• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Human Mouth-State Recognition Based on Image Warping and Sparse Representation Combined with Homotopy

    2015-08-07 10:54:14LICuimei李翠梅ZENGPingping曾萍萍ZHUJinqiang朱勁強(qiáng)WUJianhua吳建華
    關(guān)鍵詞:建華

    LICui-mei(李翠梅),ZENG Ping-ping(曾萍萍),ZHU Jin-qiang(朱勁強(qiáng)),WU Jian-hua(吳建華)*

    1 School of Communication and Electronics,Jiangxi Science&Technology Normal University,Nanchang 330031,China

    2 College of Science and Technology,Nanchang University,Nanchang 330029,China

    3 Department of Electronic Information Engineering,Nanchang University,Nanchang 330031,China

    Human Mouth-State Recognition Based on Image Warping and Sparse Representation Combined with Homotopy

    LICui-mei(李翠梅)1,ZENG Ping-ping(曾萍萍)2,ZHU Jin-qiang(朱勁強(qiáng))3,WU Jian-hua(吳建華)3*

    1 School of Communication and Electronics,Jiangxi Science&Technology Normal University,Nanchang 330031,China

    2 College of Science and Technology,Nanchang University,Nanchang 330029,China

    3 Department of Electronic Information Engineering,Nanchang University,Nanchang 330031,China

    It is often necessary to recognize human mouth-states for detecting the number of audio sources and im proving the speech recognition capability of an intelligent robot auditory system.A human mouth-state recognition method based on image warping and sparse representation(SR)combined with homotopy is proposed.Using properly warped training mouth-state images as atoms of the overcomplete dictionary overcomes the impact of the diversity of the mouths'scales,shapes and positions so that further im provement of the robustness can be achieved and the requirement for a large number of training sam ples can be relieved.The homotopy method is employed to compute the expansion coefficients effectively,i.e.,for sparse coding.The orthogonalmatching pursuit(OMP)is also tested and compared with the homototy method.Experimental results and com parisons with the state-of-the-art methods have proved the effectiveness of the proposed approach.

    mouth-state recognition;image warping;sparse representation(SR);sparse coding;homotopy

    Introduction

    In the application of a conventional intelligent robot auditory system,several speech signals need to be detected from a mixture of audio signals and noise[13].The recognition performance of the auditory system may be affected by the noise when only the auditory signal is used.To address this problem,the visual information can be employed to facilitate the speech signal recognition.Thismeans determining the number of audio sources by observing the state of themouth,opened or closed.Although the visual information about the human mouth-state cannotmake the number of speakers known completely,ithelps increase the accuracy of this process.To recognize themouthstate is a problem of pattern recognition which is a meaningful and well-known application in computer vision.Pattern recognition technology was born in 1920s and established in the early 1960s[4].A test pattern will be identified by a classifier trained by relevant algorithms like the unsupervised classification algorithms which have the superiority of no requirementof training setor supervised classification algorithms such as likelihood classifier[5],the support vector machine (SVM)[6],the nearest neighbors(NN)[7]and the minimum distance(MD),which need enough training samples[8].Although the traditional supervised classification algorithms like SVM bring excellent results,directly working with high dimensional original data with varying scales and shapes and positions is generally difficult.So feature extraction seems important to pattern recognition.The extracted low-dimensional features are more robust and cheaper to the classification than the original data.In the past decade,many feature extraction methods were proposed such as principle component analysis (PCA)[9],active appearance model(AAM)[10-11]and independent component analysis(ICA)[12].Although there are many feature extraction methods,feature extraction is a challenging task yet.In 2009,W right et al.proposed a sparse representation-based classification(SRC)[13].It shows that the choice of features is no longer critical when sparsity in the recognition problem is properly harnessed.Thus the downsampled images can be used as features and stacked as dictionary directly.Thismethod notonly performs dimensionality reduction but also has robustness to noise,shape and illumination.There are two key steps in the sparse representation(SR)approach involved in SRC method.One is the sparse coding used to optimally represent the test signal with the linear combination of few elements selected from a dictionary.The other is the need to generate this beforehand dictionary.

    In sparse coding phase,the?0-norm m inimization is regarded as the penalization in the optimization process of SR.But solving the?0-norm m inimization is a non-deterministic polynomial hard(NP-hard)problem.Instead,many researchers have addressed it by convex optimization[14],for example,using the?1-norm m inimization in place of the?0-norm m inimization as the penalization.Many related algorithms emerged such as basis pursuit(BP)[15],matching pursuit (MP)[16],orthogonal matching pursuit(OMP)[17]and homotopy[18].Different sparse coding methods can result in different performances.Compared with other approaches,homotopy method has the advantages of high speed and robustness to noisy data when a sufficient sparsity is present,and it ismuch better for classification[18-20].

    Dictionaries can be classified into two generic groups: unlearned dictionariesand learned ones.The former is generated by stacking the standard orthogonal basis or the training samples.The latter is learned by relevant algorithms,like the method of optimal directions(MOD)and the K-SVD algorithm[21-22],with training samples.Although the K-SVD algorithm can decrease the number of atoms of dictionary,it pays attention only to the representational power of the dictionary rather than the discrimination power[23].While in the SRC method the dictionary stacked with the down-sampled images of unprocessed original images is cursory.

    In this paper,SR is applied to human mouth-state recognition.And except for our team's previous work[22],it is rarely applied yet to the recognition of human mouth-state.To further improve the discrim ination power of the features and dictionary,the original images had better to be pre-processed first.In Ref.[24],Li et al.paid more attention to preprocessing like accurate face alignment.The experimental results showed that a pre-processing approach was of great significance for the later classification task with minor computation and ameliorated classification performance remarkably.Inspired by this,we propose a human mouth-staterecognition algorithm based on image warping and sparse representation(SR)combined with homotopy.It is the first time that the image warping method[2527]and homotopy are used for human mouth-state recognition.At the onset,the lip contour will be extracted automatically from a mouth-state image[28].Then the extracted mouth region is warped into a standard template which is constructed by the average feature points of all the mouth images in training set including both mouth-opened and mouth-closed samples.By this way all the warped mouth-state images are of the same size and the feature points are in fixed locations.The dictionary involved in our method is generated by stacking the down-sampled images of warped training samples.It is robust and discrim inative even if there are a lim ited number of samples or defective ones.Experimental results show that the proposed method leads to higher classification rates(CR)than other approaches.

    1 SRC Algorithm

    Considering nigrayscalemouth image patches of size w×h pixels from the i th classes,which are reordered as column vectors xi∈m(m=w×h)of amatrix Ai=[xi,1,xi,2,…,x]∈m×ni,i=1,2.Thematrix A will be treated as a sub-i,niidictionary and each column of itasan atom.Every testsample y∈mfrom the same class will be approximately represented sparsely over the sub-dictionary,i.e.,linear combination of the training samples(atoms)associated with class i:

    where ai,j∈,j=1,2,…,ni.

    There are only twomouth states,mouth-closed and mouthopened,associated with two sub-dictionaries A1and A2respectively.A new matrix A=[A1,A2] is defined as a whole dictionary for the entire two training sets:

    Eq.(1)can then be rew ritten as:

    If a test sample y belongs to the mouth-closed class,ideally,the SR coefficient vector can be expected to be[a1,1,…,a1,n1,0,…,0]T∈n,otherw ise,if itbelongs to themouth-opened class,α=[0,…,0,a2,1,…,a2,n]T∈2n,n=n1+n2.For simplicity,we define a vectorδi(α) (i=1,2)as a new SR coefficient vector which keeps the nonzero entries inαthatare associated with the i th class.So we can approximately reconstruct y by using only the coefficients associated with the ith class,i.e.,Then y can be recognized based on the two approximations by assigning it to the class thatminimizes the reconstruction error(the difference between y and yi):

    It is obvious that finding the correct SR coefficientvectorα is the key task to SRC.Traditionally,the?2-norm minim ization is used for solving the problem: Althoughcan be simply calculated,it includesmany nonzero entries spanning over the two classes,i.e.,it is not so sparse.Aswe know that the sparser the SR coefficients are,the easier they will be recognized to the class the testsample y belongs to.So the?2-norm minimization optim ization problem seems powerless,and then the researchers focus on finding the solution to the?0-norm m inimization problem:

    where‖α‖0is the?0-norm ofand equals the number of nonzero entries inα.However,to find the sparsestsolution ofα is an NP-hard problem due to its nature of combinational optim ization.There are several greedy pursuit methods[29]proposed such as MP[16]and OMP[17].Recently,researches in the field of SR and compressed sensing[30]have shown that the?0-norm m inim ization problem can be replaced by?1-norm minim ization problem(P1)which can be addressed by using linear programming method like homotopy when the solutionα is sparse enough:

    This optimization notonly guarantees the sufficient sparsity ofα,but also is easy to implement.

    2 The Proposed Human Mouth-State Recognition

    The proposed human mouth-state recognition algorithm is also a two-class pattern recognition problem.Its systematic principle is shown in Fig.1.

    Fig.1 The systematic diagram of the proposed mouth-state recognition algorithm

    In the training phase,each mouth-closed ormouth-opened training sample is warped into a pre-defined standard template,and then all warped mouth-closed training samples and mouthopened samples are stacked into sub-dictionary matrixesandrespectively.The resultingare thenmerged into a single dictionary Awaccording to Eq.(2).A testmouth-state sample y can be sparsely represented by Eq.(3)over the dictionary Aw,and the SR coefficient vector is solved with the homotopy method.Finally,which class the test sample belongs to can be determined according to Eq.(4).

    2.1 Lip outer contour extraction

    The automatic lip contour extraction method in Ref.[28]is employed.A 16-point lip model with some geometric constraints is used to describe the lip contour.A total of 16 fixed locations Lt=are defined as shown in Fig.2.A region-based cost function which maximizes the joint probability of the lip region and the non-lip region is adopted to extract the optimum lip contour after several iterations[31].Thus the 16 points of optimum lip contour Ls=are obtained(Fig.3).

    Fig.2 Feature points in a mouth image:(a)the standard template image and(b)16 standard lip feature points

    Fig.3 Image warping procedure of a frontalmouth-closed image:(a) original,(b)16 lip feature points,(c)filtered by the morphological filtering,and(d)the warped

    2.2 Image warping

    The mouth images with extracted lip contour are warped into the standard template shown in Fig.2(b).The thin-plate spline(TPS)based image warping method in Ref.[27]is employed.The two TPS interpolation functions which are used as coordinatemapping functions are defined:

    Then,Eq.(8)together with Eq.(9)can be reformulated to: where kijSimplifying Eq. (10)to TC=S,the TPS coefficients can be calculated by C= T-1S.With TPS coefficients C and Eq.(8),every lip region point(x,y)of the training and testing mouth-state image can be warped into the point(x',y')in the standard template image.All the warped images have the same size(36×72) with the feature points in fixed locations.The results are shown in Fig.3 for a mouth-closed image and Fig.4 for a mouthopened one.

    Fig.4 Imagewarping procedure of a frontalmouth-opened image:(a) original,(b)16 mouth feature points,(c)filtered by the morphological filtering,and(d)the warped

    The redundancy is increased in the warped images,resulting in a sparser SR and better performance of mouth-state recognition.Compared with conventional affine transformations such as scaling,shifting and rotation,image warping can be used for lateral facial images.Figure 5 shows several examples for lateralmouth images.

    Fig.5 Examples of profile mouth images(up)and its warped results (down):(a)left side view of amouth-closed image,(b)right side view of amouth-closed image,(c)left side view of amouthopened image,and(d)right side view of amouth-opened image

    2.3 Homotopy method

    The homotopy method in Ref.[18]is employed to pinpoint the SR coefficient vectorαinvolved in the?1-norm minim ization.It pursuits a solution path parameterized by the parameter vector evolved from an accessible initial value to the desired value.The homotopy method is based on iterative calculation,and the step size needs to be calculated each time.It is proved that the?1-norm minimization problem(P1)can be replaced by the follow ing defined objective function fλ(α):

    whereλ≥0 and the solution path starts at a large value forλ and zero vector forαλand terminates whenλ=0 andαλconverges to the desired solution(P1).

    3 Experimental Results

    3.1 Database used

    The database used in this paper is established with the mouth-state images cropped from the images random ly downloaded from Google online.It contains two kinds of mouth-state images of man and woman at all age groups,883 mouth-closed images(783 for training and 100 for test)and 1 001 mouth-opened ones(901 for training and 100 for test) under variable illum inations,scales and poses,and partof them are shown in Figs.6(a)and(b).

    Fig.6 Part of images from the established mouth-state image database:(a)100 mouth-closed images,(b)100 mouth-opened images,(c)100 warped mouth-closed images of size 36×72,and(d)100 warped mouth-opened images of size 36×72

    3.2 Design of experiments

    Sim ilar to the processing in Ref.[22],every mouth image from both of the two training sets is down-sampled to size 10×12,reordered into a column vector and then?2-norm normalized.The sub-dictionary matrixesandare constructed with mouth-closed and mouthopened samples from the original training set,respectively,thenIn a sim ilarway,the dictionary Awcan be constructed with the warped training set.The test samples are processed similarly to the training samples,and the corresponding reconstructed images by using each dictionary matrix and the reconstruction errors are shown in Fig.8 for mouth-closed and in Fig.9 for mouthopened.The estimated SR coefficient vectorsαcorresponding to the related testmouth-state images with different dictionary matrixes are shown in Fig.10.The approach proposed in this paper is compared with the state-of-the-art methods such as SVM,neural network(NN),MD and SRC based on a dictionary pre-trained by K-SVD algorithm(SRC-KSVD)with the original training setand warped training set,respectively.In the SRC-KSVD,the dictionariesare trained from the original training set,andare trained from the warped training set.

    Fig.8 Reconstructed results of original and warped mouth-closed samples:(a)original;(b)down sampled version of(a)(as the feature);(c)reconstructed result by Ao,error e=0.774;

    Fig.9 Reconstructed results of original and warped mouth-opened samples:(a)original;(b)down sampled version of(a)(as the feature);(c)reconstructed result by Ao,error e=1.330;

    Fig.10 The coefficient vector locations and valuesof nonzero entries of αcorresponding to(a)Fig.8(b),(b)Fig.8(g),(c)Fig.9 (b),and(d)Fig.9(g)

    The parameters are set similarly to those in Ref.[22],i.e.,10 for sparsity prior and 50 for the maximum number of iterations.We also compare the CR between homotopy and other linear programming(LP)solvers like OMP.The test mouth-state samples are processed similarly to the corresponding training samples.All the experiments are carried out on two groups of training sets,respectively.The results are shown in Table 1.In Table 1- 2,W represents image warping,the data format is CR with warped set/CR with un-warped set.The results prove that ourmethod always has the best performance,the highest CR reaching 97.5%.Also according to Table 2,it is obvious that image warping is good to mouth-state recognition,i.e.,it boosts the CR on an average of 1.786% and the highest increment reaches 4.5%,as shown in columns 2 and 7 of Table 1.To further illustrate the benefits of image warping and homotopymethod,extended experiments under the condition of different number of training samples(the number ofmouth-closed training samples is the same to mouth-opened ones)have been done,and the results are shown in Fig.11.Homotopy method always has better performance than the OMP method under the same condition.And the CRs are improved by image warping inmost cases,especially when the number of the training samples is less than 50 per class,and the highest average increase has reached 9.0%in MDmethod and 5.214% in ourmethod aswell,as shown in Table2.The CRs ofmouthclosed are decreased slightly in some cases since the TPS interpolation used in image warping may make the relation of magnitude of reconstruction errors upside down when e1is approximately equal to e2.But this decrease is acceptable since the image warping makes the CRs of mouth-closed and mouthopened more balanced and reasonable.All the experiments are carried out on a PC(Inter core i3- 3220 CPU,3.30 GHz)with Matlab R2010a.

    Table 1 Comparison of CR(%)of differentmethods with warped and un-warped training sets

    Table 2 Comparison of CR(%)of differentmethodswith warped and un-warped training sets in case of small training sets

    Fig.11 CRs for different number of training samples

    4 Conclusions

    To improve the performance of an intelligent robotauditory system,the effective audio sources should be detected by recognizing the state of mouth from the acoustic m ixtures.In this paper,we have proposed a novel approach for the human mouth-state recognition based on image warping and SR combined with homotopy method.Relevant experiments have been done to compare the proposedmethod with the state-of-theartmethods on two different training sets:original training set and the warped training set.The results have proved that our method ismore efficient and effective than the others for human mouth-state recognition.Homptopy is selected because it has faster running speed than the general LP solvers which are proved by Donoho etal.[18].It is further proved thathomotopy method ismuch more effective than OMPmethod in terms of classification.In addition,image warping makes our method obtain higher CR,although when we just have limited training samples.In the future,we will investigate how to extract the feature points not only along the outline of mouth but also between the lips such as the pixels of teeth in mouth-opened images.Also wewill investigatewhether the CR will increase if we use an adaptive template instead of the standard template with fixed size.Wewill also extend our algorithm tomulti-class recognition problems,such as human gestures recognition in a service robot system.

    References

    [1]Rivet B,Wang W,Naqvi S M,et al.Audio-Visual Speech Source Separation[J].IEEE Signal Processing Magazine,2014,31(3):125-134.

    [2]Liu Q,Wang W W,Jackson P.Use of Bimodal Coherence to Resolve Permutation Problem in Convolutive BSS[J].Signal Processing,2012,92(8):1916-1927.

    [3]M issaoui I,Zied L.Cepstral Smoothing of Binary Masks for Convolutive Blind Separation of Speech M ixtures[J].International Journal of Digital Content Technology and Its Applications,2012,6(17):532-541.

    [4]Bucak S S,Rong J,Jain A K.Multiple Kernel Learning for Visual Object Recognition:a Review[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,36(7):1354-1369.

    [5]Loog M,Jensen A C.Sem i-supervised Nearest Mean Classification through a Constrained Log-likelihood[J].IEEE Transactions on Neural Networks and Learning Sy stems,2015,26(5):995-1006.

    [6]Zheng J,Lu B L.A Support Vector Machine Classifier with Automatic Confidence and Its Application to Gender Classification[J].Neurocomputing,2011,74(11):1926-1935.

    [7]Cavalcanti G D C,Ren T I,Vale B A.Data Complexity Measures and Nearest Neighbor Classifiers:a Practical Analysis for Meta-learning[C].IEEE 24th International Conference on Tools with Artificial Intelligence,Athens,Greece,2012:1065-1069.

    [8]Bag S,Sanyal G.An Efficient Face Recognition Approach Using PCA and M inimum Distance Classifier[C].IEEE International Conference on Image Information Processing,Himachal Pradesh,India,2011:3-5.

    [9]Wang C L,Lan L,Zhang Y W,et al.Face Recognition Based on Principle Component Analysis and Support Vector Machine[C].IEEE 3rd InternationalWorkshop on Intelligent Systemsand Applications,Wuhan,China,2011:1-4.

    [10]Cootes T F,EdwardsG J,Taylor C J.Active Appearance Models[J].Computer Vision ECCV'98,1998,1407:484-498.

    [11]Chen Y,Yu F,AiC.Sequential Active Appearance Model Based on Online Instance Learning[J].IEEE Signal Processing Letters,2013,20(6):567-570.

    [12]Wang S L,Liew A W C.ICA-Based Lip Feature Representation for Speaker Authentication[C].International IEEE Conference on Signal-Image Technologies and Internet-Based System,Shanghai,China,2007:763-767.

    [13]W right J,Yang A Y,Ganesh A,et al.Robust Face Recognition via Sparse Representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227.

    [14]Donoho D L.For Most Large Undeterm ined Systems of Linear Equations the M inimal l1-Norm Solution is Also the Sparsest Solution[J].Communications on Pure and Applied Mathematics,2006,59(6):797-829.

    [15]Qin Q,Jiang Z N,F(xiàn)eng K,et al.A Novel Scheme for Fault Detection of Reciprocating Compressor Valves Based on Basis Pursuit,Wave Matching and Support Vector Machine[J].Measurement,2012,45(5):897-908.

    [16]Moussallam M,Daudet L,Richard G.Matching Pursuits with Random Sequential Subdictionaries[J].Signal Processing,2012,92(10):2532-2544.

    [17]Karahanoglu N B,Erdogan H.A*OrthogonalMatching Pursuit: Best-First Search for Compressed Sensing Signal Recovery[J].Digital Signal Processing,2012,22(4):555-568.

    [18]Donoho D,Tsaig Y.Fast Solution of l1-Norm M inimization Problems When the Solution May be Sparse[J].IEEE Transactions on Information Theory,2008,54(11):4789-4812.

    [19]Ul Haq Q S,Shi L X,Tao L M,et al.Hyperspectral Data Classification via Sparse Representation in Homotopy[C].IEEE 2nd International Conference on Information Science and Engineering,Hangzhou,China,2010:3748-3752.

    [20]Cao H B,Deng H W,Li M,et al.Classification of Multicolor Fluorescence in Situ Hybridization(M-FISH)Imageswith Sparse Representation[J].IEEE Transactions on Nanobioscience,2012,11(2):111-118.

    [21]Aharon M,Elad M,Bruckstein A.K-SVD:an Algorithm for Designing Overcomplete Dictionaries for Sparse Representation[J],IEEE Transactions on Signal Processing,2006,54(11): 4311-4322.

    [22]Zhang Y,Qu S,Wu JH.Human Mouth-Type Recognition via Learned Dictionary and Sparse Representation[J].International Journal of DigitalContent Technology and its Applications,2013,7(4):599-606.

    [23]Zhang Q,Li B X.Discrim inative K-SVD for Dictionary Learning in Face Recognition[C].IEEE Conference on Computer Vision and Pattern Recognition,San Francisco,CA,USA,2010:2691-2698.

    [24]Li H X,Wang P,Shen C H.Robust Face Recognition via Accurate Face Alignment and Sparse Representation[C].International Conference on Digital Image Computing:Techniques and Applications,Sydney,Australia,2010:265-269.

    [25]Pishchulin L,Gass T,Dreuw P,et al.Image Warping for Face Recognition:from Local Optimality towards Global Optimization[J].Pattern Recognition,2012,45(9):3131-3140.

    [26]Elad M,Goldenbery R,Kimmel R.Low Bit-Rate Compression of Facial Images[J].IEEE Transactions on Image Processing,2007,16(9):2379-2383.

    [27]NejatiM,Amirfattahi R,Sadri S.A Fast Hybrid Approach for Approximating a Thin-Plate Spline Surface[C].The18th Iranian Conference on Electrical Engineering,Isfahan,Iran,2010:204-208.

    [28]Sum K L,Lau W H,Leung S H,et al.A New Optim ization Procedure for Extracting the Point-Based Lip Contour Using Active Shape Model[C].Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing,Salt Lake City,UT,USA,2001:1485-1488.

    [29]Tropp J A,Gilbert A C,Strauss M J.Algorithms for Simultaneous Sparse Approximation,Part I:Greedy Pursuit[J].Signal Processing,2006,86(3):572-588.

    [30]Donoho D,Huo X.Uncertainty Principles and Ideal Atomic Decomposition[J].IEEE Transactions on Information Theory,2001,47(7):2845-2862.

    [31]Wang S L,Lau W H,Leung S H.Automatic Lip Contour Extraction from Color Images[J].Pattern Recognition,2004,37 (12):2375-2387.

    TN911.73;O235

    A

    1672-5220(2015)04-0658-07

    date:2014-11-05

    s:National Natural Science Foundation of China(No.61210306074);Natural Science Foundation of Jiangxi Province,China (No.2012BAB201025);the Scientific Program of Jiangxi Provincial Education Department,China(Nos.GJJ14583,GJJ13008)

    *Correspondence should be addressed to WU Jian-hua,Email:jhwu@ncu.edu.cn

    猜你喜歡
    建華
    倒立奇奇
    變來(lái)變?nèi)サ臉?shù)
    托尼逃跑
    米沙在書(shū)里
    可怕的事
    哈比的愿望
    100歲的貝其
    變變變
    阿嗚想做貓
    快樂(lè)的秘密
    老司机午夜福利在线观看视频| 日韩欧美国产一区二区入口| 美女 人体艺术 gogo| 国产一区二区三区在线臀色熟女| 一二三四社区在线视频社区8| 91麻豆精品激情在线观看国产| 色噜噜av男人的天堂激情| 欧美一区二区精品小视频在线| 老司机深夜福利视频在线观看| 欧美一级毛片孕妇| 成人三级黄色视频| 日韩中文字幕欧美一区二区| 久久午夜亚洲精品久久| 亚洲av第一区精品v没综合| 久久这里只有精品中国| av天堂在线播放| 国内精品美女久久久久久| 久久国产精品影院| 亚洲成人免费电影在线观看| 国产男靠女视频免费网站| 亚洲av美国av| 成人午夜高清在线视频| 欧美丝袜亚洲另类 | 亚洲内射少妇av| 男女之事视频高清在线观看| 欧美成狂野欧美在线观看| 欧美黄色淫秽网站| 亚洲成av人片在线播放无| 免费av不卡在线播放| 五月伊人婷婷丁香| 欧美激情在线99| 欧美3d第一页| 99国产精品一区二区三区| 亚洲精品在线观看二区| 久久久精品欧美日韩精品| 黄色视频,在线免费观看| 亚洲av成人不卡在线观看播放网| 久久亚洲真实| 国产精品一区二区三区四区久久| 床上黄色一级片| 亚洲熟妇熟女久久| 五月玫瑰六月丁香| 国产欧美日韩精品亚洲av| 国产av不卡久久| 国产精品,欧美在线| 97人妻精品一区二区三区麻豆| 久久久久九九精品影院| 免费人成视频x8x8入口观看| 免费观看人在逋| 香蕉av资源在线| 99久久精品热视频| 最新中文字幕久久久久| 丰满乱子伦码专区| 18禁裸乳无遮挡免费网站照片| 久久久国产成人免费| 亚洲avbb在线观看| 久久久久免费精品人妻一区二区| 欧美三级亚洲精品| 亚洲精品色激情综合| 一本精品99久久精品77| 全区人妻精品视频| 亚洲国产欧洲综合997久久,| 热99re8久久精品国产| 精品国内亚洲2022精品成人| 欧美日韩黄片免| 五月伊人婷婷丁香| 免费大片18禁| 美女高潮的动态| 午夜久久久久精精品| 久久精品国产亚洲av涩爱 | 国产午夜精品论理片| 身体一侧抽搐| 亚洲熟妇中文字幕五十中出| 精品一区二区三区视频在线 | 又粗又爽又猛毛片免费看| 午夜免费观看网址| 色播亚洲综合网| 99热6这里只有精品| 国产色爽女视频免费观看| 老熟妇乱子伦视频在线观看| 欧美av亚洲av综合av国产av| 中文字幕熟女人妻在线| 在线观看免费午夜福利视频| xxxwww97欧美| 欧美一区二区亚洲| 欧美最新免费一区二区三区 | 亚洲av美国av| 十八禁网站免费在线| 久久精品国产清高在天天线| 最新中文字幕久久久久| 欧美黄色片欧美黄色片| 久久婷婷人人爽人人干人人爱| 久久久久久国产a免费观看| 精品久久久久久久末码| 一本精品99久久精品77| 日本黄大片高清| 丰满的人妻完整版| 一个人免费在线观看的高清视频| 亚洲国产色片| 国产探花在线观看一区二区| 久久久久久人人人人人| 国产一区二区在线av高清观看| 高清毛片免费观看视频网站| 亚洲第一欧美日韩一区二区三区| 两个人看的免费小视频| 在线观看66精品国产| 国产午夜精品久久久久久一区二区三区 | 国产综合懂色| 亚洲国产高清在线一区二区三| 久久精品国产自在天天线| 国产精品女同一区二区软件 | 久久香蕉精品热| 婷婷精品国产亚洲av在线| 亚洲熟妇熟女久久| 亚洲成人久久爱视频| 观看免费一级毛片| 久久精品91蜜桃| www.色视频.com| 色精品久久人妻99蜜桃| 国产高清videossex| 免费无遮挡裸体视频| av国产免费在线观看| 免费大片18禁| 国产中年淑女户外野战色| 美女被艹到高潮喷水动态| 动漫黄色视频在线观看| 美女高潮喷水抽搐中文字幕| 国产淫片久久久久久久久 | 高清在线国产一区| 变态另类成人亚洲欧美熟女| 日韩欧美三级三区| 一本久久中文字幕| 色尼玛亚洲综合影院| 老司机在亚洲福利影院| 免费av毛片视频| 母亲3免费完整高清在线观看| 欧美色欧美亚洲另类二区| 国产亚洲精品综合一区在线观看| 亚洲美女黄片视频| 亚洲欧美日韩卡通动漫| 校园春色视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 少妇人妻一区二区三区视频| 深爱激情五月婷婷| 欧美成人免费av一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 婷婷精品国产亚洲av在线| 露出奶头的视频| 午夜激情福利司机影院| 国产探花极品一区二区| 香蕉av资源在线| 最后的刺客免费高清国语| 少妇的丰满在线观看| 免费搜索国产男女视频| 一进一出抽搐gif免费好疼| 国产精品99久久99久久久不卡| 一区二区三区激情视频| 亚洲专区中文字幕在线| 精品久久久久久,| 色综合亚洲欧美另类图片| 俄罗斯特黄特色一大片| 欧美3d第一页| 男女午夜视频在线观看| 床上黄色一级片| 国产97色在线日韩免费| 少妇的逼水好多| 亚洲精品日韩av片在线观看 | 国产成人啪精品午夜网站| 午夜福利在线观看免费完整高清在 | 欧美性猛交╳xxx乱大交人| 成熟少妇高潮喷水视频| 老熟妇仑乱视频hdxx| 一个人免费在线观看电影| 亚洲天堂国产精品一区在线| 亚洲欧美日韩无卡精品| 1024手机看黄色片| 手机成人av网站| 黄片小视频在线播放| 无人区码免费观看不卡| 在线观看免费视频日本深夜| 欧美日韩乱码在线| 成人欧美大片| 精品国产美女av久久久久小说| 亚洲五月天丁香| 亚洲五月婷婷丁香| 99精品欧美一区二区三区四区| 色播亚洲综合网| 午夜久久久久精精品| 国产探花极品一区二区| 国产三级中文精品| 丰满人妻一区二区三区视频av | 欧美成人a在线观看| 少妇人妻精品综合一区二区 | 少妇丰满av| 国产精品精品国产色婷婷| 俺也久久电影网| 成人鲁丝片一二三区免费| 少妇的逼水好多| 国内精品美女久久久久久| www日本黄色视频网| 19禁男女啪啪无遮挡网站| 一边摸一边抽搐一进一小说| 欧洲精品卡2卡3卡4卡5卡区| 搞女人的毛片| 色在线成人网| 国产精品自产拍在线观看55亚洲| 午夜激情欧美在线| 国产精品1区2区在线观看.| 女生性感内裤真人,穿戴方法视频| 欧美极品一区二区三区四区| 亚洲精品亚洲一区二区| 俺也久久电影网| 亚洲一区二区三区不卡视频| 色吧在线观看| 午夜福利成人在线免费观看| 午夜福利在线在线| av女优亚洲男人天堂| 无限看片的www在线观看| 日韩欧美三级三区| 亚洲不卡免费看| 中文字幕av成人在线电影| 日本 欧美在线| 波多野结衣巨乳人妻| 国产精品av视频在线免费观看| 三级毛片av免费| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av日韩精品久久久久久密| 欧美另类亚洲清纯唯美| 亚洲乱码一区二区免费版| 国模一区二区三区四区视频| 岛国在线观看网站| 香蕉丝袜av| 日本一本二区三区精品| 黄色女人牲交| 99久国产av精品| 两个人的视频大全免费| 一边摸一边抽搐一进一小说| 国内精品一区二区在线观看| 国产一区二区三区在线臀色熟女| 国产精品电影一区二区三区| 色吧在线观看| 欧美国产日韩亚洲一区| 成人三级黄色视频| 精品无人区乱码1区二区| 夜夜看夜夜爽夜夜摸| 欧美日韩乱码在线| 9191精品国产免费久久| 变态另类丝袜制服| 天堂网av新在线| 日韩 欧美 亚洲 中文字幕| 日韩有码中文字幕| 国产午夜福利久久久久久| 搡老妇女老女人老熟妇| 亚洲成av人片在线播放无| 久久99热这里只有精品18| xxxwww97欧美| 午夜福利高清视频| 国产精华一区二区三区| av福利片在线观看| 亚洲aⅴ乱码一区二区在线播放| 看片在线看免费视频| 日韩欧美一区二区三区在线观看| 99久久综合精品五月天人人| 最好的美女福利视频网| 很黄的视频免费| 久久精品91蜜桃| 亚洲七黄色美女视频| 窝窝影院91人妻| 久久精品国产清高在天天线| 国产久久久一区二区三区| 日本与韩国留学比较| 亚洲国产色片| 国产视频一区二区在线看| 国产伦人伦偷精品视频| 日日夜夜操网爽| 国产精品久久久久久精品电影| 夜夜夜夜夜久久久久| 国产免费一级a男人的天堂| 中亚洲国语对白在线视频| 欧美乱码精品一区二区三区| 五月玫瑰六月丁香| 级片在线观看| 在线视频色国产色| 国产真实乱freesex| 99视频精品全部免费 在线| 午夜亚洲福利在线播放| 久久精品亚洲精品国产色婷小说| 欧美性猛交╳xxx乱大交人| 最新美女视频免费是黄的| 中文字幕av成人在线电影| 九九久久精品国产亚洲av麻豆| 真人做人爱边吃奶动态| 国产爱豆传媒在线观看| 国产欧美日韩一区二区三| 国产亚洲av嫩草精品影院| 美女被艹到高潮喷水动态| 午夜免费成人在线视频| 亚洲欧美一区二区三区黑人| 久久久久精品国产欧美久久久| 12—13女人毛片做爰片一| 久久久久国内视频| 黄色日韩在线| 天天躁日日操中文字幕| 一个人看的www免费观看视频| 偷拍熟女少妇极品色| 看片在线看免费视频| 99精品欧美一区二区三区四区| 日本在线视频免费播放| 亚洲美女视频黄频| 日本在线视频免费播放| 国产精品久久久人人做人人爽| 欧美一级毛片孕妇| 国产精品电影一区二区三区| 亚洲av成人av| 成人一区二区视频在线观看| 亚洲18禁久久av| 日韩欧美国产在线观看| 黄片小视频在线播放| 欧美国产日韩亚洲一区| 免费av毛片视频| 法律面前人人平等表现在哪些方面| 欧美又色又爽又黄视频| 中文字幕精品亚洲无线码一区| 国产高潮美女av| 久久午夜亚洲精品久久| 在线观看免费视频日本深夜| 国产精品 国内视频| 国产免费男女视频| 18禁美女被吸乳视频| 久久精品国产综合久久久| 欧美一区二区国产精品久久精品| 中文字幕av在线有码专区| 他把我摸到了高潮在线观看| 色尼玛亚洲综合影院| 午夜影院日韩av| x7x7x7水蜜桃| 女人高潮潮喷娇喘18禁视频| 国产97色在线日韩免费| 国产成人系列免费观看| 欧美一级毛片孕妇| 最新中文字幕久久久久| 成人18禁在线播放| 91麻豆精品激情在线观看国产| 蜜桃久久精品国产亚洲av| www日本黄色视频网| 成年女人毛片免费观看观看9| 男女午夜视频在线观看| 成年女人毛片免费观看观看9| 亚洲美女黄片视频| 99久久综合精品五月天人人| 男女下面进入的视频免费午夜| 特大巨黑吊av在线直播| 国产真人三级小视频在线观看| 国产69精品久久久久777片| 2021天堂中文幕一二区在线观| 美女 人体艺术 gogo| 亚洲 国产 在线| 亚洲成人久久爱视频| 亚洲专区中文字幕在线| 欧美色欧美亚洲另类二区| 99国产极品粉嫩在线观看| x7x7x7水蜜桃| 亚洲国产精品sss在线观看| 亚洲成a人片在线一区二区| 午夜免费成人在线视频| 国产单亲对白刺激| 日韩 欧美 亚洲 中文字幕| 亚洲av不卡在线观看| 日韩欧美精品v在线| 欧美3d第一页| 少妇丰满av| 欧美中文综合在线视频| 一进一出好大好爽视频| 淫妇啪啪啪对白视频| 日本精品一区二区三区蜜桃| 成人一区二区视频在线观看| 丰满乱子伦码专区| 国产精品亚洲美女久久久| 免费大片18禁| 欧美不卡视频在线免费观看| 国产精品久久久久久人妻精品电影| 欧美精品啪啪一区二区三区| 色播亚洲综合网| 波野结衣二区三区在线 | xxx96com| 国产国拍精品亚洲av在线观看 | 久久99热这里只有精品18| 欧美日韩亚洲国产一区二区在线观看| www.色视频.com| 在线播放国产精品三级| 免费av毛片视频| 久久国产精品人妻蜜桃| 国产国拍精品亚洲av在线观看 | 国产精品一及| 国产高清三级在线| 国产国拍精品亚洲av在线观看 | 久久国产精品影院| 亚洲国产精品999在线| 他把我摸到了高潮在线观看| 非洲黑人性xxxx精品又粗又长| 动漫黄色视频在线观看| 老鸭窝网址在线观看| 国产伦在线观看视频一区| 女生性感内裤真人,穿戴方法视频| 黑人欧美特级aaaaaa片| 久久99热这里只有精品18| 人妻久久中文字幕网| 久久人人精品亚洲av| 日韩有码中文字幕| 精品一区二区三区人妻视频| 午夜福利在线观看吧| 色老头精品视频在线观看| 欧美日韩乱码在线| netflix在线观看网站| 久久精品国产清高在天天线| 人妻久久中文字幕网| 日韩人妻高清精品专区| 免费搜索国产男女视频| 亚洲中文日韩欧美视频| 欧美午夜高清在线| 国产精品美女特级片免费视频播放器| 黄色日韩在线| 51午夜福利影视在线观看| av专区在线播放| 香蕉av资源在线| 午夜福利成人在线免费观看| 日韩欧美国产一区二区入口| 一本一本综合久久| 国产精品一区二区三区四区免费观看 | 高清日韩中文字幕在线| svipshipincom国产片| 国产精品香港三级国产av潘金莲| 欧美色欧美亚洲另类二区| 国产精品综合久久久久久久免费| 男人的好看免费观看在线视频| 欧美精品啪啪一区二区三区| 日本a在线网址| 五月伊人婷婷丁香| 亚洲精品成人久久久久久| 国产视频内射| av天堂中文字幕网| 国模一区二区三区四区视频| 黄色成人免费大全| 51午夜福利影视在线观看| 国产探花极品一区二区| 我要搜黄色片| 国产亚洲精品av在线| 90打野战视频偷拍视频| 国产色婷婷99| 国产精品一区二区三区四区久久| 亚洲人成网站高清观看| 国产精品一及| 精品人妻一区二区三区麻豆 | 女生性感内裤真人,穿戴方法视频| 国产高清三级在线| 国产高清视频在线观看网站| 亚洲欧美日韩高清在线视频| 亚洲激情在线av| 国产精品 欧美亚洲| 亚洲国产精品999在线| 首页视频小说图片口味搜索| 亚洲av成人不卡在线观看播放网| 日本一二三区视频观看| 超碰av人人做人人爽久久 | 中文亚洲av片在线观看爽| 亚洲黑人精品在线| 网址你懂的国产日韩在线| 欧美日韩乱码在线| 香蕉久久夜色| 听说在线观看完整版免费高清| 精品国内亚洲2022精品成人| 91麻豆精品激情在线观看国产| 国产久久久一区二区三区| 2021天堂中文幕一二区在线观| aaaaa片日本免费| 人人妻,人人澡人人爽秒播| 别揉我奶头~嗯~啊~动态视频| 免费无遮挡裸体视频| 制服丝袜大香蕉在线| 中文资源天堂在线| 亚洲熟妇熟女久久| 99久久精品一区二区三区| 淫秽高清视频在线观看| 小蜜桃在线观看免费完整版高清| 欧美一区二区国产精品久久精品| 午夜日韩欧美国产| 舔av片在线| 国产熟女xx| 午夜亚洲福利在线播放| 国产探花极品一区二区| 啪啪无遮挡十八禁网站| 在线a可以看的网站| 国产精品久久视频播放| 女同久久另类99精品国产91| 精品久久久久久久末码| 波野结衣二区三区在线 | 99久国产av精品| 无遮挡黄片免费观看| 亚洲成a人片在线一区二区| 人人妻,人人澡人人爽秒播| 狂野欧美白嫩少妇大欣赏| 老熟妇仑乱视频hdxx| 日韩欧美精品免费久久 | 国产三级在线视频| 欧美黄色淫秽网站| 国产真人三级小视频在线观看| 成人亚洲精品av一区二区| 久久精品国产自在天天线| 99久久成人亚洲精品观看| 日韩欧美三级三区| 国产色婷婷99| or卡值多少钱| 日韩国内少妇激情av| 免费搜索国产男女视频| 中文亚洲av片在线观看爽| 嫁个100分男人电影在线观看| 99视频精品全部免费 在线| 亚洲最大成人手机在线| 久久久久久九九精品二区国产| bbb黄色大片| 久久人人精品亚洲av| 国产成人av教育| 又粗又爽又猛毛片免费看| 黄色片一级片一级黄色片| 精品人妻偷拍中文字幕| 精品欧美国产一区二区三| 在线天堂最新版资源| 久久久久国内视频| 成年女人看的毛片在线观看| 亚洲av免费高清在线观看| 一区二区三区高清视频在线| 国产亚洲av嫩草精品影院| 波野结衣二区三区在线 | 最新美女视频免费是黄的| 一二三四社区在线视频社区8| 亚洲国产欧美网| 久久6这里有精品| 在线天堂最新版资源| 99精品久久久久人妻精品| 亚洲精品在线观看二区| 国产v大片淫在线免费观看| 亚洲美女视频黄频| 两个人看的免费小视频| 天堂动漫精品| 国产欧美日韩精品一区二区| 女生性感内裤真人,穿戴方法视频| 久久久久久久久中文| 偷拍熟女少妇极品色| www日本在线高清视频| 欧美zozozo另类| 网址你懂的国产日韩在线| 精品久久久久久久末码| 欧美激情久久久久久爽电影| 最后的刺客免费高清国语| 久久精品91蜜桃| 女警被强在线播放| 人人妻,人人澡人人爽秒播| 欧美3d第一页| 一级a爱片免费观看的视频| 久久久国产成人精品二区| 中文字幕人成人乱码亚洲影| 日本在线视频免费播放| 日本精品一区二区三区蜜桃| 精品国内亚洲2022精品成人| 九九热线精品视视频播放| 99久久99久久久精品蜜桃| 国内毛片毛片毛片毛片毛片| 岛国在线观看网站| 欧美成人一区二区免费高清观看| 九九在线视频观看精品| 成人性生交大片免费视频hd| 亚洲精品在线观看二区| 精品日产1卡2卡| 色吧在线观看| 国产欧美日韩精品一区二区| 最近视频中文字幕2019在线8| 国产伦在线观看视频一区| 国产黄色小视频在线观看| 国产黄片美女视频| 免费观看的影片在线观看| 伊人久久大香线蕉亚洲五| 最新在线观看一区二区三区| 婷婷六月久久综合丁香| 最新美女视频免费是黄的| 变态另类丝袜制服| 欧美乱色亚洲激情| 免费人成视频x8x8入口观看| 国产探花极品一区二区| 久久天躁狠狠躁夜夜2o2o| 精品一区二区三区视频在线观看免费| 在线观看日韩欧美| 精品人妻1区二区| 色av中文字幕| 在线免费观看的www视频| 麻豆一二三区av精品| 观看美女的网站| 欧美最新免费一区二区三区 | 久久久久久久久久黄片| 国产激情欧美一区二区| 乱人视频在线观看| 免费看光身美女| 久久精品91无色码中文字幕| 亚洲专区国产一区二区| 成年人黄色毛片网站| 久久精品人妻少妇| 色综合欧美亚洲国产小说| 18禁国产床啪视频网站| 99精品在免费线老司机午夜| 亚洲av一区综合| 成年版毛片免费区| 国产精华一区二区三区| 日韩欧美国产一区二区入口| 又爽又黄无遮挡网站| 久久久久久久久大av| 成人一区二区视频在线观看|