• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on the ions’axial temperature of a sympathetically-cooled 113Cd+ion crystal?

    2021-11-23 07:26:24NongChaoXin辛弄潮ShengNanMiao苗勝楠HaoRanQin秦浩然LiMingGuo郭黎明JiZeHan韓濟澤HuaXingHu胡華星WenXinShi施文心JianWeiZhang張建偉andLiJunWang王力軍
    Chinese Physics B 2021年11期
    關鍵詞:華星弄潮文心

    Nong-Chao Xin(辛弄潮) Sheng-Nan Miao(苗勝楠) Hao-Ran Qin(秦浩然)Li-Ming Guo(郭黎明) Ji-Ze Han(韓濟澤) Hua-Xing Hu(胡華星)Wen-Xin Shi(施文心) Jian-Wei Zhang(張建偉) and Li-Jun Wang(王力軍)

    1State Key Laboratory of Precision Measurement Technology and Instruments,Department of Precision Instruments,Tsinghua University,Beijing 100084,China

    2Department of Physics,Tsinghua University,Beijing 100084,China

    Keywords: ion temperature,sympathetic cooling,electric parameters,microwave clock

    1. Introduction

    Trapping and cooling ion technique plays an important role in precision measurement field, including but not limited to frequency standards, quantum information processing, and chemical reactions. This technique is employed to acquire long-term, stable, and cold (milli-Kelvin) ion crystal. Especially, frequency standards based on ion traps and Doppler laser cooling technology demonstrate great potential in the application of time-keeping,[1]space navigation,[2,3]and deep-space exploration.[4]Among the ion cooling techniques,sympathetic cooling technology is a technique that indirectly cools another type of particles on the basis of laser cooling of one type of particles.[5,6]Therefore,the transition spectrum of atoms, ions, and molecules cooled by sympathetic cooling technology can be measured more accurately. Because only the coolant particles should be cooled by laser,the particles of similar mass can be effectively cooled through the interaction between the particles. The sympathetic-cooling technology is effective for almost all particles, and significantly important in the precise measurement of particle spectrum and the study of particle properties.[7,8]Through sympathetic cooling technique, microwave clock based on sympathetically-cooled113Cd+ions[9]has been proven to be conducive to overcoming limits, including Dick effect and second-order Doppler frequency shift(SODFS),which result from the dead time of laser cooling process and rise in temperature during the clock interrogation,respectively.[10,11]

    Study has revealed that for the sympathetically-cooled ion crystal,trapped in the linear Paul trap,there exists a complex relationship between the electric parameters,including RF(radio frequency)voltage and end-cap voltage,and the temperature of ions.[9]To study the sympathetic cooling efficiency and the ion crystal temperature, we constructed an MD (molecular dynamics) simulation model of a sympathetically-cooled113Cd+ion crystal, in which40Ca+ions were used as the coolant to sympathetically cool a large113Cd+cloud. Furthermore, both types of ions are trapped in a linear Paul trap.By applying MD simulation,detailed information of any particular ion, including but not limited to ions’velocity and location distribution,temperature,and evolution of secular motion together with micro-motion can be acquired reasonably and accurately.[12,13]After defining some parameters,such as ions’ mass-to-charge ration, ions’ quantity and potential applied on trap ions,the process of ion generating,trapping and sympathetic cooling can be simulated properly. Moreover,the pseudo-potential approximation model[14]is adopted to define motion modes of ions, and it clearly explains spatial configuration transformation and temporal evolution of the simulated three-dimensional(3D)sympathetically-cooled ion system under different voltages.

    For the ion crystal system we built, the optimum radio frequency(RF)voltage amplitude(about 260 V),corresponding to minimum temperature,was discovered. Before the optimum RF voltage,ions’axial temperature is negatively correlated with the RF voltage. While after the optimum RF voltage, ions’ axial temperature experiences a steady escalation with the increasing of RF voltage. The axial temperature is positively correlated with the end-cap voltage. The change trends of ion temperature vs. the RF voltage and the endcap voltage are consistent with the experimental results. We further proposed a simple method to estimate the axial temperature trend while tuning the voltages by a key index (see in Eq.(9)),which is determined by secular motion amplitude,average position,andqx,y(defined in Eq.(3)).

    2. MD simulation and verifications

    2.1. MD simulation model

    whereΩis the frequency of RF voltage andκis the axial equivalent geometric factor, decided by the geometry of the trap and distance between two endcapsz0. In our experiment,COMSOL software is used to construct the trap model. By setting different voltages,we fitted the corresponding trap potential,and then obtained theκcoefficient by fitting analysis.κwas set to 0.049.

    The random collision forceFistochastic(Ref. [15]) and the laser forceFilaser(Ref. [12]) have already been described at Ref.[10].The evolution process uses the Leapfrog algorithm,[1,16,17]which is a second-order stable and time reversible algorithm. In addition,the choice of time step is critical in molecular dynamics simulation;it is appropriate to include dozens to one hundred time steps in an RF cycle. The time step of the model built in this article is selected as 5 ns,1/100 of the RF cycle,and it ensures the stability of the algorithm and simultaneously guarantees the accuracy of the calculation. The time step can be changed artificially in the simulation program.

    The cardinal parameters of the simulated linear Paul trap are depicted in Fig.1.[19]Our trap is composed of four threesection cylindrical copper electrodes. The diameter of each electrode is 14.2 mm, and the shortest distance between the electrodes and the ion trap center is 6.2 mm.To trap ions in the axial direction, the end-cap voltage(Uend, direct current voltage) is applied on the adjacent section (A and C parts) of all electrodes. Meanwhile,to achieve confinement of ions in the radial direction, RF voltage (Urf=(Vrf/2)cosΩt), frequency fixed at 2.06 MHz,is assigned to the central section(B part)of electrodes 2 and 4,and the central section of electrodes 1 and 3 is well grounded. The adjustment range of amplitude of RF voltage is 150 V-500 V,and the output amplitude of end-cap voltage can be varied from 0 V to 100 V.The cooling laser and the probe laser are shined on ions in the direction of the axial of trap.Thus,axial temperature of the ion cloud is investigated in the following analysis.

    Fig. 1. Sketch of linear Paul trap: (a) axial view and (b) side view. The origin of z axis of our coordinate is centered between endcaps.

    2.2. Verifications

    Before the investigation,our simulation program was validated by comparing the simulated results to the analytic and experimental results. These tests allows detection if modifications introduce errors;thus,ensuring correctness of the further illustrations.

    By using pseudo-potential approximation, motion of a single ion can be depicted as[20,21]

    In radial direction, the motion of one single ion is separated into a secular motion at frequencyωi,i=x,yand a swift‘micromotion’at frequencyΩ. In axial direction,the single ion only oscillates at frequencyωz.

    Apparently,these frequencies depend on end-cap and RF voltages. Motion of one ion is simulated by our program,and the oscillation frequencies are extracted along each axis, as demonstrated in Fig. 2(a), which validates the correctness of end-cap and RF voltages.

    Fig. 2. (a) Oscillation frequencies extracted from simulation of one single ion. The frequencies are all from the Fourier component with the largest amplitude. (b)Relationship between minimum separation of ions and Uend.The number of ions is 64.

    Moreover, when the number of ions is sufficiently small that all ions are aligned through thezaxis, the distance betweenNions(quantity of electric charge of each ion isQandmis the ion mass)will increase away from the center ofzaxis.The minimum separation between ions is expressed as[22]

    Figure 2(b)shows the minimum simulated separation and the value predicted by theory. Because the simulated ions experience forces,including the voltage confinement alongzaxis and the Coulomb force from the other ions,simulation of the minimum separation of ions tests the realization of both the Coulomb force and voltage confinement.

    The forces experienced by ions decide the spatial configuration of ion crystal. In our experiment, an explicit ion crystal picture of Ca+was obtained by an EMCCD(electronmultiplying charge coupled device). Under our experimental settings, we estimated the number of ions based on the size of the ion cloud,[23]and after repeated release of trapped ions, we selected the experimental results of approximately 1.9(0.5)×104Ca+ions as the correctness verification of the simulation model. The corresponding ion number was calculated as 1.9(0.5)×104. Figure 3 shows pictures of ion crystal obtained from the experiment and simulation, verifying that our simulation results are consistent with the real experimental results.

    Fig.3. Ca+ ion crystal obtained from experiment and simulation at different RF voltages and end-cap voltages. (a)Vrf=400 V.(b)Vrf=240 V.The number of Ca+ is 1.9(0.5)×104.

    3. Relationship between ions’ temperature and electric parameters

    3.1. Simulation results

    As shown in Fig.4,increasement of RF and end-cap voltages change the spatial configuration of ion crystal. Typically,increasing RF voltage and end-cap voltage lead to substantial compression and extension on the radial distribution of the ion system, respectively. Because the effect of laser force is significant,[24-26]during the simulation process,the laser force is set as a constant value,verified by Subsection 2.2.

    Fig. 4. Spatial configuration of ion crystal obtained from simulation. (a)Spatial configuration of ion crystal cloud changes with end-cap voltage at Vrf =520 V.(b)Spatial configuration of ion crystal cloud changes with RF voltage at Uend =10 V. Red dots represent the ions of Ca+ and green dots represent the ions of Cd+. The ion numbers of Ca+ and Cd+ are 192 and 960,respectively.

    Note that although reducing the end-cap voltage will lead to the decline of ion temperature,considering the actual situation that the ions should be stably trapped,the end-cap voltage should have a lower limit. In our previous sympathetic cooling experiment,[27]we found that when the end-cap voltage is lower than 10 V, the ion loss rate increases; thus, we usually set the end-cap voltage above 10 V. The specific lower limit of the end-cap voltage is related to the specific trap parameters,vacuum degree,laser parameters,and other experimental conditions.

    Theoretically, the temperature of the ions in the thermal equilibrium state affected by the voltages can be explained by the RF heating effect.[21,28,29]The RF heating effect is correlated with the oscillation amplitude and frequency of the ions. Through the image obtained from the simulation (see in Fig.4),it can be observed that when the end-cap voltage increases and the RF voltage decreases,more ions are arranged outside the central axis, which means that oscillation amplitude is amplified. Further, it is verified that the frequency of the motion is affected by the voltages. When the oscillation amplitude and the movement frequency both affected by the voltages, the specific changes of the ion temperature need to be discussed in detail. In Subsection 3.2,motion equation under the pseudo-potential model is applied to provide a more reasonable and clear explanation.

    Figure 5 demonstrates the specific ions’axial temperature at different RF voltage and end-cap voltage. According to the simulation results, the optimum RF voltage corresponding to the lowest temperature is approximately 520 V. Still, before the optimum RF voltage, the temperature decreases with the increasement of RF voltage, and after the optimum voltage,the temperature increases with the increasing of RF voltage.Furthermore, the end-cap voltage and temperature are positively correlated.

    Fig. 5. Temperature from simulation: (a) axial temperature at different end-cap voltages with Vrf =320 V; (b) axial temperature at different end-cap voltages with Vrf =520 V; (c) axial temperature at different end-cap voltages with Vrf =720 V; (d) axial temperature at different RF voltages with Uend=10 V;(e)axial temperature at different RF voltages with Uend=50 V;(f)axial temperature at different RF voltages with Uend=90 V.The ion numbers of 40Ca+ and 113Cd+ are 192 and 960,respectively.

    3.2. Energy and temperature

    The motion of one single ion can be well expressed by Eq. (3). When considering large-scale ion cloud trapping,modifications and assumptions should be mentioned. Owing to the Coulomb force, more ions will distribute around the z axis. Average position of ions are placed to (r1x,r1y,r1z),which causes ‘excess micro-motion’.[21]Thus the motion of ions is modified as

    To illustrate the energy change of ion cloud clearly, it is better to first fully describe the ion motion modes. According to Eq. (5), the one-dimensional motion of the ions can be mainly described by the superposition of the secular motion and the micro-motion. However,considering that the ions move in three-dimensional(3D)space,the movement of ions in the 3D direction will be coupled with each other, resulting in more complicated ion movement patterns. Therefore,although the motion modes of ions become complex due to mutual coupling, they are result of combined secular motion and micro-motion. By calculating the kinetic energy of the ions in the micro-motion and secular motion modes,the overall energy of the ions can be reflected. In addition,due to the high coupling of ion motion modes,the energies of ions in the three degrees of freedom are positively correlated. Therefore,we can use the motion equation of the ion in one direction to estimate the total energy of the ion in the complex motion within the three-dimensional space.

    For a 3D ion system,interaction among ions leads to motion and energy coupling under different dimensions. Thus,it is assumed that ions’ triaxial energy is in the same order of magnitude and positively correlated:

    Furthermore, according to our simulation, ions’ axial micro-motion mainly results from motion coupling among different dimensions and is less affected by the RF driving field,while ions’radial motion is a direct superposition of the micromotion and secular motion.[30]To analyze the energy and temperature evolution of the ions more comprehensively,we used the axial motion equation of the ions,obtained from the equivalent harmonic pseudo-potential approximation, to figure out the energy and temperature of ions in the 3D sympatheticallycooled ion system.

    Averaged over a period of secular motion,the kinetic energy of ions inxdirection can be obtained as[21]

    where the number of ions isN,r1xiis the average position ofi-th ion alongxdirection, indicating the deviation of ions towards the central axis.

    By using Eq.(9),the evolution process of sympathetically cooled ions’temperature and energy under different voltages,portrayed by Fig.5,can be distinctly described:

    According to Eq. (9), energy and temperature of ions in a 3D ion sympathetic cooling system are positively correlated with the amplitude of secular motion,average position of ions andqx,y. On the one hand, by increasing the RF voltage, the spatial configuration is compressed, indicating the decline of secular motion amplitude and average position value. Thus,increasingqx,y(determined by increasing RF voltage)and decreasing secular motion amplitude together with average position value imply the minimum ion energy and temperature at a certain RF voltage. On the other hand, because increasing end-cap voltage amplifies the secular motion amplitude and average position,while have slight influence onqx,y,[20]ions’temperature and energy are reasonably positively correlated with the end-cap voltage.

    Moreover, it is assumed that ion crystal configuration is determined by all ions’ motion amplitude and average position.Thus,the configuration can microscopically represent the average of square of the secular motion amplitude and average position. In this study,we chose the maximum radial width of ion crystal as the cardinal parameter of the ion crystal configuration. Thereafter,the axial temperature was microscopically evaluated by a new indexu:

    whereRscrepresents the maximum radial width of sympathetically cooling ion crystal(Cd+)in our simulation.

    The dimension of indexuis square of meter. It contains important information that affect ions energy, including electric parameters and oscillation amplitude.It reflects the energy and spatial configuration change under different voltages. Under a specific ion crystal trapped in linear Paul trap,it helps to estimate relative temperature value conveniently and quickly.Further,it allows us to measureRscand determine correspondinguthrough the simulation output. The exact calculation results are depicted as follows:

    Fig. 6. Index to evaluate temperature of sympathetic cooling ions. (a)Temperature from simulation and the index at different RF voltages with Uend =10 V. (b) Temperature from simulation and the index at different end-cap voltages with Vrf=520 V.The number of ions is the same as that in Fig.4.Discontinuous point data around 620 V are a phenomenon of random fluctuations of macroscopic physical quantities. Under the thermal equilibrium state,the macroscopic physical quantities of ions such as temperature,velocity,and energy,should own certain degree of random fluctuations.This type of random fluctuation becomes more significant when the voltage parameter changes slightly.

    The temperature change trend reflected by the indexuis consistent with the simulation results, especially when the temperature reaches at a minimum withVrf=520 V.

    Though the temperature evolution process,as discovered and illustrated by MD simulation and pseudo-potential model,we confirmed the RF optimum voltage(around 520 V)through a sympathetically-cooled113Cd+ion microwave clock(shown in Fig.7).[26]

    Detailed experimental setup and temperature measurement method can be found in Ref. [27]. The temperature evolution processes are experimentally measured by evaluating the Doppler broadening owing to ion motion of the 5p2P3/2F=2,mF=2→5s2S3/2F=1,mF=1 transition. At the published studies, we estimated the loss of ions based on the intensity of the fluorescence radiation of the ions. The fitted fluorescence decay curve is an exponential decay curve,and the time constant is approximately 84 h. Thus, it is reasonable to assume that the number of ions remains unchanged within 1 hour,and the experimental error caused by the loss of ions can be ignored.[27]

    Fig.7. Influence of electric parameters on ions’axial temperature. (a)Corresponding temperature at different RF voltages with Uend=10 V.(b)Corresponding temperature at different end-cap voltages with Vrf=520 V.The temperature data of 40Ca+ and 113Cd+ ion crystals under sympathetic cooling situation are adopted from Ref.[26].

    Though the changing trend obtained from simulation and experiment is consistent, some details are slightly different.We believe that the main reasons for the inconsistency of the simulation results,experimental results,and theoretical calculation results are as follows:

    (i) In the experiment, the potential of the ion trap is not a perfect quadruple potential, which will cause additional RF heating.

    (ii)The number of ions in the experiment is significantly higher than the simulation calculation. It is believed that even under the same electrical parameters,the ion cloud size formed by different numbers of ions changes notably.Increasing number of ions leads to expansion of the ion cloud,which implies an intensified RF heating. Thus, the temperature measured through the experiment is much higher than that of the simulation.

    (iii)Theoretical calculation of the relative temperature of the ion requires the identification of the specific size of the ion cloud. Although the ion cloud image captured by the EMCCD and obtained by the simulation result are notably clear, there are still errors in determining the size of the ion cloud.

    The sympathetic cooling system simulated in this study is aimed at the sympathetic cooling of metal ions,and distinguished with sympathetic cooling system of highly charged ions, atoms, and molecular ions. For metal ions of different masses, although their spatial configuration is different, their motion modes are still superposition of micro-motion and secular motion. Then the influencing factors of ions’ energy in the linear trap should be consistent. The indexuprovides us a convenient method to estimate the ions’temperature changing trend in experiment, which avoids scanning probe laser frequency to measure the Doppler broadening of a transition.

    4. Conclusion

    In this paper,we simulated a sympathetically-cooled ion system. The MD simulation results offered detailed information of any given ion at a certain time, based on which axial temperature of the ion crystal under different voltages was calculated.

    Using the pseudo-potential approximation model, key factors, composed of secular motion amplitude, average position andqx,y, affecting ions’ temperature and energy were elaborated. RF and end-cap voltages were found to have influence on these factors and can change the ions’axial temperature accordingly.

    Based on the key factors,indexu,a square of the product ofqandRsc, is able to help us determine ions’ temperature relatively and quickly. The temperature change, indicated by the index,is consistent with the simulation result,and both are verified by experimental data.

    Though our work is limited by the number of simulated ions and applicable scope of the pseudo-potential approximation model,the result is still helpful for ion temperature measurement, sympathetic ion cooling efficiency improvement,and ion spatial configuration control.

    猜你喜歡
    華星弄潮文心
    弄潮青春
    黃河之聲(2021年3期)2021-05-15 01:17:56
    我要讀書啦(下)
    我要讀書啦(上)
    寫話,一點都不難
    “鳥”和“烏”
    改革開放40年 荊楚弄潮40人
    支點(2018年12期)2018-12-26 02:16:32
    在新的歷史起點上 沖浪弄潮 再創(chuàng)輝煌
    冬天來啦
    文心雜記
    請不斷修煉你的“文心”
    中國篆刻(2017年5期)2017-07-18 11:09:30
    netflix在线观看网站| 欧美极品一区二区三区四区| 欧美激情在线99| 日韩强制内射视频| 国产精品爽爽va在线观看网站| 极品教师在线免费播放| 男人和女人高潮做爰伦理| 直男gayav资源| 亚洲国产日韩欧美精品在线观看| 人人妻人人澡欧美一区二区| 国产精品女同一区二区软件 | 久久久午夜欧美精品| 久久久久久久久久黄片| 午夜福利在线观看吧| 婷婷丁香在线五月| 赤兔流量卡办理| 三级国产精品欧美在线观看| 国产一区二区亚洲精品在线观看| 无人区码免费观看不卡| 国产精品不卡视频一区二区| 亚洲成人精品中文字幕电影| 日本a在线网址| 欧美色欧美亚洲另类二区| 成人美女网站在线观看视频| ponron亚洲| 亚洲熟妇中文字幕五十中出| 99久久精品国产国产毛片| 国内久久婷婷六月综合欲色啪| 少妇熟女aⅴ在线视频| 国产av在哪里看| 综合色av麻豆| 成人鲁丝片一二三区免费| 午夜日韩欧美国产| 久久精品人妻少妇| 偷拍熟女少妇极品色| 中文字幕精品亚洲无线码一区| 免费人成在线观看视频色| 国产极品精品免费视频能看的| 香蕉av资源在线| 性插视频无遮挡在线免费观看| 日本黄色片子视频| 国产毛片a区久久久久| 一级a爱片免费观看的视频| 一级毛片久久久久久久久女| 极品教师在线视频| 婷婷精品国产亚洲av| 99热这里只有精品一区| 亚洲专区国产一区二区| 97超视频在线观看视频| 午夜免费激情av| 亚洲第一电影网av| 动漫黄色视频在线观看| 91麻豆精品激情在线观看国产| 中国美女看黄片| 亚洲精品乱码久久久v下载方式| 看免费成人av毛片| 他把我摸到了高潮在线观看| videossex国产| 亚洲图色成人| 全区人妻精品视频| 麻豆国产97在线/欧美| 1024手机看黄色片| 国产亚洲精品综合一区在线观看| 男女之事视频高清在线观看| 亚洲人成网站在线播| 婷婷亚洲欧美| 久久久久久久久久黄片| 国内精品久久久久久久电影| 日本熟妇午夜| 国产91精品成人一区二区三区| 桃红色精品国产亚洲av| 日韩一区二区视频免费看| 日韩欧美 国产精品| 天堂√8在线中文| av女优亚洲男人天堂| 天堂av国产一区二区熟女人妻| 成人毛片a级毛片在线播放| 久久精品影院6| 久久久国产成人免费| 成人一区二区视频在线观看| 久久久久久九九精品二区国产| 国国产精品蜜臀av免费| 久久精品国产99精品国产亚洲性色| 特级一级黄色大片| 亚洲美女黄片视频| 天堂网av新在线| 色哟哟哟哟哟哟| 精品久久久久久久久av| 男人狂女人下面高潮的视频| 少妇熟女aⅴ在线视频| avwww免费| 中亚洲国语对白在线视频| 久久精品国产鲁丝片午夜精品 | 成年人黄色毛片网站| 久久久精品大字幕| 人人妻人人澡欧美一区二区| 欧美成人一区二区免费高清观看| 亚洲在线自拍视频| 中文字幕av成人在线电影| 听说在线观看完整版免费高清| 日本撒尿小便嘘嘘汇集6| 伦精品一区二区三区| 国产精品无大码| 两个人视频免费观看高清| 免费黄网站久久成人精品| 免费av不卡在线播放| 久久精品国产清高在天天线| 国产成人aa在线观看| 国产亚洲精品综合一区在线观看| 国产伦精品一区二区三区视频9| 最近最新免费中文字幕在线| 免费在线观看日本一区| 日韩欧美精品v在线| 欧美激情在线99| 尤物成人国产欧美一区二区三区| 亚洲精品亚洲一区二区| 精品久久久久久成人av| 国产免费一级a男人的天堂| 午夜激情福利司机影院| 少妇高潮的动态图| 国产一区二区在线av高清观看| 少妇人妻精品综合一区二区 | 成年女人毛片免费观看观看9| 伊人久久精品亚洲午夜| 深夜精品福利| 久久久国产成人精品二区| 国产精品国产高清国产av| 国产精品一及| 99热6这里只有精品| 国产伦在线观看视频一区| 亚洲性夜色夜夜综合| 国产亚洲欧美98| 欧美日韩瑟瑟在线播放| 色吧在线观看| xxxwww97欧美| av天堂中文字幕网| 欧美一区二区国产精品久久精品| 亚洲成a人片在线一区二区| av在线亚洲专区| 午夜福利在线在线| 欧美在线一区亚洲| 99热这里只有是精品50| 自拍偷自拍亚洲精品老妇| 狠狠狠狠99中文字幕| 日本三级黄在线观看| 久久香蕉精品热| 99在线人妻在线中文字幕| 国产中年淑女户外野战色| 国产亚洲精品av在线| 国产男靠女视频免费网站| 露出奶头的视频| 蜜桃亚洲精品一区二区三区| 国产一区二区三区视频了| 欧美一区二区国产精品久久精品| 日本在线视频免费播放| 亚洲精品亚洲一区二区| 亚洲精品久久国产高清桃花| 亚洲成av人片在线播放无| 亚洲成人中文字幕在线播放| 99在线视频只有这里精品首页| 国产亚洲精品av在线| 一区福利在线观看| 亚洲avbb在线观看| 午夜福利高清视频| 久久亚洲真实| netflix在线观看网站| 成人国产麻豆网| 给我免费播放毛片高清在线观看| 熟妇人妻久久中文字幕3abv| 亚洲精品色激情综合| 三级毛片av免费| 天天一区二区日本电影三级| 亚洲熟妇熟女久久| 一卡2卡三卡四卡精品乱码亚洲| 中文亚洲av片在线观看爽| 亚洲av日韩精品久久久久久密| 如何舔出高潮| 久久久久久九九精品二区国产| 日本a在线网址| 日本一本二区三区精品| 美女大奶头视频| 性色avwww在线观看| 国产精品野战在线观看| 男女做爰动态图高潮gif福利片| 亚洲在线自拍视频| 少妇被粗大猛烈的视频| 国产美女午夜福利| 在线天堂最新版资源| 久久精品国产清高在天天线| 欧美一区二区亚洲| 男插女下体视频免费在线播放| 精品日产1卡2卡| 成人亚洲精品av一区二区| 国产精品国产高清国产av| 91午夜精品亚洲一区二区三区 | 欧美xxxx黑人xx丫x性爽| 女人被狂操c到高潮| 亚洲av成人精品一区久久| 免费av观看视频| 日本免费一区二区三区高清不卡| 亚洲熟妇中文字幕五十中出| 99在线视频只有这里精品首页| 亚洲天堂国产精品一区在线| 欧美精品啪啪一区二区三区| 少妇丰满av| 狠狠狠狠99中文字幕| 精品日产1卡2卡| 少妇的逼水好多| 国产精品福利在线免费观看| 琪琪午夜伦伦电影理论片6080| 亚洲欧美清纯卡通| 国产aⅴ精品一区二区三区波| 变态另类成人亚洲欧美熟女| 亚洲熟妇中文字幕五十中出| 一级黄片播放器| 亚洲欧美日韩东京热| 国产 一区精品| 色吧在线观看| av国产免费在线观看| 免费高清视频大片| 国内精品久久久久久久电影| 精品福利观看| 91麻豆精品激情在线观看国产| 亚洲欧美清纯卡通| 日韩一区二区视频免费看| 美女大奶头视频| 性插视频无遮挡在线免费观看| 老女人水多毛片| 国产乱人视频| 美女xxoo啪啪120秒动态图| 亚洲一区高清亚洲精品| 国内精品久久久久精免费| 欧美激情久久久久久爽电影| 草草在线视频免费看| 免费观看的影片在线观看| 特大巨黑吊av在线直播| 亚洲国产日韩欧美精品在线观看| 最新中文字幕久久久久| 91久久精品国产一区二区三区| 无人区码免费观看不卡| 亚洲午夜理论影院| 日韩欧美国产一区二区入口| 美女高潮喷水抽搐中文字幕| 久久午夜亚洲精品久久| 国产av麻豆久久久久久久| 老熟妇仑乱视频hdxx| 国国产精品蜜臀av免费| 色视频www国产| 日韩一区二区视频免费看| 此物有八面人人有两片| 免费人成在线观看视频色| 日本免费一区二区三区高清不卡| 久久久精品欧美日韩精品| x7x7x7水蜜桃| 亚洲,欧美,日韩| 日日啪夜夜撸| av国产免费在线观看| 亚洲七黄色美女视频| 日韩亚洲欧美综合| 赤兔流量卡办理| 精品久久久久久久久亚洲 | 免费电影在线观看免费观看| 亚洲av电影不卡..在线观看| 最好的美女福利视频网| 亚洲成人久久爱视频| 网址你懂的国产日韩在线| a级毛片a级免费在线| 久久人妻av系列| 3wmmmm亚洲av在线观看| 色视频www国产| 老熟妇仑乱视频hdxx| 久久久久九九精品影院| 欧美日韩综合久久久久久 | 九色国产91popny在线| 村上凉子中文字幕在线| 午夜激情福利司机影院| 日韩欧美 国产精品| 色综合站精品国产| 真人一进一出gif抽搐免费| 成人性生交大片免费视频hd| 亚洲男人的天堂狠狠| 国产精品亚洲美女久久久| 国产高清视频在线播放一区| 亚洲av免费在线观看| 欧美在线一区亚洲| 高清在线国产一区| 日韩国内少妇激情av| 久久久成人免费电影| 给我免费播放毛片高清在线观看| 真人做人爱边吃奶动态| 人人妻人人澡欧美一区二区| 99久久无色码亚洲精品果冻| 国产aⅴ精品一区二区三区波| 欧美+亚洲+日韩+国产| 亚洲av熟女| 乱码一卡2卡4卡精品| 男女啪啪激烈高潮av片| 精品免费久久久久久久清纯| 国产在视频线在精品| 国产高清不卡午夜福利| 五月玫瑰六月丁香| 麻豆精品久久久久久蜜桃| 国产精品国产高清国产av| 久久人人爽人人爽人人片va| 精品久久久久久久久久久久久| 亚洲精品日韩av片在线观看| 成年女人毛片免费观看观看9| 久久久午夜欧美精品| 别揉我奶头~嗯~啊~动态视频| 亚洲成人免费电影在线观看| 俺也久久电影网| 老熟妇乱子伦视频在线观看| 91在线精品国自产拍蜜月| 午夜日韩欧美国产| 舔av片在线| 一区二区三区激情视频| 一边摸一边抽搐一进一小说| 婷婷精品国产亚洲av| 欧美成人性av电影在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 美女xxoo啪啪120秒动态图| 精品久久久久久久人妻蜜臀av| 波多野结衣高清作品| 欧美国产日韩亚洲一区| 国产高清激情床上av| 最新在线观看一区二区三区| 日本五十路高清| 麻豆国产av国片精品| .国产精品久久| 成人午夜高清在线视频| 一个人看视频在线观看www免费| 丰满乱子伦码专区| 国产欧美日韩精品一区二区| 国产黄a三级三级三级人| 午夜久久久久精精品| 色在线成人网| 人妻少妇偷人精品九色| 亚洲一区二区三区色噜噜| 禁无遮挡网站| 成年女人看的毛片在线观看| 久久国内精品自在自线图片| 三级国产精品欧美在线观看| 亚洲四区av| 亚洲中文字幕日韩| 嫁个100分男人电影在线观看| h日本视频在线播放| 嫩草影院新地址| 尾随美女入室| 精品免费久久久久久久清纯| 国产毛片a区久久久久| 精品久久久久久成人av| 国产精品av视频在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 精华霜和精华液先用哪个| 麻豆av噜噜一区二区三区| 此物有八面人人有两片| 成年免费大片在线观看| 日韩欧美精品v在线| 国产亚洲欧美98| 欧美日本亚洲视频在线播放| 国产日本99.免费观看| 国产三级中文精品| 欧美丝袜亚洲另类 | 干丝袜人妻中文字幕| 国产av在哪里看| 亚洲成a人片在线一区二区| 亚洲真实伦在线观看| 欧美色欧美亚洲另类二区| 亚洲精品一区av在线观看| 97超级碰碰碰精品色视频在线观看| 亚洲精品亚洲一区二区| 最新在线观看一区二区三区| 3wmmmm亚洲av在线观看| 日本在线视频免费播放| 99热只有精品国产| 午夜精品一区二区三区免费看| 十八禁网站免费在线| 亚洲av成人精品一区久久| 国产精品人妻久久久影院| 十八禁国产超污无遮挡网站| 九色成人免费人妻av| 联通29元200g的流量卡| 久久人人爽人人爽人人片va| 中文字幕高清在线视频| 黄色视频,在线免费观看| 搡老熟女国产l中国老女人| 嫩草影院精品99| 国产精品人妻久久久久久| 久久久精品欧美日韩精品| 搡老熟女国产l中国老女人| 亚洲av一区综合| 亚洲,欧美,日韩| 亚洲七黄色美女视频| 久久久久国产精品人妻aⅴ院| 最近中文字幕高清免费大全6 | 九九热线精品视视频播放| 小蜜桃在线观看免费完整版高清| 日韩欧美免费精品| 欧美激情久久久久久爽电影| www.www免费av| 成年女人看的毛片在线观看| 成人av在线播放网站| 欧美+亚洲+日韩+国产| 国产视频内射| 黄片wwwwww| 久久精品国产亚洲av天美| 香蕉av资源在线| 国产成人a区在线观看| 久久精品影院6| 午夜视频国产福利| 免费看美女性在线毛片视频| 成年版毛片免费区| 午夜福利视频1000在线观看| 国产女主播在线喷水免费视频网站 | 免费高清视频大片| 久久久久久久久中文| 欧美一区二区亚洲| 网址你懂的国产日韩在线| 最后的刺客免费高清国语| 亚洲一区二区三区色噜噜| 99在线视频只有这里精品首页| 中文字幕av成人在线电影| 亚洲成a人片在线一区二区| 日本色播在线视频| 日韩欧美国产在线观看| 久久精品影院6| 中文字幕av在线有码专区| 国产精品自产拍在线观看55亚洲| 久久久久国产精品人妻aⅴ院| 精品久久久久久久末码| av专区在线播放| 亚洲无线在线观看| 国产成人一区二区在线| 嫩草影院入口| 人妻夜夜爽99麻豆av| 一级黄片播放器| 亚洲精品日韩av片在线观看| 级片在线观看| 男女边吃奶边做爰视频| 伊人久久精品亚洲午夜| 最后的刺客免费高清国语| 三级国产精品欧美在线观看| 美女 人体艺术 gogo| 日本与韩国留学比较| 中出人妻视频一区二区| 国产免费av片在线观看野外av| 国产色爽女视频免费观看| 色哟哟·www| 搡老熟女国产l中国老女人| 日韩欧美免费精品| 成年版毛片免费区| 精品欧美国产一区二区三| 国产精品综合久久久久久久免费| 亚洲18禁久久av| 久久午夜亚洲精品久久| 国产黄片美女视频| 国产精品自产拍在线观看55亚洲| 人妻丰满熟妇av一区二区三区| 亚洲美女黄片视频| 亚洲人与动物交配视频| 午夜福利在线观看免费完整高清在 | 成人美女网站在线观看视频| 国产精品无大码| 中文字幕精品亚洲无线码一区| 久久热精品热| 亚洲一区高清亚洲精品| 精品一区二区免费观看| 免费一级毛片在线播放高清视频| 午夜亚洲福利在线播放| 黄色日韩在线| 别揉我奶头~嗯~啊~动态视频| 国产三级在线视频| 久久久久精品国产欧美久久久| 国产国拍精品亚洲av在线观看| 中文资源天堂在线| 99久久无色码亚洲精品果冻| 悠悠久久av| 麻豆精品久久久久久蜜桃| 午夜a级毛片| 又黄又爽又刺激的免费视频.| 色哟哟·www| 搞女人的毛片| www.www免费av| 人妻夜夜爽99麻豆av| 国产69精品久久久久777片| 黄色女人牲交| 精品久久久久久久人妻蜜臀av| 91在线精品国自产拍蜜月| 夜夜看夜夜爽夜夜摸| 国产中年淑女户外野战色| 在线观看一区二区三区| 国产色婷婷99| 亚洲av第一区精品v没综合| 三级男女做爰猛烈吃奶摸视频| 亚洲欧美日韩高清专用| 午夜福利在线在线| 日本在线视频免费播放| 久久久久久久午夜电影| 免费无遮挡裸体视频| 日本欧美国产在线视频| 国产真实伦视频高清在线观看 | 国产一区二区三区在线臀色熟女| 黄色日韩在线| 少妇人妻精品综合一区二区 | 国产视频一区二区在线看| 国产精品一区www在线观看 | 成人一区二区视频在线观看| 最近中文字幕高清免费大全6 | 国产精品久久视频播放| 91午夜精品亚洲一区二区三区 | 亚洲第一电影网av| 亚洲无线在线观看| 免费av不卡在线播放| 一进一出抽搐动态| 搡女人真爽免费视频火全软件 | 日韩,欧美,国产一区二区三区 | 村上凉子中文字幕在线| 久久人妻av系列| 欧美性猛交╳xxx乱大交人| 日本成人三级电影网站| 久久精品国产亚洲网站| 久久精品国产亚洲av香蕉五月| a级一级毛片免费在线观看| 丝袜美腿在线中文| 国产女主播在线喷水免费视频网站 | 天堂影院成人在线观看| 久久久精品欧美日韩精品| 国产高清不卡午夜福利| 韩国av在线不卡| www.色视频.com| 天堂av国产一区二区熟女人妻| 91久久精品国产一区二区成人| 国产高清视频在线播放一区| 亚洲男人的天堂狠狠| 女生性感内裤真人,穿戴方法视频| 天天一区二区日本电影三级| 真人一进一出gif抽搐免费| 搡老岳熟女国产| 免费在线观看日本一区| 欧美在线一区亚洲| 日韩一本色道免费dvd| 亚洲精品乱码久久久v下载方式| 久久精品综合一区二区三区| 色综合色国产| 午夜爱爱视频在线播放| 热99在线观看视频| 看片在线看免费视频| 91在线精品国自产拍蜜月| 国产女主播在线喷水免费视频网站 | 久久久久性生活片| 色吧在线观看| 欧美日韩国产亚洲二区| 国产亚洲精品久久久com| 美女大奶头视频| 99热精品在线国产| 毛片一级片免费看久久久久 | 欧美成人一区二区免费高清观看| 精品人妻1区二区| 久久精品国产鲁丝片午夜精品 | 日本成人三级电影网站| 色视频www国产| 国产精品人妻久久久影院| 亚洲欧美日韩东京热| av女优亚洲男人天堂| 日本 av在线| 看片在线看免费视频| 欧美xxxx黑人xx丫x性爽| 自拍偷自拍亚洲精品老妇| 精品一区二区三区av网在线观看| 最近中文字幕高清免费大全6 | 日本一二三区视频观看| 色在线成人网| 九色国产91popny在线| 色哟哟·www| 国产高清不卡午夜福利| 亚洲一区高清亚洲精品| 国产国拍精品亚洲av在线观看| 看十八女毛片水多多多| 亚洲欧美激情综合另类| 免费电影在线观看免费观看| 不卡视频在线观看欧美| 日韩 亚洲 欧美在线| www.色视频.com| 久久久久久久久久成人| 日韩亚洲欧美综合| 亚洲美女视频黄频| 亚洲无线观看免费| 免费观看的影片在线观看| av国产免费在线观看| 午夜视频国产福利| 男插女下体视频免费在线播放| av国产免费在线观看| 赤兔流量卡办理| 亚洲欧美清纯卡通| 国产一区二区在线观看日韩| 国产激情偷乱视频一区二区| 18禁裸乳无遮挡免费网站照片| 搡老岳熟女国产| 成人精品一区二区免费| 亚洲va在线va天堂va国产| 久久国产乱子免费精品| 成人精品一区二区免费| 国产亚洲精品久久久com| 午夜a级毛片| 搡老熟女国产l中国老女人| 99在线视频只有这里精品首页| 国产伦精品一区二区三区视频9| 亚洲无线观看免费| av女优亚洲男人天堂| 99热网站在线观看| 国产精品乱码一区二三区的特点| 午夜激情欧美在线| 国产精品人妻久久久影院| 亚洲av二区三区四区| 又爽又黄无遮挡网站|