• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nozzle Spray Diffusivity Changing Law for Ultra Fast Cooling in Hot Strip Mill

    2015-08-07 10:54:14JIANGLianyun江連運(yùn)ZHAOChunjiang趙春江SHIJianhui石建輝WUDi吳迪WANGGuodong王國棟
    關(guān)鍵詞:吳迪春江

    JIANG Lian-yun(江連運(yùn)),ZHAO Chun-jiang(趙春江),SHIJian-h(huán)ui(石建輝),WU Di(吳迪),WANG Guo-dong(王國棟)

    1 School of Mechanical Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China

    2 State Key Laboratory of Rolling and Automation,Northeastern University,Shenyang 110819,China

    Nozzle Spray Diffusivity Changing Law for Ultra Fast Cooling in Hot Strip Mill

    JIANG Lian-yun(江連運(yùn))1,2*,ZHAO Chun-jiang(趙春江)1,SHIJian-h(huán)ui(石建輝)2,WU Di(吳迪)2,WANG Guo-dong(王國棟)2

    1 School of Mechanical Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China

    2 State Key Laboratory of Rolling and Automation,Northeastern University,Shenyang 110819,China

    Slot nozzle and intensive nozzle can be used in ultra fast cooling equipment.The spray cooling method with higher water pressure can be taken in order to achieve ultra fast cooling for hot rolled strip.Water will be diffused after it is sprayed out from ultra fast cooling nozzle.Spray diffusivity will affect water velocity and penetrability of water into residual water layer on top of the strip,and then it will affect strip cooling effect.Water spraying process can be simulated by Fluent and some conclusionswere obtained.Slot nozzle width and outlet velocity within setting range could not affect the length of potential core zone and the spray diffusivity.Intensive nozzle diameter and outlet velocity will affect the length of potential core zone and the spray diffusivity with different extent.These conclusions will provide referenced role for confirm ing ultra fast cooling nozzle size and distance between ultra fast cooling nozzle and hot rolled strip.

    ultra-fast cooling;slot nozzle;intensive nozzle;spray diffusivity

    Introduction

    Currently,laminar cooling method in run-out table after rolling was taken.But it was difficult to develop steelmaterial with high property and low cost because of its lower cooling capacity.The ultra fast cooling equipment and control system was developed by State Key Laboratory of Rolling and Automation,Northeastern University according to the characteristic of impinging jet flow[1-2].The controlled rolling and controlled cooling technology developed rapidly based on the superiority of development of steel material with high property and low cost[3].

    Fluid with constant pressure,temperature and turbulence can be sprayed out from a nozzle and impinging jet flow can be formed when the fluid was sprayed on a wall and themaximum heat transfer rate can be formed near the stagnation point of the wall.Base on this characteristic impinging jet flow was used in nuclear reactor,material cutting,heat treatmentand so on,and got favorable effect.

    Although impinging jet flow has great cooling capacity,many factors will affect it,such as spraying distance,nozzle size and outlet velocity[4-6].Turbulent impinging jet flow changing law was obtained for certain nozzle,but the changing law was not suitable for ultra fast cooling nozzle because the nozzle size and water pressure were various.For example,the diameter of laminar cooling nozzle was 20 mm and the distance between lam inar cooling nozzle and hot rolled strip was about 2.0 m,but the ultra fast cooling nozzle diameter was about 3.5 mm and the distance was about 0.5 m.These factors can affect fluid spray diffusivity and then affect strip cooling capacity.Nozzle size and outlet velocity can affect impinging jet flow and the influencing law of ultra fast cooling nozzle can be obtained which will provide referenced role in design of ultra fast cooling nozzle and equipment.

    1 NumericalModeling

    Residual layer can be formed on top of the strip during strip cooling process,and it is difficult to penetrate the residual layer for water with lower velocity and the cooling capacity cannotbe improved.So higher water velocity will be required in order to improve strip cooling effect.Gap w idth of slot nozzle or intensive nozzle diameter should be as small as possible in order to improve outlet velocity according to the theory of fluid hydrodynam ics.Gap width of slot nozzle and intensive nozzle diameter were 1.0-2.5 mm and 2.5-4.5 mm respectively according to the total flux of pump when supplying water pressure was 1.0 MPa.

    There are slot nozzle and intensive nozzle in ultra fast cooling equipment for hot strip mill.There will be a large number of nodes if the3Dmodel is taken for calculation because the size of nozzle section wasmuch smaller compared with the global body.Toomany nodes are notgood for convergence and the calculation time can be prolonged.So it is necessary to simplify the 3D model according to the nozzle characteristic.

    Intensive nozzle wasmade ofmore than one hundred small round nozzles,and the small nozzle was axisymmetric.So the small nozzle can be taken out for analysis,and it can be simplified as a 2D axial symmetry model[7-8].The spraying section of slot nozzle was rectangle and the w idth and length were 1.0-2.5 mm and 1.5-2.5m.So the length was farmore than its w idth and the slot nozzle could be simplified as a 2D planarmodel[9-10].Figure 1 is the finite volumemethod model used in simulation.The water spraying process was simulated by Fluent[11].

    The boundary conditions are asbelow:AB and A'B'are the nozzle outletand the specify fluid velocity;DE and D'E'are the fluid outlet and the specify ambient pressure;A'E'is the symmetry axis and other lines in Fig.1 are the wall boundary conditions.

    Fig.1 Analysismodel

    Water can be sprayed into the air and energy exchange and turbulent diffusion process can be conducted.Then a m ixture with water and air can be formed and three multiphasemodels,including volume of fluid(VOF),mixture and Eulerian,can be used for simulation.Mixture can be used for calculation according to the characteristic of the three multiphase models. All convective terms were discretized with the second order linear upw ind scheme,and the Renormalization-group(RNG)k-εmodel[12-13]was used for turbulencemodeling.Themodel parameters k andεcan be calculated with Eqs.(1)and(3).

    where k is the turbulent kinetic energy,m2/s2;εis the turbulent dissipation rate,m2/s3;v is the average velocity in the section,m/s;L is the characteristic length,m;φis the round pipe diameter,m;L1and L2are the length and the width of the rectangular section,m,respectively;u is the kinematic viscosity and it is1.002×10-6m2/s for27℃water;vwallis the maximum velocity of the wall,m/s.

    2 Characteristic of Nozzle Spraying Process

    The water flow can be divided into three obvious regions (the potential core zone,the developing zone and the developed zone)according to the theory of fluid hydrodynam ics[14]. Figure 2 is the distribution of the three regions along the spraying direction.φand b are the diameter of round nozzle and w idth of slotnozzle,respectively.Velocity in the potential core zone is nearly the same as the nozzle outlet velocity.Velocity will be decreased slow ly in this region and it will come to the end when the velocity is up to 0.95 times nozzle outletvelocity. Water will be diffused quickly and axial velocity will be decreased in the developing zone,then water will enter into the developed zone and itwill not be diffused and the axial velocity keeps nearly the same.

    Fig.2 Diagram of impinging jet flow

    Length of the potential core zone will affect the impact of spraying jet flow and then affect cooling capacity.The nozzle size and outlet velocity will affect the length of the potential core zone and spray diffusivity during spraying process,and deep research should be conducted to get the changing law.The spraying processes of the two nozzles with different parameters were simulated and some useful conclusions were obtained below.

    3 Results and Discussion

    3.1 Results and discussion for slot nozzle

    The water spraying processes were simulated according to setting boundary condition and initial condition when the outlet velocity was 22 m/s and the gap w idth was 1.0-2.5 mm.The spraying processeswere also simulated when the outlet velocity was 14-22 m/s and the gap w idth was 2.0 mm.The velocity along the center was obtained when the outlet velocity and the gap w idth were different.Figure 3 was the velocity along the center when the outlet velocity was 14-22 m/s and the nozzle gap w idth was 2.0 mm.Figure 4 was the velocity along the center when the outlet velocity was 22 m/s and the nozzle gap w idth was1.0-2.5 mm.

    It can be seen from Figs.3 and 4 that water flow can be divided into three obvious regions and the calculated result is the same as the theory of fluid hydrodynamics.It can be seen from Fig.3 that the length of three regions remains unchanged when the outlet velocity raises from 14 to 22 m/s.Lengths of the potential core zone and the developing zone are 17 and 43 mm respectively.The velocity in the developed zone can be improved with increase of the outlet velocity.

    Fig.3 Spray distance and velocity curves for various initial velocity

    Fig.4 Spray distance and velocity curves for various nozzle gap w idth

    It can be seen from Fig.4 that length of the potential core zone keeps nearly the same when the gap w idth raises from 1.0 to 2.5 mm,the outlet velocity is 22 m/s,and the length is 17 mm.The velocity will be improved when it enters into the developed zone with improvement of gap w idth.

    Water will be diffused after it was sprayed out from the nozzle and velocity will be changed along the spraying direction during spraying process.Water volume fraction with various outlet velocity and gap w idth can be obtained when water enters into the developed zone according to the calculated data.Figure 5 is the water volume fraction in the cross section when the outlet velocity is 14-22 m/s and the gap w idth is 2.0 mm.Figure 6 is the water volume fraction when the outlet velocity is 22 m/s and the gap w idth is 1.0-2.5mm.Figure 7 is the water volume fraction distribution after water is sprayed 1 s from the nozzle.

    It can be seen from Fig.5 that water volume fraction with different outlet velocity is nearly the samewhen thew idth is less than 3.0 mm and thewater volumewith lower outlet velocity is greater than the higher oneswhen thewidth is3.0-7.0mm.So the water can be defused quickly with higher velocity and the higher velocity is not good for decreasing spray diffusivity.The difference of water volume fraction with different velocity is not obvious and so the velocity cannot produce obvious effecton the water volume fraction in the developed zone.

    Fig.5 Water volume fraction distribution along the w idth for different initial spray velocity

    Fig.6 Water volume fraction distribution along the w idth for different nozzle gap width

    Fig.7 Water volume fraction distribution of the slot nozzle

    It can be seen from Figs.6 and 7 that the gap w idth can affectwater distribution in the developed zone when the outlet velocity is a constant.Water volume fraction ismore than 80% when the w idth is less than 5.0 mm,and 80%water is within the 10 mm w idth range.So the gap w idth cannot affect spray diffusivity obviously within the range.But the gap w idth can affect spray diffusivity obviously in other w idth ranges,and the water can be diffused easily for smaller gap w idth.So the velocity along the center can be decreased quickly with increase of spraying distance,and the lower velocity was not good for water penetrating the residual layer on top of the strip.So the large w idth is suitable for decreasing spray diffusivity and improving cooling capacity.

    3.2 Results and discussion for intensive nozzle

    Water spraying processes were simulated according to the setting boundary conditions and the initial conditions when the outlet velocity of the intensive nozzle was 22 m/s and the diameter was 2.5-4.5 mm.The spraying processes were also simulated when the outlet velocity was 14-22 m/s and the diameter was 4.5 mm.The axial velocity was obtained when the outlet velocity and the diameter were different.Figure 8 is the axial velocity when the outlet velocity is14-22 m/s and the nozzle diameter is 4.5 mm.Figure 9 is the axial velocity when the outlet velocity was 22 m/s and the nozzle diameter is 2.5-4.5 mm.

    Fig.8 Curves of spray distance and axial velocity with different initial spray velocity

    Fig.9 Curves of spray distance and axial velocity with different nozzle diameter

    It can be seen from Fig.8 that the length of three regions remains unchanged when the outlet velocity raises from 14 to 22 m/s and the nozzle diameter is 4.5 mm.Lengths of the potential core zone and the developing zone are 26 and 54 mm respectively.Outlet velocity can affect water velocity in the developed zone,and water velocity in developed zone is greater with higher outlet velocity,and the axial velocity will keep constant after water enters into the developed zone.

    It can be seen from Fig.9 that the length of the potential core zonewillbe increased when the nozzle diameter raises from 2.5 to 4.5 mm and the outlet velocity is 22.0 m/s.Axial velocity in the developing zone can also be improved with increase of nozzle diameter,but the axial velocity in the developed zone presents the opposite law.So water distribution along the spraying direction can be affected by nozzle diameter. Curve of nozzle diameter and length of the potential core zone is obtained according to the calculated data when the outlet velocity is 22.0 m/s and the nozzle diameter is 2.5-4.5 mm,and it can be seen in Fig.10.

    It can be seen from Fig.10 that length of the potential core zone can be increased with improvement of nozzle diameter,and they present linear relationship.The scale factor is obtained by the least squaremethod and the value is 6.0.So the length of the potential core zone is about6.0 times the diameter of the round nozzle.

    Fig.10 Relationship of nozzle diameter and length of the potential core zone

    Water will be diffused after it was sprayed out from the nozzle and velocity will be changed along the spraying direction during spraying process.Water volume fraction with various outlet velocity and nozzle diameter can be obtained when water enters into the developed zone according to the calculated data. Figure 11 is the water volume fraction in the cross section when the outlet velocity is 14-22 m/s and the nozzle diameter is 2.0 mm.Figure 12 is water volume fraction when the outlet velocity is 22 m/s and the nozzle diameter is 2.5-4.5 mm. Figure 13 is the water volume fraction distribution after water is sprayed 1 s from the nozzle.

    Fig.11 Radial water volume fraction distribution for different initial velocities

    Fig.12 Radial water volume fraction distribution for different nozzle diameters

    It can be seen from Fig.11 that the outlet velocity cannot affectwater volume fraction within diameter of 6.0 mm when the nozzle diameter is a constant.Water volume fraction can be affected by the outlet velocity in other ranges and water volume fraction is greater with higher outlet velocity.Butwater volume fraction has little difference with various outlet velocities.

    It can be seen from Figs.12 and 13 that water volume fraction in the cross section can be affected by nozzle diameter,

    Fig.13 Water volume fraction distribution of the intensive nozzle

    and itwill be decreased with increase of the distance from axis. Water volume fraction can be decreased greatly with smaller nozzle diameter.So the large diameter is suitable for decreasing spray diffusivity and improving of cooling capacity.

    4 Practical Applications

    Based on the superiority of ultra fast cooling in hot strip mill in development of low-cost and high property steel material,the cooling system in run-out table of 2 160mm HSM in Qian'an Iron and Steel had been modified.The best gap w idth(nozzle diameter)can be obtained according to the spray diffusivity changing law,required cooling rate and pump characteristic,and the two nozzles were designed.Figure 14 shows the nozzlemodel and its spraying status.

    Fig.14 Spraying status for the two nozzle

    The nozzle outlet velocity cannot be measured easily,but the water flux can be measured easily.The nozzle outlet velocity can be obtained from water flux according to flow conservation.The axial velocity and velocity along the center cannot bemeasured easily,but the width and diameter of water can be measured after it is sprayed out from the nozzle.The reliability of simulated data calculated by Fluent can be verified according to the w idth and diameter of water.

    The diameter and w idth of water can be obtained from the calculated data at a constant spraying distance and the approximate value can also bemeasured when the water volume fraction is 90%.Tables 1 and 2 are the calculated and the measured data for slot nozzle and intensive nozzle respectively.

    Table 1 Calculatedandmeasureddataforslotnozzle

    Table 2 Calculatedandmeasureddataforintensivenozzle

    It can be seen from Tables 1 and 2 that the measured data are greater than the calculated data,but the deviation is not very great and the calculated data are acceptable. The machining quality of nozzle cannot be as good as the calculated model used in simulation,and the deviation can be smaller with higher machining quality.

    It can be known from Fig. 14 that the water spraydiffusivity was of the two nozzles is not obvious and strength of the impinging jet flow is great. Strip cooling rate is improved greatly after the spraying cooling method is taken. Table 3 is the cooling rate for different steel grade.

    Table 3 Hotrolledstripcoolingratefortwocoolingmethods

    It can be seen from Table 3 that the cooling rate isimproved greatly after the spraying cooling method with higherpressure is taken and it can provide useful references forestablishment of ultra fast cooling process. Slot nozzle gapwidth and intensive nozzle diameter are confirmed according tothe spray diffusivity changing law and range of required coolingrate.

    5 Conclusions

    ( 1) Length of the potential core zone and the developingzone cannot be affected by the slot nozzle width and the outletvelocity when gap width of the slot nozzle was 1. 0-2. 5 mm andoutlet velocity was 14-22 m /s,and lengths of the potential corezone and the developing zone were 17 and 43 mm respectively.Water volume fraction in the developed zone could not beaffected by gap width and outlet velocity obviously,and 80%water was within the 10 mm width range.

    ( 2) Outlet velocity of the intensive nozzle could not affectwater volume fraction in the developed zone obviously.Intensive nozzle diameter could affect water volume fraction inthe developed zone within the setting range. Water volumefraction would be decreased with increase of distance from axisand it would be decreased greatly with smaller nozzle diameter.And large diameter was suitable for decreasing spray diffusivityand improving of cooling capacity.

    ( 3) Length of the potential core zone for intensive nozzlecould be increased with improvement of nozzle diameter andthey presented linear relationship when nozzle diameter was2. 5-4. 5 mm and outlet velocity was 14-22 m /s. Length of thepotential core zone was 6. 0 times the nozzle diameter. But theoutlet velocity could not affect length of the potential core zone.

    [1] Li Z L,Jiang L Y,Yuan G,et al. Water Pressure ControlTechnology and Application on Hot Strip Rolling Water SupplySystem[J]. Journal of Northeastern University: Natural Science,2013,34( 9) : 1252-1256. ( in Chinese)

    [2] Wang G D. New Generation TMCP and Innovative Hot RollingProcess [J]. Journal of Northeastern University: NaturalScience,2009,30( 7) : 913-922. ( in Chinese)

    [3] Jiang L Y,Li Z L,Yuan G,et al. Research on Water Pressureand Nozzle Flux Control Method in Ultra-Fast Cooling System ofHSM[C]. The 9th China Steel Conference,Beijing,2013: 1-6.( in Chinese)

    [4] Attalla M,Salem M. Effect of Nozzle Geometry on Heat TransferCharacteristics from a Single Circular Air Jet [J]. AppliedThermal Sciences,2013,51( 1) : 723-733.

    [5] Gulati P,Katti V,Prabhu S V. Influence of the Shape of theNozzle on Local Heat Transfer Distribution between Smooth FlatSurface and Impinging Air Jet [J]. International Journal ofThermal Science,2009,48( 3) : 602-617.

    [6] Sharif M A R. Heat Transfer from an Isothermally Heated FlatSurface due to Twin Oblique Slot-Jet Impingement[J]. ProcediaEngineering,2013,56( 3) : 544-550.

    [7] Jeng T M,Tzeng S C,Xu R. Heat Transfer Characteristics of aRotating Cylinder with a Lateral Air Impinging Jet [J].International Journal of Heat and Mass Transfer,2014,70( 11) :235-249.

    [8] Rusch D,Moser L,Roesgen T. Turbulence Model Validation forthe Fire Simulation by CFD and Experimental Investigation of aHot Jet in Cross Flow [J]. Fire Safety Journal,2008,43( 6) :429-411.Koseoglu M F,Baskaya S. The Effect of Flow Field andTurbulence on Heat Transfer Characteristics of Confined Circularand Elliptic Impinging Jets [J]. International Journal of Heatand Mass Transfer,2008,47( 10) : 1332-1346.

    [9] Eren H,Celik N. Cooling of a Flat Plate by an ObliquelyImpinging Slot Jet [J]. International Communications in Heatand Mass Transfer,2006,33( 3) : 372-380.

    [10]Akansu Y E,Sarioglu M,Kuvvet K,et al. Flow Field and HeatTransfer Characteristics in an Oblique Slot Jet Impinging on a FlatPlate[J]. International Communications in Heat and Transfer,2008,35( 7) : 873-880.

    [11] Du C,Xu M Y,Mi J C. Effect of Exit Reynolds Number on aTurbulent Round Jet [J]. Act Physica Sinica,2010,59 ( 9 ) :6331-6338. ( in Chinese)

    [12] Rusch D,Moser L,Roesgen T. Turbulence Model Validation forthe Fire Simulation by CFD and Experimental Investigation of aHot Jet in Cross Flow [J]. Fire Safety Journal,2008,43( 6) :429-411.

    [13] Abdel-Fattah A. Numerical and Experimental Study of TurbulentImpinging Twin-Jet Flow [J]. Experimental Thermal and FluidScience,2007,31( 8) : 1061-1072.

    [14] Chen Q G,Xu Z,Zhang Y J. Advances in Numerical Studies ofTurbulent Impinging Jet Flow and Heat Transfer[J]. Advancesin Mechanics,2002,32( 1) : 92-105. ( in Chinese)

    TG335.55

    A

    1672-5220(2015)04-0583-05

    date:2014-04-21

    s:State“1025”Science and Technology Support Projects,China(No.2012BAF04B01)

    *Correspondence should be addressed to JIANG Lian-yun,E-mail:neu2015@163.com

    猜你喜歡
    吳迪春江
    春日
    最特別的樹
    東方少年(2022年25期)2022-10-18 06:52:46
    新型城鎮(zhèn)化對(duì)農(nóng)民收入的影響
    春江水暖鴨先知
    無人機(jī)(2021年1期)2021-04-05 12:49:24
    羅晨依??《春江溪居》
    我心碎 夢(mèng)一場(chǎng)
    戲劇之家(2015年16期)2015-09-12 19:54:22
    春江水暖鴨先知
    “不加班的工作”
    轉(zhuǎn)呼拉圈
    吃芒果
    欧美日韩综合久久久久久| 国产精品免费大片| 久久人人爽人人片av| av天堂久久9| 亚洲欧美成人综合另类久久久| 人体艺术视频欧美日本| 亚洲美女搞黄在线观看| 日韩欧美精品免费久久| 男男h啪啪无遮挡| 久久久久精品人妻al黑| 少妇人妻精品综合一区二区| 国产精品成人在线| 欧美激情极品国产一区二区三区| 男人舔女人的私密视频| 少妇 在线观看| 高清不卡的av网站| 久久国内精品自在自线图片| 哪个播放器可以免费观看大片| 丝袜美腿诱惑在线| 赤兔流量卡办理| 男人舔女人的私密视频| 黄色视频在线播放观看不卡| xxxhd国产人妻xxx| 又粗又硬又长又爽又黄的视频| 国产一区二区三区av在线| 亚洲欧美精品自产自拍| 亚洲成av片中文字幕在线观看 | 亚洲av中文av极速乱| 女性生殖器流出的白浆| 99国产精品免费福利视频| 免费观看av网站的网址| 国产av精品麻豆| 国产成人精品福利久久| 国产精品不卡视频一区二区| 超碰97精品在线观看| 狠狠精品人妻久久久久久综合| 黄色视频在线播放观看不卡| 曰老女人黄片| 中文字幕精品免费在线观看视频| 免费在线观看视频国产中文字幕亚洲 | 制服丝袜香蕉在线| 精品一品国产午夜福利视频| 在线亚洲精品国产二区图片欧美| 国产精品女同一区二区软件| 久久午夜综合久久蜜桃| 18在线观看网站| 99re6热这里在线精品视频| 蜜桃在线观看..| 97人妻天天添夜夜摸| 日韩中文字幕视频在线看片| 天天躁夜夜躁狠狠久久av| 亚洲在久久综合| 美女视频免费永久观看网站| 亚洲欧美中文字幕日韩二区| 国产高清国产精品国产三级| 2022亚洲国产成人精品| 免费观看av网站的网址| h视频一区二区三区| 亚洲精品第二区| 国产亚洲一区二区精品| 欧美精品av麻豆av| 丝袜人妻中文字幕| 一级,二级,三级黄色视频| 久久国产精品男人的天堂亚洲| 男女无遮挡免费网站观看| 人妻 亚洲 视频| 日韩精品免费视频一区二区三区| 97在线人人人人妻| 欧美av亚洲av综合av国产av | 日日啪夜夜爽| 狠狠精品人妻久久久久久综合| 日韩制服丝袜自拍偷拍| 国产精品一二三区在线看| 一二三四在线观看免费中文在| 亚洲精品国产av成人精品| 国产成人aa在线观看| 97精品久久久久久久久久精品| 99热全是精品| 999久久久国产精品视频| 18禁动态无遮挡网站| 极品少妇高潮喷水抽搐| 欧美在线黄色| 十八禁网站网址无遮挡| 久久99一区二区三区| 男女啪啪激烈高潮av片| 一区二区av电影网| 午夜激情久久久久久久| 国产精品人妻久久久影院| 国产亚洲午夜精品一区二区久久| 综合色丁香网| 精品少妇内射三级| 午夜激情av网站| 蜜桃国产av成人99| av线在线观看网站| 天天躁狠狠躁夜夜躁狠狠躁| 欧美变态另类bdsm刘玥| 美女高潮到喷水免费观看| 永久免费av网站大全| 亚洲色图 男人天堂 中文字幕| 视频区图区小说| 激情五月婷婷亚洲| 国产日韩一区二区三区精品不卡| 国产精品秋霞免费鲁丝片| 满18在线观看网站| 91午夜精品亚洲一区二区三区| 熟女电影av网| 不卡视频在线观看欧美| 亚洲国产精品999| 国产一区二区激情短视频 | 亚洲欧洲精品一区二区精品久久久 | 9热在线视频观看99| 观看美女的网站| 亚洲欧洲精品一区二区精品久久久 | 高清在线视频一区二区三区| 老熟女久久久| 免费黄网站久久成人精品| 中文字幕制服av| 丝瓜视频免费看黄片| 丝袜喷水一区| 欧美 日韩 精品 国产| 欧美亚洲日本最大视频资源| 久久久久久人妻| 午夜福利一区二区在线看| 看免费成人av毛片| 久久久国产精品麻豆| 18在线观看网站| 26uuu在线亚洲综合色| 最黄视频免费看| 国产成人免费观看mmmm| 日韩精品有码人妻一区| 国产精品成人在线| 亚洲伊人久久精品综合| 久久人人爽av亚洲精品天堂| av网站在线播放免费| 人人妻人人澡人人看| 亚洲一级一片aⅴ在线观看| 中文欧美无线码| 最新的欧美精品一区二区| 欧美人与性动交α欧美精品济南到 | 伦理电影大哥的女人| 女性生殖器流出的白浆| 国产精品.久久久| 国产福利在线免费观看视频| 女人精品久久久久毛片| 视频区图区小说| 美女国产视频在线观看| 91久久精品国产一区二区三区| 国产精品久久久久久av不卡| 国产av国产精品国产| 黄色视频在线播放观看不卡| 欧美日韩精品网址| 国产无遮挡羞羞视频在线观看| 国产一级毛片在线| 涩涩av久久男人的天堂| 亚洲三级黄色毛片| 十八禁网站网址无遮挡| 18禁国产床啪视频网站| www.av在线官网国产| 亚洲成色77777| 纵有疾风起免费观看全集完整版| 日本免费在线观看一区| 国产精品av久久久久免费| 在线天堂最新版资源| 视频区图区小说| 亚洲情色 制服丝袜| 亚洲欧美一区二区三区久久| 免费黄色在线免费观看| 熟妇人妻不卡中文字幕| 国产淫语在线视频| 亚洲精品美女久久av网站| 欧美xxⅹ黑人| www.熟女人妻精品国产| 波多野结衣一区麻豆| 99热国产这里只有精品6| 精品久久久久久电影网| 爱豆传媒免费全集在线观看| 日韩成人av中文字幕在线观看| 亚洲精品国产av成人精品| 国产成人aa在线观看| 777久久人妻少妇嫩草av网站| 国产乱来视频区| 99久久人妻综合| 亚洲,欧美精品.| 午夜福利一区二区在线看| 日韩欧美一区视频在线观看| 亚洲在久久综合| 久久久国产精品麻豆| 久久精品人人爽人人爽视色| 中文字幕人妻丝袜制服| 久久精品国产亚洲av高清一级| 欧美精品人与动牲交sv欧美| 搡女人真爽免费视频火全软件| 欧美国产精品一级二级三级| 一本大道久久a久久精品| 在线免费观看不下载黄p国产| 波多野结衣av一区二区av| 欧美激情极品国产一区二区三区| 看免费成人av毛片| 日韩,欧美,国产一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 最新的欧美精品一区二区| 免费观看a级毛片全部| 成人影院久久| 色婷婷久久久亚洲欧美| 老女人水多毛片| 尾随美女入室| 精品酒店卫生间| 成年美女黄网站色视频大全免费| 91国产中文字幕| 国产精品亚洲av一区麻豆 | 91午夜精品亚洲一区二区三区| 欧美xxⅹ黑人| 最新的欧美精品一区二区| 免费久久久久久久精品成人欧美视频| 国产人伦9x9x在线观看 | 老汉色av国产亚洲站长工具| 成人亚洲欧美一区二区av| 亚洲天堂av无毛| 亚洲国产欧美在线一区| 中文字幕av电影在线播放| 五月天丁香电影| 亚洲伊人色综图| 亚洲成色77777| 如日韩欧美国产精品一区二区三区| 一区二区av电影网| 免费不卡的大黄色大毛片视频在线观看| 有码 亚洲区| 午夜91福利影院| 另类精品久久| 午夜影院在线不卡| 久久久久久久久久久免费av| 汤姆久久久久久久影院中文字幕| av片东京热男人的天堂| 国产精品三级大全| 亚洲成人手机| 国产黄色视频一区二区在线观看| 老女人水多毛片| 亚洲精品美女久久av网站| 99国产综合亚洲精品| 青草久久国产| 日本猛色少妇xxxxx猛交久久| 欧美日韩av久久| 成人午夜精彩视频在线观看| 久久精品人人爽人人爽视色| 欧美日韩精品成人综合77777| 自拍欧美九色日韩亚洲蝌蚪91| 久久久国产精品麻豆| a 毛片基地| 日日爽夜夜爽网站| 99久久精品国产国产毛片| 好男人视频免费观看在线| 性色avwww在线观看| 日韩免费高清中文字幕av| 日日撸夜夜添| 日本爱情动作片www.在线观看| 晚上一个人看的免费电影| 亚洲欧美成人精品一区二区| 成人亚洲精品一区在线观看| 天天操日日干夜夜撸| 精品久久蜜臀av无| 成人漫画全彩无遮挡| 99久久综合免费| 久久久久久人妻| 看十八女毛片水多多多| 久久99蜜桃精品久久| 午夜久久久在线观看| 一区二区三区四区激情视频| 久久久a久久爽久久v久久| 丝袜人妻中文字幕| 亚洲国产最新在线播放| 欧美变态另类bdsm刘玥| 亚洲精品美女久久av网站| 人体艺术视频欧美日本| 日本wwww免费看| 亚洲 欧美一区二区三区| 亚洲国产色片| 高清在线视频一区二区三区| 久久久久久久久久人人人人人人| 亚洲欧洲国产日韩| 国产精品女同一区二区软件| 麻豆精品久久久久久蜜桃| 国产成人精品一,二区| 免费高清在线观看日韩| 日韩中字成人| 婷婷色综合www| 久久人人97超碰香蕉20202| 久久精品熟女亚洲av麻豆精品| 亚洲成色77777| 国产国语露脸激情在线看| 久久综合国产亚洲精品| 侵犯人妻中文字幕一二三四区| 精品国产一区二区三区四区第35| 国产免费现黄频在线看| 中文欧美无线码| 亚洲情色 制服丝袜| 一级a爱视频在线免费观看| 亚洲欧美色中文字幕在线| 免费高清在线观看日韩| 欧美人与性动交α欧美精品济南到 | 亚洲成人av在线免费| 中文欧美无线码| 多毛熟女@视频| 超碰成人久久| 国产日韩欧美亚洲二区| 九草在线视频观看| 成人黄色视频免费在线看| av天堂久久9| 9热在线视频观看99| 国产一区有黄有色的免费视频| 亚洲经典国产精华液单| 搡女人真爽免费视频火全软件| 国产片内射在线| 在线 av 中文字幕| 午夜影院在线不卡| 丝袜美腿诱惑在线| av片东京热男人的天堂| 国产人伦9x9x在线观看 | 国产成人一区二区在线| 亚洲激情五月婷婷啪啪| 国产精品亚洲av一区麻豆 | 搡老乐熟女国产| 亚洲欧美精品综合一区二区三区 | 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品久久久久久婷婷小说| 可以免费在线观看a视频的电影网站 | 久久99精品国语久久久| 黑人猛操日本美女一级片| 亚洲国产色片| 久久久欧美国产精品| 久久久久久久久久人人人人人人| 亚洲天堂av无毛| 日韩成人av中文字幕在线观看| 一二三四在线观看免费中文在| 青春草视频在线免费观看| 波野结衣二区三区在线| 一区二区av电影网| 久久热在线av| 少妇 在线观看| 80岁老熟妇乱子伦牲交| 久久久久久久久久久久大奶| 亚洲精品国产一区二区精华液| 最近手机中文字幕大全| 日本91视频免费播放| 人人妻人人澡人人爽人人夜夜| 菩萨蛮人人尽说江南好唐韦庄| 在线观看免费高清a一片| 国产爽快片一区二区三区| 久久亚洲国产成人精品v| 美女大奶头黄色视频| 爱豆传媒免费全集在线观看| 国产成人免费无遮挡视频| 午夜精品国产一区二区电影| 成人亚洲精品一区在线观看| 日韩大片免费观看网站| 国产成人av激情在线播放| 九色亚洲精品在线播放| 精品一区二区三卡| 国产免费福利视频在线观看| 国产97色在线日韩免费| 少妇猛男粗大的猛烈进出视频| 久久人人爽人人片av| 国产日韩欧美在线精品| 满18在线观看网站| 亚洲伊人久久精品综合| 久久国产亚洲av麻豆专区| 国产亚洲一区二区精品| 久久精品aⅴ一区二区三区四区 | 美女国产视频在线观看| 国产亚洲最大av| 性色av一级| 免费在线观看完整版高清| 成人亚洲欧美一区二区av| 精品一区二区免费观看| 热re99久久国产66热| 亚洲国产毛片av蜜桃av| 制服丝袜香蕉在线| 亚洲av福利一区| 水蜜桃什么品种好| 另类亚洲欧美激情| 欧美xxⅹ黑人| 午夜激情久久久久久久| 日日爽夜夜爽网站| www.自偷自拍.com| 亚洲欧美一区二区三区黑人 | 少妇人妻精品综合一区二区| 亚洲欧美色中文字幕在线| 成年美女黄网站色视频大全免费| 777米奇影视久久| av女优亚洲男人天堂| 日韩视频在线欧美| 国产精品偷伦视频观看了| 久久国内精品自在自线图片| 一区二区日韩欧美中文字幕| 婷婷色麻豆天堂久久| 国精品久久久久久国模美| 日韩制服丝袜自拍偷拍| 亚洲一码二码三码区别大吗| 制服人妻中文乱码| 韩国高清视频一区二区三区| 在线天堂中文资源库| 国产麻豆69| 久久国内精品自在自线图片| av视频免费观看在线观看| 欧美激情 高清一区二区三区| 国产精品香港三级国产av潘金莲 | 在线观看免费高清a一片| 97在线人人人人妻| 国产精品av久久久久免费| av网站在线播放免费| 久久久精品区二区三区| 性高湖久久久久久久久免费观看| av片东京热男人的天堂| 天堂俺去俺来也www色官网| 日韩在线高清观看一区二区三区| 久久精品国产自在天天线| 王馨瑶露胸无遮挡在线观看| 国产又爽黄色视频| 久久久亚洲精品成人影院| 中文字幕av电影在线播放| av线在线观看网站| 99国产综合亚洲精品| 激情五月婷婷亚洲| 人妻系列 视频| 伦理电影大哥的女人| 久久久久久伊人网av| a级毛片黄视频| 久热这里只有精品99| 69精品国产乱码久久久| 午夜福利影视在线免费观看| 熟女av电影| 2018国产大陆天天弄谢| 久久久久久免费高清国产稀缺| 久久久国产精品麻豆| 亚洲欧洲精品一区二区精品久久久 | 你懂的网址亚洲精品在线观看| av网站在线播放免费| 国产精品一二三区在线看| 你懂的网址亚洲精品在线观看| av在线app专区| 成人亚洲精品一区在线观看| 亚洲综合色网址| 老汉色∧v一级毛片| 亚洲欧美精品自产自拍| 两个人看的免费小视频| videos熟女内射| 国产极品天堂在线| 在线观看免费高清a一片| 亚洲精品久久成人aⅴ小说| 亚洲国产av影院在线观看| 九色亚洲精品在线播放| 大香蕉久久网| 欧美精品av麻豆av| 亚洲图色成人| 一级,二级,三级黄色视频| 亚洲国产欧美网| 久久久精品免费免费高清| 国产极品粉嫩免费观看在线| 中文乱码字字幕精品一区二区三区| 亚洲男人天堂网一区| 国产成人免费观看mmmm| 国产精品久久久久久精品古装| 男女下面插进去视频免费观看| 色视频在线一区二区三区| 天天影视国产精品| 99香蕉大伊视频| a级毛片黄视频| 久久女婷五月综合色啪小说| 夫妻午夜视频| 丁香六月天网| 中文欧美无线码| 亚洲av免费高清在线观看| 成年人免费黄色播放视频| 色哟哟·www| 成年av动漫网址| 一区二区三区精品91| 2021少妇久久久久久久久久久| 亚洲在久久综合| 有码 亚洲区| 97在线人人人人妻| 国产精品偷伦视频观看了| 免费在线观看视频国产中文字幕亚洲 | 久久久精品区二区三区| 纵有疾风起免费观看全集完整版| 国产av国产精品国产| h视频一区二区三区| 美女国产视频在线观看| 丰满饥渴人妻一区二区三| 丝袜美腿诱惑在线| 嫩草影院入口| 国产不卡av网站在线观看| 男女边吃奶边做爰视频| 精品人妻在线不人妻| 免费不卡的大黄色大毛片视频在线观看| 欧美 日韩 精品 国产| 久久久久久久久久久久大奶| 亚洲国产欧美网| 欧美人与善性xxx| 日韩av免费高清视频| 国产在线一区二区三区精| 黄片无遮挡物在线观看| 777久久人妻少妇嫩草av网站| 丝袜美腿诱惑在线| 国精品久久久久久国模美| av视频免费观看在线观看| 午夜激情久久久久久久| 老熟女久久久| 如日韩欧美国产精品一区二区三区| 国产 精品1| 日本-黄色视频高清免费观看| 久久 成人 亚洲| 国产成人一区二区在线| 男女边吃奶边做爰视频| 国产野战对白在线观看| 精品国产乱码久久久久久小说| 青春草国产在线视频| 亚洲精品aⅴ在线观看| 人妻人人澡人人爽人人| 久久久久久久久久人人人人人人| 午夜老司机福利剧场| 99国产综合亚洲精品| 精品久久久精品久久久| 精品国产乱码久久久久久男人| 精品国产国语对白av| 大香蕉久久网| 在线观看免费高清a一片| 91精品三级在线观看| av天堂久久9| 午夜福利一区二区在线看| 国产男人的电影天堂91| 欧美精品高潮呻吟av久久| 中文精品一卡2卡3卡4更新| 国产在线一区二区三区精| 亚洲欧美成人综合另类久久久| 国产精品久久久久久久久免| 哪个播放器可以免费观看大片| 超碰97精品在线观看| 青草久久国产| 久久久久久免费高清国产稀缺| 91国产中文字幕| 老汉色∧v一级毛片| 超色免费av| 国产精品国产三级国产专区5o| 美女大奶头黄色视频| a 毛片基地| 日韩一本色道免费dvd| av女优亚洲男人天堂| 亚洲第一区二区三区不卡| 青春草国产在线视频| 肉色欧美久久久久久久蜜桃| 午夜91福利影院| 大陆偷拍与自拍| 天天躁日日躁夜夜躁夜夜| 色94色欧美一区二区| 国产成人a∨麻豆精品| 国产成人精品福利久久| 亚洲精品久久午夜乱码| 亚洲成av片中文字幕在线观看 | 婷婷色综合www| 日本免费在线观看一区| 欧美国产精品va在线观看不卡| 国产高清不卡午夜福利| 国产在视频线精品| 国产福利在线免费观看视频| 国产成人aa在线观看| 亚洲av国产av综合av卡| 韩国高清视频一区二区三区| 91国产中文字幕| 飞空精品影院首页| 国产熟女午夜一区二区三区| 免费看av在线观看网站| 波多野结衣一区麻豆| 女的被弄到高潮叫床怎么办| 欧美bdsm另类| 午夜精品国产一区二区电影| 国产极品粉嫩免费观看在线| 欧美成人午夜免费资源| 亚洲伊人久久精品综合| 国产乱人偷精品视频| 久久这里只有精品19| 国产日韩欧美亚洲二区| 一级毛片 在线播放| 久久久久久久亚洲中文字幕| xxx大片免费视频| 精品视频人人做人人爽| 男女边吃奶边做爰视频| 蜜桃在线观看..| 欧美日韩视频高清一区二区三区二| 99国产精品免费福利视频| 亚洲,一卡二卡三卡| 成人亚洲精品一区在线观看| 大片免费播放器 马上看| 免费观看在线日韩| 亚洲欧美精品综合一区二区三区 | 97在线视频观看| 欧美老熟妇乱子伦牲交| 色视频在线一区二区三区| 精品酒店卫生间| 咕卡用的链子| 免费观看av网站的网址| 亚洲精品日本国产第一区| 电影成人av| 侵犯人妻中文字幕一二三四区| freevideosex欧美| 一区二区三区激情视频| 如日韩欧美国产精品一区二区三区| 久久久久久久国产电影| 女人精品久久久久毛片| 欧美在线黄色| 国产亚洲最大av| 国产在线免费精品| 亚洲综合精品二区| av网站免费在线观看视频| 建设人人有责人人尽责人人享有的| 日韩中字成人| 高清在线视频一区二区三区|