-cooled samples in free space.[11]Williamset al.achieved magnetic trapping of laser-cooled CaF molecules in a single quantum state, and about 5×103molecules were trapped with a density of 1.2×105cm?3for a lifetime of 2 s at a temperature of 70 μK[12]McCarronet al.employed an efficient transfer of ultracold SrF molecules from a radio frequency MOT into a magnetic quadrupole trap: 600-800 molecules in a single quantum state were trapped with a density of 3×104cm?3for a lifetime of 1 s at a temperature of 260μK.[13]In 2019, Anderegget al.also reported an optical tweezer array of single ultracold CaF molecules with high-fidelity detection, opening the door for studying the intermolecular collisions and state-selective ultracold quantum chemistry.[14]

    The optical dipole trap is based on the interaction of light with the induced electric dipole moment of the trapped atoms and molecules,so it is applicable to the accurate,non-contact manipulation and control of cold samples.[15,16]The far-offresonance optical dipole traps (FORT), composed of one or two intense and continuous-wave laser beams,are used to confine an ultracold sample. In 1995,the first type of red-detuned FORT composed of two crossed focused YAG laser beams was applied to study the evaporative cooling of Na atoms.[17]Such a FORT has a wide range of applications in areas of high precision imaging of the optical clock,high-density trapping of cold samples, and all-optical atomic Bose-Einstein condensate.[18-20]One can also generate a blue-detuned,hollow FORT, which has some unique physical properties: (i)the mean photon scattering rate is lower,and the trap lifetime of atoms is longer; (ii) the well depth is deeper; (iii) there exists an intensity-gradient induced Sisyphus cooling.[16]In 1997, Kugaet al. demonstrated a Laguerre-Gaussian-beam trap for cold85Rb atoms with a blue-detuned frequency of~60 GHz. The atoms loaded from a MOT were trapped in the dark core (a cylinder box with 1.5 mm in diameter and 2 mm in height) in the transverse direction with the help of two additional,blue-detuned plug beams to confine the atomic motion along the optical axis.[21]Afterwards,several different hollow FORTs were proposed and demonstrated.[22-26]For example,the other crossed hollow beam is generated by overlapping two co-propagating, Laguerre-Gaussian (LG01) beams with orthogonal polarization. The LG01beam is then split into two co-propagating beams separated by several mm propagating through a calcite beam displacer. Using a high numerical aperture lens,the beams are tightly focused and overlapped at the center of the vacuum cell. A crossed vortex bottle beam is formed with the width of 5.5μm in the radial direction and a longitudinal length of 52μm.[24,25]However,the current hollow FORTs have two main disadvantages. Firstly, there is a large difference regarding the optical potential well between the radial and the axial directions. The well’s structure is either ellipsoidal or cylindrical tube,which causes an imperfect intensity distribution,a large trapping volume and a small intensity gradient. Secondly,the trapping volume cannot be dynamically tunable.

    Here, we propose a scheme to construct an optical potential wells by the crossed, focused, vortex beam (CFVB).Such beam has a near-zero intensity distribution in the center with a high-intensity light outwards, which provides a repulsive potential upon being blue-detuned from resonance, so as to permit molecules being trapped in the central region. Comparing with the previous studies, the CFVB here has a much smaller trapping volume,and is tunable by changing the quantum number of the orbital angular momentum (OAM). This report consists of five sections. In Section 1, it is the introduction as already described. In Section 2, it describes the experimental scheme. In Section 3,it describes the generation and propagation characteristics of the vortex beams which are divided into two parts. In the first part,it describes the generation and intensity distributions of the single,focused,vortex beam (SFVB) in free space, and the relationship of the dark spot size (DSS) with the incident Gaussian beam’s waistw0,and the lens’focal lengthf.In the second part,it describes the generation and intensity distribution of the CFVB,and in particular the relationship of the DSS with the OAM’s quantum numberl. In Section 4,it describes the potential applications of the CFVB in trapping and cooling of MgF molecules. In Section 5,it summaries the main results and conclusions.

    2. Experimental scheme

    Figure 1 shows the experimental setup for the generation of a CFVB.The Gaussian laser beam from a He-Ne laser first passes through a linear polarizer and then an optical isolator,and then through a collimating and expanding beam system consisting of a spatial filter and lens L1(f1=400 mm). The used spatial filter consists of microscope objectives(10 times)and an aperture(50μm)to remove any higher-order diffracted terms. Next, the beam passes through a beam splitter, and is divided into two beams with equal power. Two linear polarizers are used to satisfy the polarization requirement of the SLM1and SLM2. The SLM1(Holoeye) has a resolution of 1024×768 pixels and 19 μm of pixel pitch, and the SLM2(Holoeye)has a resolution of 1920×1080 pixels and 8.0μm of pixel pitch. The two laser beams are then modulated by the hybrid holograms imprinted on the SLM; that is to say, each beam passes through an azimuthally distributed 2π-phase and is focused by a thin lens phase with a focal lengthf, and a SFVB will be produced behind the BS owing to the completely destructive interference effect at the beam center. When two SFVBs are crossed at both focal planes,a tightly focused dark spot with a small trapping volume is formed(see the right inset in Fig. 1). In this scheme, two SLMs function as the diffractive optical elements to control both the phase and the polarization for the incident light. Through the SLM software, we can switch the binary bitmap as the phase pattern (for example,OAM quantum numberl=1)shown on the SLM screen,which is shown in the left inset of Fig.1.

    Fig.1. Experimental setup for generation of crossed,focused,vortex beams.Acronyms are:LB for laser beam,P for linear polarizer,BS for beam splitter,SLM for spatial light modulator. The inset gray pattern is the hybrid hologram(HH)by a combination of a vortex phase with OAM quantum number l=1 and a lens phase.

    The phase patternφtotalused to drive the SLM includes two contributions and readsφtotal=φvortex+φl(shuí)ens.φvortexis the vortex phase, andφl(shuí)ensis the phase pattern acting as a lens,which allows us to fine-tune the focusing of the vortex beam.The hybrid holograms and corresponding phase profiles are shown in Fig.2. For the OAM,the quantum numberlis 2,5,10,and 20,respectively.

    Fig.2. Hybrid holograms(upper panel)and phase profiles(lower panel)for the generated vortex beams with the OAM’s l=2,5,10,20.

    3. Generation and propagation characteristics of vortex beam in free space

    3.1. Single focused vortex beam

    A common vortex beam has a complex amplitude with the phase,expressed as exp(il?),where?is the azimuthal angle,andlis also called the topological charge of an OAM beam.In our scheme,forl=1,the vortex phase hologram imprinted on the SLM is equivalent to a traditional,azimuthally distributed 2πphase plate.[27]Besides, a lens phase can be shown onto the SLM.We calibrate the focal lengthfof the lens phase on the SLM,and plot a quantitative curve for the lens phase with the focal lengthf. The focal lengthfis inversely proportional to the lens phase value.

    The detailed mechanism of generating the SFVB is described as follows. The phase factor of exp(il?)corresponds to a phase singularity at the beam center of which the intensity is zero-due to the destructive interference. By takingl=1,the continuous azimuthal phase retardation of the vortex phase increases from 0 to 2πwhile increases the SLM’s gray level.The phase difference between the two sides of an arbitrary straight line passing through the circular center of the hologram is always equal toπ,and the center of the hologram is a symmetric center of thisπphase deference and is azimuthally distributed.These will lead to a completely destructive interference effect at the center of the incident Gaussian laser beam. Therefore,the axial intensity of the output beam will be reduced to zero,and the generated beam is a vortex beam with an OAM order ofl=1. At the same time,when a lens phase is encoded onto the SLM,the laser beam is reflected by the hybrid hologram,so a focused vortex beam is formed.

    When a collimated Gaussian laser beam is incident on the hybrid hologram, the field distribution of the diffraction field- reflected by the SLM in a polar coordinate - can be obtained according to the Fresnel diffraction integration[27]

    Fig.3. (a)-(c)Normalized radial 1D intensity profiles and 2D intensity distributions of the SFVB at the propagation distance z=?150, 0, 150 mm,respectively. The experimental parameters are w0 =1.2 mm, f =250 mm.(d)Relationship of the DSS of the SFVB with the propagation distance z for w0=1.2 mm and f =250 mm.The line represents the theoretical curve,and the squares correspond to the experimental data.

    The intensity distribution of the SFVB in free space can be given by

    Based on Eqs.(1)and(2),we study the propagating properties of the SFVB in free space. We define the special parameter,the dark spot size,i.e.,DSS,as the full width at the half maximum (FWHM) of the radial-intensity distribution inside the notch of the SFVB.[28]In our experiments,forl=1,the intensity profiles of the SFVB,with the beam propagation direction atz=?150, 0 and 150 mm away from the focal plane, are measured and shown in Figs.3(a)-3(c),respectively. As seen from Figs.3(a)-3(c),owing to the completely(r=0)and partially(r ?=0)destructive interference effects around the central region of the vortex beam, a SFVB with a Gaussian intensity profile will be generated. But with the increase of the radial positionr, the function of the 2πphase for the focused laser beam shows periodic partially destructive and constructive interference effects, which results in a periodic oscillated modulation on the Gaussian intensity profile except for the focal plane ofz=0.

    The relationship of the DSS with the propagation distancezis seen in Fig.3(d).The line represents the calculated results,and the squares represent the experimental results. The waist of the incident beam isw0=1.2 mm, and the focal length of the lens isf=250 mm. There is an impressive feature of this propagation characteristic. Before the focal plane, the DSS gradually increases up to the maximum value(202.4μm)at the position ofz=?f/2 (half focal length), and then decreases to the minimum value (38.3 μm) at the focal point.After the focal plane,the focused vortex beam propagates with a constant divergent angle. In fact, the measured DSS values agree well with the modeling.

    We then investigate the relationship of the DSS in the focal plane ofz=0 with the focal lengthfand the waistw0.The experimental (dots) and theoretical (lines) results are shown in Figs. 4(a) and 4(b), which agree with each other. From Fig. 4(a), it is clear that the DSS increases linearly with an increase of the focal lengthf. From Fig. 4(b), with an increase of the waistw0, the DSS decreases exponentially instead. Therefore, with a shorter focal lengthfand a larger waistw0,an extremely small DSS for the vortex beam can be obtained.

    To measure the OAM of the SFVB,a straightforward interferometric method can be used. The principle is that due to the incomplete phase modulation of the SLM,the reflected beam contains the unmodulated portion of an incident Gaussian beam,which will interfere with the focused vortex beam to generate the petal patterns.The number of petals is in agreement with the value of the OAM that the modulated beam carries.[29]

    Fig. 4. (a) Relationship of the DSS at the focal point with the focal length f for w0 =0.6, 1.2 and 1.7 mm. (b) Relationship of the DSS at the focal point with the waist w0 for f =100,300 and 500 mm. The square,circle and triangle are experimental data. The solid lines are theoretical ones.

    3.2. Crossed focused vortex beam

    The SFVB above is a kind of 2D hollow beam,which can only be implemented for guiding and focusing of molecules.A 3D dark hollow region can be formed by the orthogonal superposition of a pair of SFVBs in the focal planes, i.e.,CFVB, which is in fact capable of cooling and trapping cold molecules. Two superimposed SFVBs do not interfere with each other due to the different polarizations, and the output mode can be expressed as a superposition of Mach-Zehnder type optical components.[30]

    In the experiment,a CCD with 45°relative to the horizontal direction was in place to detect the intensity distributions of the CFVB.Figure 5(a)gives a schematic diagram of the detection region at five positionsz1-z5. Thez1andz5planes are far away from the superposition region of the two SFVBs, while thez2andz4planes involve the partial superposition region.Thez3plane shows a full superposition in the focal planes of the two SFVBs. Figures 5(b)-5(f)show 1D(black lines)and 2D (color insets) intensity distributions for these five planes,respectively. For the case ofz1(orz5) plane in Fig. 5(b) (or Fig. 5(f)), we detect the light intensity distribution on cross section of two SFVBs. Their 2D images show two hollow circles with the same size. When the detecting plane starts to be closer to the center of the superposed region, the two hollow circles cross, which are seen in Figs.5(c)and 5(e). At thez3plane, two hollow circles superpose completely and thus become a single closed hollow circle, as seen in Fig. 5(d). So,the 3D enclosed and focused hollow trap is eventually formed.

    Importantly, we study the dependence of the DSS of the CFVB on the OAM’s quantum numberlat the focal point at differentfandw0. It can be seen from Fig.6(a)that for fixedw0=1.2 mm,the DSS of the CFVB at thez3plane is linearly proportional to the OAM’s quantum numberl. Also, smallerf,smaller DSS.Atf=150 mm,whenldecreases from 16 to 1,the DSS decreases accordingly,from 310.7μm to 23.5μm,and the corresponding trapping volume of the CFVB is compressed by a factor of up to 2.3×103times. From Fig. 6(b),for fixedf=150 mm, the DSS of the CFVB at thez3plane is also linearly proportional to the OAM’s quantum numberl. But, biggerw0,smaller DSS.Atw0=1.7 mm, whenldecreases from 16 to 1, the DSS decreases accordingly, from 388.7 μm to 16.3 μm, and the corresponding trapping volume of the CFVB is compressed by a factor of up to 1.3×104times.

    Fig.5. (a)Schematic diagram of the CCD detection near the center of the superposed region of the CFVB.z1,z2,z3,z4,and z5 represent the locations of the detection plane. (b)-(f)The 1D(black)and 2D(color)optical intensity distributions at different planes for l=1,w0=1.2 mm,and f =250 mm.

    Fig. 6. (a) Relationship of the DSS of the CFVB at the z3 plane with l at different f for fixed w0=1.2 mm. (b)Relationship of the DSS of the CFVB at the z3 plane with l at different w0 for fixed f =150 mm. The scatter plots represent the experimental data,and the solid lines represent the fitted curves.

    The above results clearly show that with a shorter focal lengthfand a larger waistw0, a desired CFVB with an extremely small DSS can be obtained. The DSS can also be dynamically tuned by the OAM’s quantum number to further increase the density of trapped molecules.

    If we compress the trapped volume,the temperature of the trapped molecule will go up because of the heating effect. For example, in Ref. [12], they demonstrate the efficient transfer of SrF molecules from a magneto-optical trap into a conservative magnetic quadrupole trap. Their scheme begins with a blue-detuned optical molasses to cool the SrF molecules to 50 μK. The gradient of the trapping magnetic field increases by 4 times during compression,so the temperature of trapped molecule is increased to 260μK.

    4. Applications to cooling and trapping of MgF molecules

    When the MgF molecule, upon electronic excitation of X2Σ+to A2Π states, moves in an inhomogeneous light field,it experiences an optical dipole force,which can be described by the AC Stark shifts of the hyperfine energy levels in the2Σ state for the Hunds case (b) to them in the A2Π state for the Hunds case(a).[11,31]The effect of the multilevel structure of molecules on their response to an electromagnetic field may be conveniently described with the help of the electric dipole polarizability.

    The AC Stark shift of a specific state|?κ〉in X2Σ+thus can be given by[31]

    We can also prepare the ultracold MgF molecules from a slowed molecular beam by using the intensity-gradient induced Sisyphus cooling.[31,33]The cooling is based on a bluedetuned CFVB and a weak repumping laser beam. Because of the strong intensity-gradient force and the low-rate spontaneous emission,the molecules in the CFVB trap can be cooled to the lower temperature of several photon recoils.

    5. Conclusion

    In conclusion, we generate a dynamically adjustable,crossed, focused, vortex beam by imprinting a pair of hybrid holograms with the vortex phase and the lens phase onto a SLM.We study the propagation characteristics of such vortex beam in free space. Our study shows that at the focal point,with a shorter focal length and a larger incident Gaussian beam’s waist, an extremely small DSS at the 3D dark hollow region of the crossed, focused, vortex beam can be obtained,which is 16.3μm. Forf=150 mm andw0=1.7 mm,when the OAM’s quantum numberldecreases from 16 to 1,the DSS decreases accordingly,from 388.7μm to 16.3μm,and the corresponding trapping volume of the CFVB can be compressed by a factor of up to 1.3×104times. Looking forward to the future applications, when cold molecules are loaded from a standard magneto-optical trap, they can be trapped in a 3D dark hollow region, and then cooled by intensity-gradient induced Sisyphus cooling. Thus, even an all-optically cooled and trapped Bose-Einstein condensate in the crossed,focused,vortex beam is feasible.[16]

    猜你喜歡
    吳迪夏夢(mèng)建平
    《夏夢(mèng)》水彩畫
    新型城鎮(zhèn)化對(duì)農(nóng)民收入的影響
    你在哪里
    The Effect of Grammar Teaching on Writing in China
    卷宗(2016年3期)2016-05-10 07:41:06
    我心碎 夢(mèng)一場(chǎng)
    戲劇之家(2015年16期)2015-09-12 19:54:22
    Nozzle Spray Diffusivity Changing Law for Ultra Fast Cooling in Hot Strip Mill
    風(fēng)過(guò)處,揉碎一池夏夢(mèng)
    轉(zhuǎn)呼拉圈
    影像站等
    文史天地(2009年11期)2009-12-09 05:55:10
    金庸的夢(mèng)中情人
    国产精品久久电影中文字幕| 一区福利在线观看| 亚洲av第一区精品v没综合| 麻豆国产av国片精品| 午夜久久久在线观看| 欧美乱码精品一区二区三区| 亚洲国产欧美日韩在线播放| 久久亚洲精品不卡| 久久精品国产清高在天天线| 99久久人妻综合| 亚洲一卡2卡3卡4卡5卡精品中文| 国产av精品麻豆| 18禁美女被吸乳视频| 亚洲七黄色美女视频| 成年人免费黄色播放视频| 他把我摸到了高潮在线观看| 欧美老熟妇乱子伦牲交| 日韩三级视频一区二区三区| 日韩视频一区二区在线观看| 日韩av在线大香蕉| 久久天躁狠狠躁夜夜2o2o| 男人操女人黄网站| 性少妇av在线| 校园春色视频在线观看| 成人18禁高潮啪啪吃奶动态图| 中文字幕av电影在线播放| 女性被躁到高潮视频| 久久精品91蜜桃| 999久久久国产精品视频| 欧美老熟妇乱子伦牲交| 制服诱惑二区| 丁香六月欧美| 波多野结衣高清无吗| 久久久水蜜桃国产精品网| 久久性视频一级片| 正在播放国产对白刺激| 一级黄色大片毛片| 国产精品国产高清国产av| www.999成人在线观看| 国产真人三级小视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 女人高潮潮喷娇喘18禁视频| 最好的美女福利视频网| 国产又色又爽无遮挡免费看| 成人免费观看视频高清| 亚洲av熟女| 女性生殖器流出的白浆| 露出奶头的视频| 一区在线观看完整版| 国产在线精品亚洲第一网站| 亚洲 欧美 日韩 在线 免费| 欧美日本中文国产一区发布| 久久这里只有精品19| 亚洲精品av麻豆狂野| 12—13女人毛片做爰片一| 日本精品一区二区三区蜜桃| 99久久国产精品久久久| 老司机深夜福利视频在线观看| 新久久久久国产一级毛片| 成在线人永久免费视频| 亚洲欧美精品综合久久99| 99国产精品一区二区三区| 波多野结衣av一区二区av| 久久中文字幕一级| 欧美另类亚洲清纯唯美| 欧美成人午夜精品| 久久久水蜜桃国产精品网| 欧美日韩福利视频一区二区| 日韩免费高清中文字幕av| 亚洲成人免费av在线播放| 亚洲性夜色夜夜综合| 精品无人区乱码1区二区| 色综合婷婷激情| 久久人人97超碰香蕉20202| av有码第一页| 免费在线观看亚洲国产| a级毛片黄视频| 国产不卡一卡二| 国产精品久久久久久人妻精品电影| 欧美成人免费av一区二区三区| 99国产精品一区二区三区| 国产真人三级小视频在线观看| 国产成人精品久久二区二区91| 国产麻豆69| 日韩大码丰满熟妇| 免费高清视频大片| 无遮挡黄片免费观看| 80岁老熟妇乱子伦牲交| 巨乳人妻的诱惑在线观看| 亚洲自拍偷在线| 日本 av在线| 90打野战视频偷拍视频| 日本a在线网址| 国产欧美日韩一区二区精品| 成熟少妇高潮喷水视频| 国产激情欧美一区二区| 国产乱人伦免费视频| 黄色 视频免费看| av欧美777| 黄色片一级片一级黄色片| 校园春色视频在线观看| 国产无遮挡羞羞视频在线观看| 亚洲熟妇熟女久久| 国产精品亚洲av一区麻豆| 日韩国内少妇激情av| 欧美黑人精品巨大| 亚洲一卡2卡3卡4卡5卡精品中文| 免费在线观看视频国产中文字幕亚洲| 国产免费av片在线观看野外av| 18禁裸乳无遮挡免费网站照片 | 无遮挡黄片免费观看| 狠狠狠狠99中文字幕| 校园春色视频在线观看| 午夜视频精品福利| 性色av乱码一区二区三区2| 人妻久久中文字幕网| 九色亚洲精品在线播放| 欧美激情极品国产一区二区三区| 人妻久久中文字幕网| 久久国产精品影院| 女性生殖器流出的白浆| 亚洲第一欧美日韩一区二区三区| 欧美精品亚洲一区二区| 99在线人妻在线中文字幕| x7x7x7水蜜桃| 亚洲一区中文字幕在线| 亚洲成av片中文字幕在线观看| 亚洲人成电影免费在线| 美女国产高潮福利片在线看| 深夜精品福利| 国产极品粉嫩免费观看在线| 久久久久久久久中文| 男女午夜视频在线观看| 精品福利永久在线观看| 久久青草综合色| av中文乱码字幕在线| 18禁美女被吸乳视频| 国内久久婷婷六月综合欲色啪| 一区二区三区激情视频| 久久中文字幕人妻熟女| 中文字幕最新亚洲高清| 97碰自拍视频| 久久精品成人免费网站| 国产成人精品久久二区二区免费| 一区二区日韩欧美中文字幕| 久久这里只有精品19| 无限看片的www在线观看| 日韩欧美一区视频在线观看| 国产国语露脸激情在线看| 亚洲一区二区三区不卡视频| 午夜福利欧美成人| 亚洲色图 男人天堂 中文字幕| 色播在线永久视频| 日韩欧美一区二区三区在线观看| 国产成人一区二区三区免费视频网站| 麻豆成人av在线观看| 日韩三级视频一区二区三区| 法律面前人人平等表现在哪些方面| 水蜜桃什么品种好| 日韩三级视频一区二区三区| 免费av中文字幕在线| 免费在线观看影片大全网站| 男女下面插进去视频免费观看| 两个人看的免费小视频| 涩涩av久久男人的天堂| cao死你这个sao货| 美女福利国产在线| 在线观看一区二区三区| 中文字幕人妻熟女乱码| 又黄又爽又免费观看的视频| 亚洲av日韩精品久久久久久密| www国产在线视频色| 国产精品1区2区在线观看.| 久久久水蜜桃国产精品网| 成人国语在线视频| 老汉色∧v一级毛片| 91成年电影在线观看| 久久久久国产一级毛片高清牌| 午夜两性在线视频| 男女之事视频高清在线观看| 国产在线精品亚洲第一网站| 免费少妇av软件| 18禁裸乳无遮挡免费网站照片 | 免费在线观看黄色视频的| 成人永久免费在线观看视频| 亚洲精品美女久久av网站| 女人精品久久久久毛片| 精品少妇一区二区三区视频日本电影| 亚洲av电影在线进入| 亚洲国产中文字幕在线视频| 91字幕亚洲| 欧美成人性av电影在线观看| 精品国产乱子伦一区二区三区| 无遮挡黄片免费观看| a在线观看视频网站| 麻豆一二三区av精品| 一a级毛片在线观看| 久久午夜亚洲精品久久| 曰老女人黄片| 亚洲狠狠婷婷综合久久图片| 久久久久精品国产欧美久久久| 国产欧美日韩一区二区三区在线| 母亲3免费完整高清在线观看| 免费在线观看日本一区| 国产主播在线观看一区二区| 十分钟在线观看高清视频www| 亚洲人成网站在线播放欧美日韩| 久久久国产精品麻豆| 亚洲男人的天堂狠狠| 悠悠久久av| 国产成人精品无人区| 黄色a级毛片大全视频| 亚洲美女黄片视频| 别揉我奶头~嗯~啊~动态视频| 亚洲自偷自拍图片 自拍| 国产成年人精品一区二区 | 国产欧美日韩一区二区三| 国产国语露脸激情在线看| 国产精品1区2区在线观看.| 国产免费现黄频在线看| 久久人人爽av亚洲精品天堂| 日韩欧美一区视频在线观看| 狂野欧美激情性xxxx| 久久精品91蜜桃| 黄频高清免费视频| 亚洲av片天天在线观看| 人人妻人人爽人人添夜夜欢视频| 久久草成人影院| 欧美日韩亚洲高清精品| 在线观看午夜福利视频| 岛国在线观看网站| 亚洲人成77777在线视频| 制服人妻中文乱码| av欧美777| 操出白浆在线播放| 在线观看www视频免费| 国产亚洲精品久久久久5区| 欧美久久黑人一区二区| 亚洲精品久久成人aⅴ小说| 18禁黄网站禁片午夜丰满| 黄色成人免费大全| 亚洲性夜色夜夜综合| 搡老乐熟女国产| 国产野战对白在线观看| 久9热在线精品视频| 老司机在亚洲福利影院| 日本免费a在线| 人人妻人人添人人爽欧美一区卜| 99re在线观看精品视频| 女人被狂操c到高潮| 999久久久精品免费观看国产| 国产有黄有色有爽视频| 成人精品一区二区免费| 亚洲成av片中文字幕在线观看| av网站在线播放免费| 纯流量卡能插随身wifi吗| a级毛片在线看网站| 欧美乱码精品一区二区三区| 视频区欧美日本亚洲| 国产高清国产精品国产三级| 日本 av在线| 97超级碰碰碰精品色视频在线观看| 久久久久久免费高清国产稀缺| 超碰成人久久| 一a级毛片在线观看| 精品无人区乱码1区二区| 激情视频va一区二区三区| 亚洲精品中文字幕一二三四区| 真人做人爱边吃奶动态| 欧美日本中文国产一区发布| xxx96com| 亚洲成人国产一区在线观看| 亚洲男人的天堂狠狠| 亚洲精品一区av在线观看| 国产精品成人在线| 黑人巨大精品欧美一区二区mp4| 叶爱在线成人免费视频播放| netflix在线观看网站| 男女床上黄色一级片免费看| 国产日韩一区二区三区精品不卡| 啦啦啦免费观看视频1| 无人区码免费观看不卡| 免费在线观看影片大全网站| 99riav亚洲国产免费| 好看av亚洲va欧美ⅴa在| 91精品三级在线观看| 男女高潮啪啪啪动态图| 在线观看免费视频网站a站| 99久久精品国产亚洲精品| 中文亚洲av片在线观看爽| 18禁美女被吸乳视频| 丝袜美足系列| 19禁男女啪啪无遮挡网站| 最新美女视频免费是黄的| 国产精品香港三级国产av潘金莲| 欧美中文日本在线观看视频| 免费看a级黄色片| 在线观看免费午夜福利视频| 亚洲国产欧美日韩在线播放| 成人黄色视频免费在线看| 侵犯人妻中文字幕一二三四区| 中文字幕另类日韩欧美亚洲嫩草| 麻豆一二三区av精品| 99精品欧美一区二区三区四区| 精品久久久久久成人av| 久久国产精品男人的天堂亚洲| 日本vs欧美在线观看视频| 国产一区二区三区视频了| 午夜福利在线观看吧| 日韩国内少妇激情av| 大陆偷拍与自拍| 日日夜夜操网爽| 国产蜜桃级精品一区二区三区| 可以免费在线观看a视频的电影网站| 97碰自拍视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产一区二区三区视频了| 国产成人影院久久av| 日韩精品中文字幕看吧| 欧美在线一区亚洲| 777久久人妻少妇嫩草av网站| 精品免费久久久久久久清纯| 国产精品乱码一区二三区的特点 | 免费在线观看黄色视频的| 999久久久精品免费观看国产| 18美女黄网站色大片免费观看| 美女国产高潮福利片在线看| 人成视频在线观看免费观看| 欧美日韩瑟瑟在线播放| 日韩av在线大香蕉| 国产精品99久久99久久久不卡| 中文字幕人妻丝袜制服| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品自产拍在线观看55亚洲| 在线观看日韩欧美| 9热在线视频观看99| 亚洲精品美女久久久久99蜜臀| 成人手机av| 一区二区三区国产精品乱码| 亚洲少妇的诱惑av| cao死你这个sao货| 人妻丰满熟妇av一区二区三区| 免费看a级黄色片| 丝袜人妻中文字幕| 欧美国产精品va在线观看不卡| 国产欧美日韩一区二区三| 最新在线观看一区二区三区| 亚洲熟女毛片儿| а√天堂www在线а√下载| 精品国产乱子伦一区二区三区| 亚洲成人精品中文字幕电影 | 亚洲国产中文字幕在线视频| 久热爱精品视频在线9| 性色av乱码一区二区三区2| 啦啦啦在线免费观看视频4| 乱人伦中国视频| 免费人成视频x8x8入口观看| 两个人看的免费小视频| 国产av在哪里看| 1024视频免费在线观看| 男男h啪啪无遮挡| avwww免费| 亚洲人成电影免费在线| 欧美日韩av久久| 久久久久久大精品| 亚洲avbb在线观看| 黑人巨大精品欧美一区二区蜜桃| 亚洲一码二码三码区别大吗| 国产1区2区3区精品| 国产精品久久久人人做人人爽| 视频区图区小说| 侵犯人妻中文字幕一二三四区| 国产精品av久久久久免费| 我的亚洲天堂| 国产一区在线观看成人免费| 久9热在线精品视频| 岛国在线观看网站| 长腿黑丝高跟| 成人18禁高潮啪啪吃奶动态图| 无遮挡黄片免费观看| 啪啪无遮挡十八禁网站| 精品第一国产精品| 无遮挡黄片免费观看| 青草久久国产| 老司机在亚洲福利影院| 亚洲欧美一区二区三区黑人| 成人精品一区二区免费| 国产精品二区激情视频| 国产精品永久免费网站| 男人舔女人的私密视频| 嫁个100分男人电影在线观看| 韩国av一区二区三区四区| 亚洲男人天堂网一区| 亚洲avbb在线观看| 国产亚洲精品第一综合不卡| 两性夫妻黄色片| 9热在线视频观看99| 久久中文字幕人妻熟女| 久久热在线av| 新久久久久国产一级毛片| 一级,二级,三级黄色视频| 女人爽到高潮嗷嗷叫在线视频| 美女高潮喷水抽搐中文字幕| 91麻豆av在线| 在线观看66精品国产| cao死你这个sao货| 又黄又粗又硬又大视频| 大陆偷拍与自拍| 久久久久久久久中文| 美女高潮喷水抽搐中文字幕| 国产激情久久老熟女| 亚洲欧美日韩另类电影网站| 俄罗斯特黄特色一大片| 亚洲中文日韩欧美视频| 亚洲熟妇熟女久久| 怎么达到女性高潮| 欧美黄色片欧美黄色片| 国内久久婷婷六月综合欲色啪| 神马国产精品三级电影在线观看 | 91麻豆av在线| 亚洲自拍偷在线| 成人国语在线视频| 午夜影院日韩av| 欧美日韩福利视频一区二区| 亚洲 欧美 日韩 在线 免费| 啪啪无遮挡十八禁网站| 激情在线观看视频在线高清| а√天堂www在线а√下载| 国产免费男女视频| 国产精品av久久久久免费| 久久午夜综合久久蜜桃| av欧美777| 国产aⅴ精品一区二区三区波| 99国产精品免费福利视频| 真人做人爱边吃奶动态| 天堂中文最新版在线下载| 色老头精品视频在线观看| 一边摸一边抽搐一进一小说| 不卡一级毛片| 免费不卡黄色视频| 欧美在线黄色| 久久久久精品国产欧美久久久| 美女高潮喷水抽搐中文字幕| 中文字幕高清在线视频| 黄频高清免费视频| 国产精品亚洲一级av第二区| 免费在线观看黄色视频的| 国产野战对白在线观看| svipshipincom国产片| 欧美激情 高清一区二区三区| 亚洲 欧美一区二区三区| 久久精品人人爽人人爽视色| 免费在线观看视频国产中文字幕亚洲| 麻豆av在线久日| 国产成人欧美| e午夜精品久久久久久久| 日韩精品免费视频一区二区三区| 亚洲在线自拍视频| 国产成人精品在线电影| 美女国产高潮福利片在线看| 成年人黄色毛片网站| 嫩草影视91久久| 精品久久蜜臀av无| 国产精品免费一区二区三区在线| 精品高清国产在线一区| 天堂中文最新版在线下载| 亚洲欧美精品综合一区二区三区| 欧美人与性动交α欧美精品济南到| 97碰自拍视频| 亚洲国产中文字幕在线视频| 亚洲精品美女久久久久99蜜臀| 黑人操中国人逼视频| 亚洲一码二码三码区别大吗| 热re99久久精品国产66热6| 热99re8久久精品国产| 亚洲国产精品sss在线观看 | 国产又爽黄色视频| 最新美女视频免费是黄的| videosex国产| 欧美日韩av久久| 午夜精品在线福利| 亚洲自拍偷在线| 午夜成年电影在线免费观看| 日本黄色日本黄色录像| 欧美 亚洲 国产 日韩一| 69av精品久久久久久| 天堂俺去俺来也www色官网| 久久久精品国产亚洲av高清涩受| 亚洲精品久久成人aⅴ小说| 怎么达到女性高潮| 黄频高清免费视频| 精品国产亚洲在线| 97超级碰碰碰精品色视频在线观看| 亚洲精品久久成人aⅴ小说| 日韩大尺度精品在线看网址 | 少妇的丰满在线观看| 91麻豆精品激情在线观看国产 | 日本a在线网址| 久久精品91蜜桃| 97超级碰碰碰精品色视频在线观看| 欧美黑人精品巨大| 免费一级毛片在线播放高清视频 | 亚洲avbb在线观看| 日韩三级视频一区二区三区| 欧美日韩瑟瑟在线播放| 欧美色视频一区免费| 女人高潮潮喷娇喘18禁视频| 天堂影院成人在线观看| 天天添夜夜摸| 一边摸一边做爽爽视频免费| 日本vs欧美在线观看视频| 波多野结衣av一区二区av| 搡老乐熟女国产| 亚洲av电影在线进入| 国产精品98久久久久久宅男小说| 欧美人与性动交α欧美精品济南到| 亚洲国产毛片av蜜桃av| 精品久久久久久久久久免费视频 | 亚洲 欧美一区二区三区| 日本a在线网址| 国产99白浆流出| 日本vs欧美在线观看视频| 日韩欧美一区二区三区在线观看| 看黄色毛片网站| 亚洲精品中文字幕一二三四区| 午夜两性在线视频| 国产97色在线日韩免费| 欧美黄色片欧美黄色片| 国产精品久久久久成人av| 久久九九热精品免费| 亚洲自拍偷在线| 国产精品一区二区免费欧美| 午夜亚洲福利在线播放| 色哟哟哟哟哟哟| 色综合欧美亚洲国产小说| 亚洲精品美女久久av网站| 女性被躁到高潮视频| 麻豆国产av国片精品| 精品国产一区二区三区四区第35| 国产激情欧美一区二区| 一个人观看的视频www高清免费观看 | 亚洲一区中文字幕在线| 亚洲人成电影免费在线| 久久精品aⅴ一区二区三区四区| 啦啦啦在线免费观看视频4| 亚洲黑人精品在线| 韩国精品一区二区三区| 国产片内射在线| 国产精品爽爽va在线观看网站 | 国产高清国产精品国产三级| 久久中文字幕一级| 国产无遮挡羞羞视频在线观看| 亚洲第一欧美日韩一区二区三区| 久久精品影院6| www日本在线高清视频| 如日韩欧美国产精品一区二区三区| 国产在线观看jvid| 啦啦啦在线免费观看视频4| 母亲3免费完整高清在线观看| 嫩草影视91久久| 天堂影院成人在线观看| 久久人妻福利社区极品人妻图片| 亚洲三区欧美一区| 最新在线观看一区二区三区| 99国产精品免费福利视频| 日韩精品中文字幕看吧| 黄色片一级片一级黄色片| 国产精品国产av在线观看| 国产熟女xx| 如日韩欧美国产精品一区二区三区| 免费少妇av软件| 久久 成人 亚洲| 久久精品成人免费网站| 女人高潮潮喷娇喘18禁视频| 国产成人av激情在线播放| 99国产精品一区二区蜜桃av| 嫩草影视91久久| 制服人妻中文乱码| 51午夜福利影视在线观看| 久久婷婷成人综合色麻豆| 色综合欧美亚洲国产小说| 亚洲中文av在线| 久热爱精品视频在线9| 国产区一区二久久| 国产精品一区二区三区四区久久 | 国内久久婷婷六月综合欲色啪| 亚洲性夜色夜夜综合| 欧美日韩黄片免| 亚洲国产中文字幕在线视频| 黄色视频,在线免费观看| 亚洲精品国产区一区二| 欧美中文综合在线视频| 99国产综合亚洲精品| 丝袜在线中文字幕| 国内久久婷婷六月综合欲色啪| 国内毛片毛片毛片毛片毛片| 悠悠久久av| 高清在线国产一区| 国产伦人伦偷精品视频| 一进一出抽搐gif免费好疼 | 国产三级黄色录像| 亚洲欧美日韩另类电影网站| www国产在线视频色| 国产精品日韩av在线免费观看 | 另类亚洲欧美激情| 亚洲一区二区三区不卡视频| 99精品久久久久人妻精品| 80岁老熟妇乱子伦牲交| 欧美乱色亚洲激情| 国产极品粉嫩免费观看在线| 欧美激情 高清一区二区三区| 色老头精品视频在线观看| aaaaa片日本免费| 长腿黑丝高跟| 又紧又爽又黄一区二区|