• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ontology Mapping Based on Bayesian Network

    2015-08-07 10:54:14ZHANGLingyu張凌宇TAOBairui陶佰睿

    ZHANG Ling-yu(張凌宇),TAO Bai-rui(陶佰睿)

    Computer Center,Qiqihar University,Qiqihar 161006,China

    Ontology Mapping Based on Bayesian Network

    ZHANG Ling-yu(張凌宇)*,TAO Bai-rui(陶佰睿)

    Computer Center,Qiqihar University,Qiqihar 161006,China

    Ontology mapping is a key interoperability enabler for the semantic web.In this paper,a new ontology mapping approach called ontology mapping based on Bayesian network(OM-BN)is proposed.OM-BN combines the models of ontology and Bayesian Network,and applies the method of M ulti-strategy to com puting sim ilarity.In OM-BN,the characteristics of ontology,such as tree structure and semantic inclusion relations among concepts,are used during the process of translation from ontology to ontology Bayesian network(OBN).Then the method of M ulti-strategy is used to create sim ilarity table(ST)for each concept-node in OBN.Finally,the iterative process of mapping reasoning is used to deduce new mappings from STs,repeated ly.

    component;ontology mapping;multi-strategy;Bayesian networkmodel

    Introduction

    Ontology mapping is to create semantic relations between elements that are from different ontologies,and three main elements are contained in ontology,i.e.,concepts,relations and instances.Both of relations and instances are used to represent concepts,and we can consider concepts as the basic elements of ontology.Therefore,calculation of concept similarity becomes a key step in ontology mapping.There are many different methods to compute concept similarity:the systems of GLUE and LSD,provided by Doan,create ontology mapping using machine learning techniques in Refs.[1-2]. Madhavan et al.[3]proposed amapping method named Cupid,which is a hybrid matcher based on both element-level and structure-levelmatching.Bayesian network(BN)is applied to ontology mapping in Refs.[4-7].However,the approaches in Refs.[1-3]did not consider how to effectively choose multi-strategies to decrease the calculation of similarity. Although the methods in Refs.[4-7],excessively concentrated on the technique of BN,they ignored the characteristics of ontology,such as tree structure and semantic inclusion relations among concepts.

    In this paper,we present a new approach of ontology mapping called ontology mapping based on BN(OM-BN). During the process of ontology mapping in OM-BN,we firstly use the characteristics of ontology,i.e.,tree structure and semantic inclusion relation among concepts,and translate ontology into BN.Here we name the translated BN as ontology BN(OBN)to distinguish with the traditional BN.Then we make use of themethod of themulti-strategy to create similarity table(ST)for each concept-node in OBN.Finally we use the iterative process ofmapping reasoning to deduce new mappings from the similarities of ST,repeatedly.

    1 Related Works

    At present,there are a great many of approaches for ontology mapping.For example,Jean-Mary and Kabuka[8]provided an algorithm of ontology mapping ASMOV,which useed lexical information,external information,internal information,and individual information.Tang et al.[9]proposed the ontology mapping model of risk m inim ization based ontology mapping(RiMOM)whose risk function was created by the Multi-strategy,such as name-based strategy,instance-based strategy,and description-based strategy.Asooja and Gracia[10]provided an ontology mapping system called monolingual and cross-lingual ontology matching(CIDERCL),and it computed sim ilarities for concept-pairs by comparing their context including linguistic description,axioms,related terms,etc.Kuo and Wu[11]proposed a Multistrategy ontology mapping system open data group ontology matching system(ODGOMS),in which the string-based and token-based strategies were exploited to create the mappings. Fang et al.[12]provided a mapping method for biomedical ontologies based onmultiple sim ilarity methods.Other classical systems for ontology mapping,such as GLUE[1],Cupid[3],combination of schema matching approaches(COMA)and Rahm[13],S-Match[14],and CIQ[15],also adopted the multistrategy method to createmappings for concepts.

    In addition,some researches on applying BN to ontologies mapping have been done.The most typically method is provided by M itra et al.[6].It introduced BN into ontology mapping and proposed ontology mapping enhancer(OMEN),which is a framework to probabilistically improve existing ontology mappings.In OMEN,the mapped concept-pairs are converted into nodes,and the edges of BN are formed by the relationships among concepts.Finally,“Meta-rules”proposed by OMEN are used to reason other new mappings.

    In recent years,the researches on ontology mapping have attached much attention,and many methods are provided. Zhang et al.[16]proposed a method called fuzzy ontoloyy mapping based on conceptual graph(FOM-CG)based on conceptual graph,which could be used to create mappings for multiple fuzzy ontologies.Lü[17]combined syntactic sim ilarity with structural similarity to create mappings in an ontology integration process.Tatsiopoulos and Boutsinas[18]translated ontologies to be mapped into association rule bases,and reasoned mapping relationships between them.Tun et al.[19]provided an enrichment-based ontology matching technique (EOM),which improved information for concepts based on philosophical notions,i.e.,identity,rigidity,and dependency.

    2 Translating from Ontology to BN

    In this section,we will propose the set of transformation rules,which isused to translate ontology to BN.Before presenting the set of transformation rules,we will briefly introduce themodels of ontology and BN.

    2.1 Themodels of ontology and BN

    Ontology provides a formal and explicit measure todescription domain know ledge,and it plays an important role in information integration and know ledgemanagement.According to Studer et al.[20],ontology is a formal,explicit specification of a shared conceptualization.Conceptualization refers to an abstractmodel of some phenomenon in the world by identifying the relevant concept of that phenomenon.Explicit means that the types of concepts used and the constraints on their use are explicitly defined.Formal refers to the fact that the ontology should bemachine readable(which excludes for instance natural language).Shared reflects the notion that an ontology captures consensual know ledge,that is,it is not private to some individual,but accepted as a group.

    Definition 1(Ontology)The formal definition of Ontology is O={C,HC,R,I,A},where

    1)C denotes a set of concepts,which are collections of instances(objects)of the domain,representing the basic meanings in the world;

    2)HCdenotes a set of taxonomy relations which represent inheritance relationships among concepts,such as“is-subclassof”and“is-supclass-of relations”;

    3)R denotes a set of non-taxonomy relations(i.e.,predicate relationships)among concepts;

    4)I denotes a set of instances belonging to a given concept;

    5)A denotes a set of axioms,formally expressing conditions to be verified by the elements of the ontology in order to guarantee its correctness,and allow ing to infer new know ledge which is not explicitly represented in the ontology.

    BN proposed in Ref.[21],also called probabilistic inference network or belief network,is a graphical probability model for representing the probabilistic relationships among a large number of random variables and probabilistic inference with them.BN is composed of a set of nodes and edges.The nodes,or vertices,represent the variables and the edges,or arcs,represent the conditional dependencies among the nodes. Generally speaking,BN is considered as a directed acyclic graph(DAG)thatallows for efficientand effective inference of probability distributions over a set of random variables.Besides the power of probabilistic reasoning provided by BN itself,we are also attracted to BN by the structural similarity between the DAG of a BN and the RDF graph of OWL ontology:both of them are directed graphs,and direct correspondence exists betweenmany nodes and edges in the two graphs.

    Definition 2(BN)The formal definition of BN is BN={G,θ},where:

    1)G is a directed acyclic graph whose vertices correspond to the random variables X1,X2,…,Xn,and whose edges represent direct dependencies between the variables;

    2)θrepresents the set of conditional probability tables (CPTs),each of which specifies the probability of each possible state of the node given each possible combination of states of its parents.

    2.2 The set of transformation rules

    The process of translating ontology into BN is realized by a translation function(φ).According to the quintuple O={C,HC,R,I,A}which is the formal definition of ontology,the BN translated byφisφ(O)={G=<N,E>,P,I,A,θST},where G is a DAG composed by the set of nodes N and the set of edges E,P and I respectively denote the property set and the instance set of nodes,A represents a set of axioms and θSTdenotes the set of STs which will be fully introduced in the next section.The translated BN is called OBN,because it has many characteristics inherited by ontology.The specific transformation rules are as follows.

    1)N=φ(C),i.e.,C,the setof concepts in ontology,is mapped into N,the set of concept-nodes in OBN,and the mapping relationships between concepts and concept-nodes are one-to-one.

    2)E=φ(HC),i.e.,HC,the set of hyponymy relationships among concepts in ontology,ismapped into E,the set of edges in OBN.

    3)P=φ(R),i.e.,R,the set of non-taxonomy relationships among concepts in ontology,ismapped into P,the set of properties in OBN.

    4)I=φ(I),i.e.,I,the set of instances for concepts in ontology,is mapped into I,the set of instances for conceptnodes in OBN.

    5)A=φ(A),i.e.,A,the set of axioms in ontology is mapped into A,the set of axioms in OBN.

    6)OBN=φ(O),i.e.,amodel of ontology O ismapped into amodel of OBN.

    All transformation rules for structure are given by abovementioned rules.In order to label nodes and edges of OBN with probabilities,some important rules for computing probabilities will be provided as follows.

    7)P(n)=φ(I(n)),where n∈N denotes a concept-node in OBN,and I(n)denotes the number of instances for n.The functionφ(I(n)),whose result is a ratio of the number of instances of n to the number of all instances,can be used to acquire prior probabilities of concept-nodes.

    8)P(B|A)=φ(B,A),where concept-node B is the child-node of concept-node A,andφ(B,A)is used to compute the conditional probability labeling the edge between A and B. For the conditional probability P(B|A),we can fallback on the formula of conditional probability that is P(B|A)=P(AB)/ P(A).In this formula,it is necessary to get two probabilities which are the prior probability P(A)and the joint probability P(AB).P(A)can be gotby the Rule7)easily,but P(AB)is unknown for us.However,the relationship of semantic inclusion between A and B,that is B?A or A∩B=B,makes it easily to get the equation P(AB)=P(B).So,the improved formula is as follows:

    For example,based on the above-mentioned transformation rules,a fragment of an ontology which represents the relationships between teachers and courses in some college can be transformed into a fragment of OBN.The result is shown in Fig.1,in which nodes and edges represent concepts and relationships,respectively.

    Fig.1 Themodel of OBN from a fragment of OWL document

    We have reason to believe that the proposed transformation rules are complete.To explain it,letus review the relationships between the transformation rules and the formal definition of ontology O={C,R,HC,A,I}.It is easy to find that the five elements in ontology can be mapped into the correspondingelements in OBN using the first five rules,and the mapping relationships are composed by C→N,HC→E,R→P,I→I,and A→A.To sum up,the translation does not cause information loss.

    3 Method of OM-BN

    In OM-BN,the process of ontology mapping is broken down into threemain steps shown in Fig.2.The first step is the translation from ontology to OBN(shown in section 2.2).The second step is to create ST for each concept-node in OBN.The last step is using the iterative process of mapping reasoning in which new mappings are repeatedly deduced from STs.

    Fig.2 The process of ontology mapping

    3.1 Creating sim ilarity tables for all conceptnodes

    For the sake of understanding,we divide this process into three sub-steps,i.e.,how to quickly create all correct conceptnode-pairs between two OBNs,how to compute similarities of concept-node-pairs by the multi-strategy,and how to generate STs to store the similarities.

    Fig.3 All the concept-node-pairs between OBN1and OBN2

    1)How to quickly create all correct concept-node-pairs between two OBNs

    Before computing sim ilarities,we should create all the correct concept-node-pairs,in which two concept-nodes do not come from the same OBN.As shown in Fig.3,concept-nodes of A1and B1belong to OBN1,and OBN2includes three concept-nodeswhich are A2,B2,and C2.It is easy tomanually create all the correct concept-node-pairs between OBN1and OBN2.The results obtained by human effort are(A1,A2),(A1,B2),(A1,C2),(B1,A2),(B1,B2),and(B1,C2).When OBN1and OBN2contain a great number of conceptnodes,in otherwords,m and n are very large,it is difficult for us to manually traverse the two OBNs and find all the correct concept-node-pairs.However,the tree structure of OBNs,i.e.,concept-nodes in OBNs are arranged by levels and no cycle will appear in OBNs,makes it easily for us to find all conceptnode-pairs by using many classic traversal algorithms such as depth-first traversal and breadth-first traversal.

    2)How to compute sim ilarities of concept-node-pairs by themulti-strategy

    In recent years,many ontology mapping systems are based on multi-strategies.Each strategy can only deal with a type of information effectively,and thus it is necessary to combine many different types of strategies to maxim ize sim ilarity accuracy.But using too many strategies will bring out some problems,e.g.,large calculation of similarities and hardship of similarity combination.Hence,the best way is to choose the most appropriate strategies,and avoid using the inefficient strategies.Since the semantics of concept-node is represented by the elementsof name,description,and instance,we can use the follow ing three strategies to get precise similarity of conceptnode-pair.

    (1)Name based strategy

    Names composed by character strings are human identifiers for concept-nodes,normally shared by a community of humans speaking a common language.Several ideas have already been created to compare names.Levenshtein Distance[22],which is the number of edit operations necessary to transform one string to another one,is a measure of the sim ilarity between two names.The follow ing is the Formula(2)based on name strategy:

    where the symbols of|x|and|y|respectively denote the length of strings x and y,and ed(x,y)indicates the number of edit operations,including deletions,insertions,and substitutions,required to transform x to y.

    (2)Description based strategy

    Description,which is expressed by natural language,is also one kind of expressive information of concept-nodes. Usually,it representsmore semantics of the concept-node than name itself.We use text classification method to compute similarity of the description between concept-nodes.More specifically,we use word frequencies in concept-node descriptions of the target OBN and construct a Naive Bayesian classifier[23].Then we exploit words in concept-node descriptions of the source OBN for prediction which is equivalent to the similarity.

    (3)Instance based strategy

    Instance based strategy has the advantage of focusing on the most active parts of the OBNs,and reflects concept-node-pair semantics as they are actually being used.The idea of this strategy is that similarity between the instances of two conceptnode-pairs predicts the semantic similarity of these conceptnode-pairs.The similarity between two concept-nodes can be computed by Jaccard coefficient[1]:

    In this formula,the symbolsof x and y denote two conceptnodes,and P(x,y)is the probability that a random ly chosen instance from the universe belongs to both x and y.The denominator of the Formula(3)is the probability that a random ly chosen instance from the universe belongs to either x or y.

    (4)Combination

    There are two combination approaches which are hybrid and composite[13].The hybrid approach ismost common where differentmatch criteria or properties(e.g.,name and data type)are used within a single algorithm.By contrast,a composite approach combines the results of several independently executed match algorithms.In order to use the results provided by the multi-strategies,we should adopt composite.The follow ing is the Formula(4)which combines the results generated by the three strategies with the corresponding weights:

    In this formula,the weights ofλName,λComment,andλInstanceare acquired by many ways,such as neural network,machine learning,and so on,and the relationship of these weights is λName+λComment+λInstance=1.

    3)How to generate STs to store the similarities

    A new data structure named by ST is introduced to store the similarities acquired by the multi-strategy.Among multiple OBNs,we should firstly consider themost important one as the source OBN,and the remainder ones are all target OBNs.To avoid redundancy computing of similarity,only concept-nodes in the source OBN are allowed to have STs.The ST of each concept-node in the source OBN saves all the similarities between the concept-node itself and other concept-nodes in other target OBNs.The process of obtaining STs consists of two major phases:one is to acquire a similarity list(SL);the other is to generate STs of concept-nodes by decomposing the SL.

    (1)Acquiring SL

    The SL will be used to save similarities between the concept-nodes in the source OBN and the concept-nodes in the target OBNs.Therefore,we label rows of SL by concept-nodes of the source OBN(A,B,C,…),and the columns are labelled by concept-nodes of target OBNs(A1,B1,C1,…,A2,B2,C2,…).Each cell in SL can be used to record the similarity of corresponding concept-node-pair.

    (2)Generating STs from SL

    From the SL,we find that rows in the SL are denoted by the corresponding concept-nodes in the source OBN.Therefore,by decomposing the SL by rows,we can generate all the STs of concept-nodes.For example,Table 1 shows the ST of conceptnode A,which contains the similarities between A and all the concept-nodes of the target OBNs.

    To sum up,we canmake the bestuse of the characteristics and the internal information of ontology,and create STs for all the concept-nodes in the source OBN.During the process of mapping reasoning,these data are used to deduce mapping relationships between concept-nodes.

    Table 1 The ST of concept-node A in source OBN

    3.2 The iterative process ofm apping reasoning

    Themeaning ofmapping reasoning is that creatingmapping relationship for the concept-node-pair whose sim ilarity exceeds some threshold.However,themapping reasoning process is not one step but iterative,because some new mappings created by the previous reasoning step will be used to deduce other mappings in the next reasoning step.We will introduce the iterative process of mapping reasoning with an example.The information of source OBN is shown in Fig.4,and Fig.5 shows amapping from A to A',according to the similarity Sim(A,A') which ismore than a given threshold.The final result is shown in Fig.6.

    Fig.4 STs in the source of OBN

    Fig.5 Creating mapping between A and A'

    Fig.6 The final result of the iterative process ofmapping-reasoning

    1)We will retrieve records in the STs,and find outall the concept-node-pairswhose sim ilarities are equal or greater than the given thresholdδ(0.9).According to different needs,the given thresholdδcan be modified.Then push these conceptnode-pairs into the MappingQueue storing the found conceptnode-pairs temporarily.From the STs of nodes shown in Fig.4,we find the sim ilarity Sim(A,A')is 0.95,which is greater thanδ,and the concept-node-pair(A,A')is pushed into the MappingQueue.

    2)Pop a concept-node-pair from the MappingQueue,e.g.,(A,A').Then we create the mapping relationship of Mapping(A,A')and add themapping to the MappedSetwhich restores the created mappings by reasoning.If the MappingQueue is empty,that is to say we can not get any mapping,and then we terminate the iterative process of mapping-reasoning,and return to users the finalmappings of the MappedSet.

    3)Creating two adjacent-node sets,i.e.,Set_Nodes and Set_Nodes',for the two concept-nodes in a concept-node-pair (A,A').Then the concept-nodes in Set_Nodes(resp.,Set_Nodes')are classified into three subsets.For example,concept-nodes A and A'are contained in the concept-node-pair (A,A').According to the set of edges E(resp.,E')and the set of properties P(resp.,P'),we can divide Set_Nodes (resp.,Set_Nodes')into three subsets:Set_Parent{P}(Set_ Parent'{P'})is the setof parent-nodes for A(resp.,A'),Set _Children{C1,C2,…,Cm}(resp.,Set_Children'...,C'n})the set of children-nodes,and Set_Predicate{Q1,Q2,…,Qx}(resp.,Set_Predicate'{Q'1,Q'2,…,Q'y})the set of predicate-nodes.

    4)Using the follow ing threemethods to update STs,as the concept-nodes are classified into the three subsets,i.e.,Set_ Parent,Set_Children and Set_Predicate.

    (1)A parent-concept-node in Set_Parent:the tree structure of OBN makes each concept-node except the root-node has only one parent-node.Since,only one parent-concept-node is contained in the set Set_Parent.For example,concept-node P is included in the set Set_Parent of A.Next,we can find the sim ilarity Sim(P,P')in the ST of P and use Formula(5)to update Sim(P,P').

    (2)Some children-concept-nodes in Set_Children:a concept-node in OBNmay havemore than one children-conceptnode,and thus we need toupdate each ST of children-conceptnode in Set_Children.For example,children-concept-nodes of C1,C2,…,Cmis included in the Set_Children of A,then we will update the sim ilarity Sim(Ci,C'j)in the ST of conceptnode Ci,where 1≤i≤m,1≤j≤n,and themethod of getting the parameters of Sim(Ci,C'j),is similar to Formula(1).

    (3)Some predicate-concept-nodes in Set_Predicate:In the set Set_Predicate of a concept-node,there may be multiple predicate-concept-nodes.Therefore the process of updating STs for the predicate-concept-nodes in Set_Predicate is similar to the process described by Formula(2).But no probability exists,which is used to label the predicate-relationship of two conceptnodes.Shown in Fig.5,Qiis one of predicate-concept-nodes of A.We will find that the label between A and Qiis not a similarity but a predicate.When we update Sim(Qi,Q'j)where concept-nodes of Qiand Q'jare the predicate-concept-nodes for themapped concept-nodes of A and A',we need to consider the similarity between two predicates as influence factor.

    5)Return the firststep and start the next reasoning.During the process aforementioned,the final result is shown in Fig.6. The vertical dashed frames denote the two sets of predicateconcept-nodes,and the horizontal dashed frames represent the two sets of children-concept-nodes.The dotted arrows denote the mapping relationship deduced by the iterative process of mapping-reasoning.

    4 Experim ental Results

    To evaluate our method OM-BN,we use the set of ontologies(benchmark)provided by the OAEI(Ontology Alignment Evaluation Initiative),which is designed to test the strength and weakness of ontologymappingmethods.In this test set,more than two hundred ontologies are designed.Among them,ontology#101 is considered as the reference ontology,as other ontologies are derived from#101 by modifying its some information,such as names,properties,instances,and so on. In the process of experiment,what we are going to do is to create mappings between#101 and other ontologies by our method OM-BN,respectively.Then,the three parameters,i.e.,precision,recall,and F-Measure are calculated,which are the standard information retrievalmetrics.The definitions of them is shown as follows,where C is the number of correct mappings found by themethod to be tested,F(xiàn) is the number of mappings found by the method,and E is the number of mappings found by ontology experts.

    The experimental result for OM-BN is shown in Table 2. We find that the precision,recall and F-Measure are 100%,when OM-BN creates mappings between reference ontology #101 and source ontologies#103 and#104.The reason is that the differences among them are very slight.For instance,the content of#103 and#104 are respectively changed by generalization and restriction of language,compared with #101.In addition,OM-BN has the general performance,when dealing with source ontologies#262,#265,and#266. That is because that the names,comments,and relations in these source ontologies are changed by different conventions,as well as the inexistence of instances and properties. Therefore,OM-BN can only work according to the structural sim ilarity of ontology.The precision,recall and F-Measure are relative low,at around 70%.As for other source ontologies in benchmark,the three parameters are up to 90%.In general,OM-BN performs well,when it is tested by the data in benchmark.

    To compare OM-BN with other mapping methods,we evaluate the follow ing methods by precision,recall and FMeasure,each of which is a classic method for ontology mapping,and the experimental results are shown in Fig.7.

    Table 2 The results of the benchmark data set

    Fig.7 The contrast test formapping methods

    5 Conclusions

    In this paper,we focus on how to apply BN to ontology mapping,and propose a new method named OM-BN.In OMBN,we first use the characteristics of ontology,i.e.,tree structure and semantic inclusion relation among concepts,and translate ontology into OBN which is simpler than traditional BN.Then we make use of the method of the multi-strategy,which computes sim ilarity more exactly,and create ST for each concept-node in OBN.Finally we use the iterative process of mapping-reasoning to deduce new mappings from the sim ilarities of ST,repeatedly.The iterative process of mapping-reasoning reduces the number of multi-strategies by using the extensional information of ontology,such as structure information and nontaxonomy information in ontology,and thus the sim ilarity calculation ofmulti-strategy is decreased.To sum up,OM-BN is an effective approach for ontology mapping.

    [1]Doan A,Madhavan J,Dom ingos P,et al.Learning to Map between Ontologies on the Semantic Web[C].Proceedings of the Eleventh InternationalWorld WideWeb Conference,Hawaii,USA,2002.

    [2]Doan A,Madhavan J,Dom ingos P,et al.Learning to Match the Schemas of Data Sources:a Multi-strategy Approach[J]. Machine Learning,2003,50(3):279-301.

    [3]Madhavan J,Bernstein P,Rahm E.Generic Schema Matching with Cupid[C].Proceedings of the International Conference on Very Large Databases,Roma,Italy,2001.

    [4]Ding Z L,Peng Y,Pan R.A Bayesian Approach to Uncertainty Modeling in OWL Ontology[C].Proceedings of 2004 International Conference on Advances in Intelligent Systems-Theory and Applications,Luxemburg,2004.

    [5]Ding Z L,Peng Y.A Probabilistic Extension to Ontology Language OWL[C].Proceedings of the 37th Hawaii International Conference on System Sciences,Hawaii,USA,2004.

    [6]M itra P,Noy N F,Jaiswal A R.OMEN:A Probabilistic Ontology Mapping Tool[C].Proceedings International Semantic Web Conference,Banff,Britain,2005.

    [7]Pan R,Ding Z L,Yu Y,etal.A Bayesian Network Approach to Ontology Mapping[C].Proceedings International Semantic Web Conference,Galway,Ireland,2005.

    [8]Jean-Mary Y,Kabuka M.ASMOV Results for OAEI2007[C]. Proceedings of International Semantic Web Conference 2007 Ontology Matching Workshop,Busan,Korea,2007.

    [9]Tang J,Li JZ,Liang B Y,et al.Using Bayesian Decision for Ontology Mapping[J].Journal ofWeb Semantics,2006,4(4): 243-262.

    [10]Asooja K,Gracia J.Monolingual and Cross-Lingual Ontology Matching with CIDER-CL:Evaluation Report for OAEI 2013[C].Proceedings of International Semantic Web Conference,Sydney,Australia,2013.

    [11]Kuo IH,Wu T T.ODGOMS–Results for OAEI 2013[C]. Proceedings of International Semantic Web Conference,Sydney,Australia,2013.

    [12]Fang A,Hong N,Wu S Z,et al.An Integrated Biomedical Ontology Mapping Strategy Based on Multiple Mapping Methods[C].Proceedings of Web Information Systems Engineering-W ISE 2013 Workshops,Berlin Heidelberg,2014.

    [13]Do H,Rahm E.Coma:A System for Flexible Combination of Schema Matching Approaches[C].Proceedings of the 28th International Conference on Very Large Data Bases(VLDB),Hong Kong,China,2002.

    [14]Giunchiglia F,Shvaiko P,Yatskevich M.S-Match:an Algorithm and Implementation of Semantic Matching[C].Proceedings of the European Semantic Web Symposium,Crete,Greece,2004.

    [15]Zhang Z W,Xu D Z,Zhang T.Ontology mapping based on conditional information quantity[C].Proceedings of International Conference on Networking,Sensing and Control,Sanya,China,2008.

    [16]Zhang L Y,Yan L,Ma Z M.A Conceptual Graph Based Approach for Mappings among Multiple Fuzzy Ontologies[J]. Journal ofWeb Engineering,2013,12(3/4):215-231.

    [17]LüY.An Approach to Ontologies Integration[C].Proceedings of International Conference on Fuzzy Systems and Know ledge Discovery(FSKD),Shanghai,China,2011.

    [18]Tatsiopoulos C,Boutsinas B.Ontology Mapping Based on Association Rule M ining[C].Proceedings of 11th International Conference on Enterprise Information Systems,M ilan,Italy,2009.

    [19]Tun N N,Dong J S,Tojo S.A Philosophy-Driven Entity Classification and Enrichment for Ontology Mapping[J].Expert Systems,2011,28(2):138-166.

    [20]Studer R,Benjam ins V R,F(xiàn)ensel D.Know ledge Engineering: Principles and Methods[J].Data and Know ledge Engineering,1998,25(122):161-197.

    [21]Jensen F V.Bayesian Networks and Decision Graphs[M].New York,USA:Springer,2001.

    [22]Levenshtein V.Binary Codes Capable of Correcting Deletions,Insertions and Reversals[J].Soviet Physics Doklady,1966,10 (8):707-710.

    [23]M itchell T M.Machine Learning[M].New York,USA: McGraw-Hill,1997:154-199.

    TG335.58

    A

    1672-5220(2015)04-0681-07

    date:2014-04-20

    s:National Natural Science Foundation of China(No.61204127);Natural Science Foundations of Heilongjiang Province,China (Nos.F2015024,F(xiàn)201334);Young Foundation of Qiqihar University,China(No.2014k-M 08)

    *Correspondence should be addressed to ZHANG Ling-yu,E-mail:zhanglingyu00217@126.com

    久久婷婷成人综合色麻豆| 久久久久性生活片| 成人永久免费在线观看视频| 国产视频内射| 午夜福利免费观看在线| 两个人免费观看高清视频| 久久久久久国产a免费观看| 国产精品 国内视频| 18禁黄网站禁片午夜丰满| 亚洲免费av在线视频| 女人被狂操c到高潮| 久久这里只有精品19| 久久久水蜜桃国产精品网| 99久久久亚洲精品蜜臀av| 国产成+人综合+亚洲专区| 欧美激情久久久久久爽电影| 成人永久免费在线观看视频| 色老头精品视频在线观看| 免费看a级黄色片| av有码第一页| 99久久国产精品久久久| 黑人操中国人逼视频| 久久婷婷成人综合色麻豆| 久久精品国产亚洲av香蕉五月| 在线免费观看的www视频| 久久精品综合一区二区三区| 婷婷六月久久综合丁香| 婷婷亚洲欧美| 国产人伦9x9x在线观看| 又爽又黄无遮挡网站| 好男人在线观看高清免费视频| 美女 人体艺术 gogo| 久久热在线av| 又黄又爽又免费观看的视频| 伊人久久大香线蕉亚洲五| 国内揄拍国产精品人妻在线| 国产av一区二区精品久久| 在线国产一区二区在线| 两个人看的免费小视频| 午夜精品一区二区三区免费看| 欧美高清成人免费视频www| 成人精品一区二区免费| 成人18禁高潮啪啪吃奶动态图| 亚洲在线自拍视频| 精品第一国产精品| 久久 成人 亚洲| 亚洲中文字幕一区二区三区有码在线看 | av国产免费在线观看| 欧美一区二区精品小视频在线| 在线观看舔阴道视频| www.熟女人妻精品国产| 日本三级黄在线观看| svipshipincom国产片| 正在播放国产对白刺激| 老汉色∧v一级毛片| 美女高潮喷水抽搐中文字幕| 亚洲七黄色美女视频| 欧美色视频一区免费| 国产单亲对白刺激| 可以免费在线观看a视频的电影网站| 国产伦人伦偷精品视频| 亚洲狠狠婷婷综合久久图片| 亚洲九九香蕉| 黄频高清免费视频| www.www免费av| svipshipincom国产片| 一二三四在线观看免费中文在| 两个人免费观看高清视频| av在线天堂中文字幕| 黄片大片在线免费观看| 午夜激情福利司机影院| 国产精品久久视频播放| 亚洲精品美女久久久久99蜜臀| 久久人人精品亚洲av| 日韩成人在线观看一区二区三区| 国产av在哪里看| av欧美777| 久久精品综合一区二区三区| 少妇的丰满在线观看| 黑人操中国人逼视频| 亚洲美女黄片视频| a级毛片在线看网站| 欧美国产日韩亚洲一区| av免费在线观看网站| 亚洲精品在线观看二区| 色综合亚洲欧美另类图片| 亚洲成人国产一区在线观看| 老熟妇仑乱视频hdxx| 成人特级黄色片久久久久久久| 男人舔女人的私密视频| 午夜视频精品福利| 久久国产乱子伦精品免费另类| 欧美av亚洲av综合av国产av| 国内揄拍国产精品人妻在线| 久久精品成人免费网站| 99精品在免费线老司机午夜| 老熟妇仑乱视频hdxx| 90打野战视频偷拍视频| 欧美日韩瑟瑟在线播放| 国产午夜精品论理片| 男人舔奶头视频| 国产精品精品国产色婷婷| 免费在线观看黄色视频的| 高清在线国产一区| 亚洲一区二区三区不卡视频| 熟女电影av网| 此物有八面人人有两片| 99热只有精品国产| 麻豆国产97在线/欧美 | 午夜福利免费观看在线| 亚洲七黄色美女视频| tocl精华| 国产精品久久电影中文字幕| 男女那种视频在线观看| 国产免费男女视频| 亚洲一区二区三区色噜噜| 午夜福利18| 久久久精品欧美日韩精品| 可以在线观看的亚洲视频| 蜜桃久久精品国产亚洲av| 91在线观看av| 久热爱精品视频在线9| 欧美日本亚洲视频在线播放| 国产高清视频在线观看网站| 舔av片在线| 国产精品自产拍在线观看55亚洲| 欧美黄色片欧美黄色片| 男女做爰动态图高潮gif福利片| 日韩欧美三级三区| 变态另类丝袜制服| 啪啪无遮挡十八禁网站| 欧美中文日本在线观看视频| 国内精品一区二区在线观看| 2021天堂中文幕一二区在线观| 国产黄a三级三级三级人| 露出奶头的视频| 露出奶头的视频| 夜夜爽天天搞| 精品欧美国产一区二区三| av片东京热男人的天堂| 91老司机精品| 欧美高清成人免费视频www| 全区人妻精品视频| 变态另类丝袜制服| 国产激情久久老熟女| 动漫黄色视频在线观看| 成在线人永久免费视频| 国产aⅴ精品一区二区三区波| 午夜福利高清视频| 亚洲中文av在线| 女警被强在线播放| 精品国产乱子伦一区二区三区| 变态另类成人亚洲欧美熟女| 999久久久国产精品视频| 久久久久久九九精品二区国产 | 18美女黄网站色大片免费观看| 黄色片一级片一级黄色片| 色综合欧美亚洲国产小说| 国产v大片淫在线免费观看| 黑人欧美特级aaaaaa片| 国产一级毛片七仙女欲春2| 久久精品综合一区二区三区| 欧美另类亚洲清纯唯美| 亚洲中文字幕一区二区三区有码在线看 | 九色成人免费人妻av| 日韩有码中文字幕| 国产激情欧美一区二区| 少妇粗大呻吟视频| 亚洲av美国av| а√天堂www在线а√下载| 人成视频在线观看免费观看| 在线观看日韩欧美| √禁漫天堂资源中文www| 国产伦在线观看视频一区| 欧美大码av| 在线国产一区二区在线| 欧美一区二区精品小视频在线| av在线天堂中文字幕| 国产成人啪精品午夜网站| 精品福利观看| 亚洲国产看品久久| 岛国在线免费视频观看| 在线看三级毛片| 美女 人体艺术 gogo| 日韩欧美在线二视频| 黑人欧美特级aaaaaa片| 国产激情偷乱视频一区二区| 国产亚洲av高清不卡| 精品电影一区二区在线| 男女做爰动态图高潮gif福利片| 久久午夜亚洲精品久久| 欧美日韩国产亚洲二区| 丰满人妻一区二区三区视频av | 国产又色又爽无遮挡免费看| 国产一区二区三区在线臀色熟女| 中文字幕精品亚洲无线码一区| 日本一本二区三区精品| 国内精品久久久久精免费| 搞女人的毛片| 每晚都被弄得嗷嗷叫到高潮| 国产私拍福利视频在线观看| 成人午夜高清在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 色尼玛亚洲综合影院| 欧美日韩黄片免| 丝袜美腿诱惑在线| 久久久精品大字幕| 久久亚洲精品不卡| 黄色片一级片一级黄色片| 777久久人妻少妇嫩草av网站| 日韩三级视频一区二区三区| 欧美日韩福利视频一区二区| 一级毛片高清免费大全| 伊人久久大香线蕉亚洲五| 欧美黄色片欧美黄色片| 欧美性猛交╳xxx乱大交人| 国产欧美日韩精品亚洲av| 免费搜索国产男女视频| 国产亚洲欧美98| 久久 成人 亚洲| 精品电影一区二区在线| 俄罗斯特黄特色一大片| 久久精品国产99精品国产亚洲性色| 亚洲色图av天堂| 久久99热这里只有精品18| 在线观看免费日韩欧美大片| 伦理电影免费视频| 黄色 视频免费看| 国产精品一及| 国内毛片毛片毛片毛片毛片| 国产精品久久视频播放| 国产精品美女特级片免费视频播放器 | 亚洲自拍偷在线| 听说在线观看完整版免费高清| 成人亚洲精品av一区二区| 国产黄片美女视频| 黄色女人牲交| 麻豆av在线久日| 两个人看的免费小视频| 妹子高潮喷水视频| 亚洲五月天丁香| 在线观看舔阴道视频| 日韩欧美三级三区| 成熟少妇高潮喷水视频| 无遮挡黄片免费观看| 欧美人与性动交α欧美精品济南到| 手机成人av网站| АⅤ资源中文在线天堂| 成人18禁高潮啪啪吃奶动态图| 亚洲国产精品sss在线观看| 久久久国产成人免费| 老熟妇乱子伦视频在线观看| 91av网站免费观看| 国产探花在线观看一区二区| 国产私拍福利视频在线观看| 在线看三级毛片| 亚洲色图av天堂| 精品乱码久久久久久99久播| 成人手机av| 精品久久蜜臀av无| 亚洲人成伊人成综合网2020| 精品久久久久久久久久免费视频| 欧美精品啪啪一区二区三区| 亚洲成人中文字幕在线播放| 我要搜黄色片| 欧美色欧美亚洲另类二区| 级片在线观看| 黑人巨大精品欧美一区二区mp4| 19禁男女啪啪无遮挡网站| 国产久久久一区二区三区| 欧美日本亚洲视频在线播放| 很黄的视频免费| 国产一区二区三区视频了| 一个人观看的视频www高清免费观看 | 可以免费在线观看a视频的电影网站| 国产高清视频在线播放一区| 亚洲欧美日韩高清专用| 91九色精品人成在线观看| 国产成人系列免费观看| 一个人观看的视频www高清免费观看 | 婷婷精品国产亚洲av| www.自偷自拍.com| www.999成人在线观看| 最近最新中文字幕大全免费视频| 国产人伦9x9x在线观看| 日韩欧美 国产精品| 视频区欧美日本亚洲| 久久久久国内视频| 欧美另类亚洲清纯唯美| 国产伦一二天堂av在线观看| 午夜影院日韩av| 亚洲精品美女久久av网站| 两性夫妻黄色片| 丰满人妻熟妇乱又伦精品不卡| 又紧又爽又黄一区二区| 久久精品夜夜夜夜夜久久蜜豆 | av有码第一页| 国产精品电影一区二区三区| 美女高潮喷水抽搐中文字幕| 丰满人妻熟妇乱又伦精品不卡| 丁香欧美五月| 首页视频小说图片口味搜索| 亚洲专区中文字幕在线| 午夜精品久久久久久毛片777| 国产乱人伦免费视频| 香蕉丝袜av| 99精品在免费线老司机午夜| 波多野结衣高清作品| 午夜久久久久精精品| 一区福利在线观看| 午夜福利成人在线免费观看| 黄色 视频免费看| 男女之事视频高清在线观看| 观看免费一级毛片| 欧美日本亚洲视频在线播放| 国产成人精品久久二区二区91| 久久精品国产99精品国产亚洲性色| 亚洲中文日韩欧美视频| 好男人电影高清在线观看| 欧美性猛交黑人性爽| 午夜精品久久久久久毛片777| 无限看片的www在线观看| 亚洲精品一区av在线观看| 香蕉丝袜av| 精品久久久久久久久久久久久| 久久精品91蜜桃| 亚洲精品中文字幕一二三四区| 韩国av一区二区三区四区| 亚洲中文av在线| 国产99久久九九免费精品| 在线观看一区二区三区| 麻豆成人午夜福利视频| 亚洲专区字幕在线| 丰满人妻一区二区三区视频av | 在线观看日韩欧美| 亚洲午夜理论影院| 亚洲国产精品999在线| 母亲3免费完整高清在线观看| 亚洲第一电影网av| 国产爱豆传媒在线观看 | 中文亚洲av片在线观看爽| 亚洲国产精品成人综合色| 欧美精品啪啪一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 一级作爱视频免费观看| 午夜福利高清视频| 99热6这里只有精品| 日韩欧美 国产精品| 亚洲欧美日韩高清专用| 午夜福利高清视频| 精品一区二区三区四区五区乱码| 女人高潮潮喷娇喘18禁视频| 又爽又黄无遮挡网站| 午夜影院日韩av| 最新在线观看一区二区三区| 97人妻精品一区二区三区麻豆| 国产区一区二久久| 美女免费视频网站| 国产成人欧美在线观看| 精华霜和精华液先用哪个| 老司机午夜福利在线观看视频| 久久国产乱子伦精品免费另类| 桃色一区二区三区在线观看| 亚洲欧美日韩无卡精品| 欧美日韩亚洲国产一区二区在线观看| 婷婷六月久久综合丁香| 亚洲欧美精品综合久久99| 亚洲 国产 在线| 99riav亚洲国产免费| 国产伦在线观看视频一区| 国产亚洲精品第一综合不卡| 黄色视频,在线免费观看| bbb黄色大片| 黄色毛片三级朝国网站| 国产野战对白在线观看| 国模一区二区三区四区视频 | 首页视频小说图片口味搜索| 久久香蕉精品热| 最近视频中文字幕2019在线8| 国产成人啪精品午夜网站| 少妇粗大呻吟视频| 国产精品久久久久久人妻精品电影| 亚洲av中文字字幕乱码综合| 天天添夜夜摸| 欧美乱色亚洲激情| 亚洲国产精品成人综合色| 国产乱人伦免费视频| 亚洲精华国产精华精| 777久久人妻少妇嫩草av网站| a级毛片在线看网站| 久久国产精品影院| 制服诱惑二区| 国产爱豆传媒在线观看 | 中文字幕人成人乱码亚洲影| 色尼玛亚洲综合影院| 91麻豆精品激情在线观看国产| 观看免费一级毛片| 亚洲精品粉嫩美女一区| 日日摸夜夜添夜夜添小说| 午夜福利免费观看在线| 欧美日韩国产亚洲二区| 99国产精品一区二区蜜桃av| 女同久久另类99精品国产91| 毛片女人毛片| 欧美+亚洲+日韩+国产| 亚洲人成电影免费在线| 黑人巨大精品欧美一区二区mp4| 国产黄色小视频在线观看| 制服人妻中文乱码| www日本黄色视频网| 热99re8久久精品国产| 久久久久免费精品人妻一区二区| 精华霜和精华液先用哪个| 国产成人影院久久av| 久久久久久久久中文| 国产免费av片在线观看野外av| 操出白浆在线播放| 小说图片视频综合网站| 国产精品自产拍在线观看55亚洲| 欧洲精品卡2卡3卡4卡5卡区| 日韩精品青青久久久久久| 欧美在线一区亚洲| 真人做人爱边吃奶动态| 国产av一区二区精品久久| 丰满人妻熟妇乱又伦精品不卡| 免费电影在线观看免费观看| 高潮久久久久久久久久久不卡| 国产精品日韩av在线免费观看| 99久久99久久久精品蜜桃| 国产伦人伦偷精品视频| 一级黄色大片毛片| 成人av在线播放网站| 神马国产精品三级电影在线观看 | 黄片大片在线免费观看| 国内精品久久久久久久电影| 夜夜看夜夜爽夜夜摸| 日韩av在线大香蕉| 男男h啪啪无遮挡| 婷婷六月久久综合丁香| 国产v大片淫在线免费观看| 亚洲片人在线观看| 蜜桃久久精品国产亚洲av| 免费电影在线观看免费观看| 亚洲 欧美一区二区三区| 亚洲精品粉嫩美女一区| 亚洲午夜理论影院| 亚洲国产精品成人综合色| 国产亚洲精品久久久久久毛片| 成年人黄色毛片网站| 成人国产一区最新在线观看| 婷婷丁香在线五月| 欧美黄色片欧美黄色片| 亚洲av片天天在线观看| 亚洲国产精品成人综合色| 夜夜看夜夜爽夜夜摸| 可以在线观看的亚洲视频| 色在线成人网| 天堂影院成人在线观看| 国产黄a三级三级三级人| 香蕉久久夜色| 欧美黑人巨大hd| 999久久久精品免费观看国产| 欧美日韩福利视频一区二区| 搡老岳熟女国产| 国产人伦9x9x在线观看| 久久久久久久午夜电影| 久久久久国产精品人妻aⅴ院| 十八禁人妻一区二区| 久久久久久九九精品二区国产 | 18禁黄网站禁片免费观看直播| 国产人伦9x9x在线观看| 琪琪午夜伦伦电影理论片6080| 亚洲自偷自拍图片 自拍| 丝袜美腿诱惑在线| 小说图片视频综合网站| 日本一区二区免费在线视频| 精品人妻1区二区| 三级毛片av免费| 伊人久久大香线蕉亚洲五| 18美女黄网站色大片免费观看| 超碰成人久久| 亚洲熟妇中文字幕五十中出| 日韩欧美国产在线观看| 五月伊人婷婷丁香| 欧美色视频一区免费| 午夜两性在线视频| 国产精品久久久久久人妻精品电影| 无限看片的www在线观看| 色综合站精品国产| 国产99久久九九免费精品| 久久天堂一区二区三区四区| 色综合欧美亚洲国产小说| 久久久国产欧美日韩av| 欧美日韩一级在线毛片| 国产高清视频在线播放一区| 欧美日韩福利视频一区二区| www日本黄色视频网| 亚洲人成网站高清观看| 听说在线观看完整版免费高清| 亚洲欧美精品综合一区二区三区| 免费在线观看黄色视频的| 18禁黄网站禁片免费观看直播| xxx96com| 亚洲狠狠婷婷综合久久图片| 又紧又爽又黄一区二区| 国内精品久久久久久久电影| 国产av一区二区精品久久| 国产精品野战在线观看| 国产精品久久久久久人妻精品电影| 色哟哟哟哟哟哟| av片东京热男人的天堂| 18禁国产床啪视频网站| 国产熟女xx| a在线观看视频网站| 婷婷精品国产亚洲av在线| 成人18禁在线播放| a级毛片a级免费在线| 亚洲午夜理论影院| 久久中文字幕一级| 欧美绝顶高潮抽搐喷水| 一个人免费在线观看电影 | 夜夜躁狠狠躁天天躁| 国产不卡一卡二| 久久草成人影院| 久久久国产欧美日韩av| 欧美色欧美亚洲另类二区| 人人妻,人人澡人人爽秒播| 亚洲色图 男人天堂 中文字幕| 精品福利观看| 国产精品久久久久久人妻精品电影| 欧美精品啪啪一区二区三区| 一个人观看的视频www高清免费观看 | 中文资源天堂在线| 高清毛片免费观看视频网站| 99国产极品粉嫩在线观看| 色尼玛亚洲综合影院| a级毛片a级免费在线| 又紧又爽又黄一区二区| 夜夜夜夜夜久久久久| 国产精品,欧美在线| 精品高清国产在线一区| 色精品久久人妻99蜜桃| 日本五十路高清| 久久久国产成人精品二区| 亚洲精品久久成人aⅴ小说| 久久人妻av系列| 99在线人妻在线中文字幕| 成人欧美大片| 精品久久久久久久毛片微露脸| 不卡av一区二区三区| 日本免费a在线| 不卡av一区二区三区| 免费人成视频x8x8入口观看| 欧美乱码精品一区二区三区| 欧美性猛交╳xxx乱大交人| 搡老熟女国产l中国老女人| 91成年电影在线观看| 日日爽夜夜爽网站| av有码第一页| 午夜日韩欧美国产| 露出奶头的视频| 9191精品国产免费久久| 香蕉丝袜av| 好看av亚洲va欧美ⅴa在| 久久人妻福利社区极品人妻图片| 久久久久免费精品人妻一区二区| 黄色视频,在线免费观看| 国产伦在线观看视频一区| 18禁美女被吸乳视频| 国产亚洲av高清不卡| 欧美3d第一页| 国产欧美日韩精品亚洲av| 91九色精品人成在线观看| 99久久无色码亚洲精品果冻| 亚洲成人免费电影在线观看| 亚洲人成电影免费在线| 日韩欧美国产一区二区入口| 国产麻豆成人av免费视频| 欧美av亚洲av综合av国产av| 国产69精品久久久久777片 | 妹子高潮喷水视频| 给我免费播放毛片高清在线观看| 少妇粗大呻吟视频| 亚洲欧美激情综合另类| 神马国产精品三级电影在线观看 | 亚洲专区中文字幕在线| 久久久久久亚洲精品国产蜜桃av| 99re在线观看精品视频| 中文在线观看免费www的网站 | 一级毛片女人18水好多| 露出奶头的视频| 成人高潮视频无遮挡免费网站| 最近最新免费中文字幕在线| 亚洲国产高清在线一区二区三| 国产欧美日韩一区二区精品| 大型黄色视频在线免费观看| 在线看三级毛片| 欧美日本亚洲视频在线播放| 久久草成人影院| 成人三级黄色视频| www.精华液| 亚洲av美国av| 丁香六月欧美| 国产亚洲精品久久久久5区| 国内精品一区二区在线观看| av超薄肉色丝袜交足视频| 全区人妻精品视频| 在线观看日韩欧美| 亚洲精品一区av在线观看| 欧美另类亚洲清纯唯美| 久久精品综合一区二区三区| 久久精品91蜜桃| 午夜成年电影在线免费观看| 在线观看美女被高潮喷水网站 | 欧美成人一区二区免费高清观看 |