• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    溶劑化電子的傳奇歷史

    2021-11-17 07:40:58貝洛尼杰奎琳
    關(guān)鍵詞:薩克雷洛尼杰奎琳

    貝洛尼·杰奎琳

    (巴黎薩克雷大學(xué))

    1 Alkaline metal solutions in liquid ammonia

    In the mid-19th century,liquid ammonia was found to be able to dissolve without reaction,unlike water,sodium and other alkaline metals in intense blue solutions that were widely used,notably by Weyl[1],to effect previously difficult chemical reductions of organic or inorganic molecules[2].However,the handling of this solvent is very complex because it is liquid only below-33°C at normal pressure.It must therefore be kept cold,but also sheltered from the atmosphere,otherwise sodium would be oxidized to the air and cold ammonia would condense water vapours.In addition,metal solutions are metastable and,even very pure,they decompose very slowly into hydrogen and amide.Despite this,Kraus,assistant to A.A.Noyes at the Massachusetts Institute of Technology,decided in1904for his thesis subject to measure the conductivity of various ions in salt solutions in liquid NH3(Fig.1)[3].

    Fig.1 C.A.Kraus vacuum equipment to measure the conductivity of alkaline metal solutions in low-temperature liquid ammonia[3].

    While he had already determined the conductivity of each ion of alkaline salts,Kraus also wanted to compare these results with measurements in alkaline metal solutions and,to his surprise,their conductivity was far superior to those of salts.Stranger also,conductivity did not depend on the nature of the metal.He therefore concluded in1908[4]first that alkaline metals were dissociated in ammonia into ions,and then that the common complementary anion of these solutions,responsible for most of their conductivity and blue color,could only be a solvated electron:"the anion is an electron surrounded by solvent molecules"..."a solvated electron"...

    This audacious concept of a solvent electron,similar,despite its very different nature,to a monovalent anion stabilized by the polarization of solvent molecules,immediately prompted a great deal of work[2].Gibson and Argo established optical absorption spectra for the solvated electron in diluted alkaline and alkaline-earthous metals solutions in ammonia and methylamine[5-6]. They were characterized by a wide,intense and asymmetrical band in energy,with a maximum in the near IR.Later,it was shown that at lower temperature or higher pressure these spectra were moved to the visible[2],as were the halide absorption spectra.Like them,they have been attributed to a transfer of the charge to the molecules of the solvation layer(or CTTS,charge transfer to solvent).Early on,the expansion of the volume of the solution observed when the metal dissolved in the ammonia had suggested that the electron occupied a cavity much larger than its own size.This result inspired the early theoretical models of the structure of the solvated electron described by Ogg[7]and then by Jortner[8].The spectrum was attributed to an excitation of the1s→2p transition of a particle,in a cavity created by the mutual repulsion of hydrogen atoms of the polar solvent molecules oriented towards the electron.

    2 Ionizing radiation

    R?ntgen's[9]discovery in December1895of an invisible and very penetrating X-rays,generated by the impact of cathode rays on the anticathode of a Crookes tube,and then by H.Becquerel of the uranic rays in1896,suddenly extended the fields of photophysics and photochemistry to much more energetic radiation.Pierre and Marie Curie discovered in the pechblende in1898two new elements much more radioactive than uranium,polonium[10]and radium[11],and emitting specific radiation(Fig.2).

    Fig.2 Image of a wallet on a photographic plaque in Marie Curie's thesis[12].The radiation used was γ rays emitted by a source of radium contained in glass(the radiation β was deflected by a magnetic field).The mode of penetration is very similar to that of X-rays.

    The following year,they published the physicalchemical effects of these radiations on matter[13],in particular,in addition to the ionization of gases,the production of ozone from oxygen,and the production of molecular hydrogen and hydrogen peroxide in radioactive water solutions.The initial ions of the water are assumed to be H2O+and H2O-which,after a fast reaction with H2O,give birth respectively to the radicals OH·and H·[14].On the basis of this radical model,the radiolytic yields of products formed in various solutions can be gradually explained[15-18].

    3 The hydrated electron

    However,in the1950s,some results were beyond this[19-20].In particular in1952,G.Stein of the Hebrew University of Jerusalem found very different results for the reduction of aqueous methylene blue solutions in acidic or neutral environments[21].He concludes that in addition to the radical H-,a second reductive species should be considered.He was the first to propose the hydrated electron eaq-as an analog of the electron ammonized eam-,known in solutions of alkaline metals in liquid ammonia.The hydrated electron would come from the electron originally derived from the ionization of the water.Immediately,the theorist R.L.Platzman[21]describes in his model how this electron can escape recombination with the parent cation and thus solve the solvent.

    Despite this,the hypothesis of a hydrated electron will take a decade to impose itself.The first argument against it was the stability of eam-while eaqwould be a very short-lived intermediary.Nor could any metastable blue color of the ammoniated electron be observed after liquid ammonia irradiation by a continuous accelerator[22].Prudently,the authors concluded that his concentration may have been too low.Another difficulty was that the aqueous solutions studied in radiolysis,even deaerated,were often very acidic and in this case the hydrated electron,reacting with a proton,is actually replaced by a radical H·.In addition,even in a neutral environment,many solutes are reduced indiscriminately by H·or eaq-by giving the same products.

    On the other hand,G.Stein and J.Jortner observe a fleeting blue color by putting water or alcohol in contact with sodium under argon atmosphere,suggesting the existence,at least transient,of a solvated electron also in these liquids[23].In1958,chloroacetic acid radiolysis produced hydrogen in an acidic environment but chloride ions in a neutral environment[24].In1961,studies of the ionic force on the radiolysis of cationic or anionic solutes show that the predominant radical species in neutral environment carries a negative charge[25].

    However,in a1961review of water radiolysis by Hart and Platzman,the hydrated electron is not even mentioned.The resolution of this controversy is also not the objective of the early experiments to detect reactional intermediaries by the pulsed radiolysis method developed by Matheson and Dorfman who observe the free radical I2[26].

    Similarly,J.W.Boag[27],in his relationship of historical observations of eaq-using the pulsed radiolysis installation he had just developed at the Gray Laboratory in London,reports that E.J.Hart had in fact come to join him in order to detect free carbonate radicals.But two distinct absorption maxima are observed,one of which is found in pure water,and is moved to the infrared when the water is added with ammonia.The spectrum is therefore assigned to eaq-.The key result of this highlight was communicated to the2nd International Congress of Radiation Research in Harrogate in1962.At the same conference,J.P.Keene also reports on his observation,independently,of the new spectrum by using the pulse radiolysis installation he built at the Patterson Laboratory in Manchester,spectrum which he also assigned to the hydrated electron.Boag proposes to publish their respective results simultaneously in the same issue of the journal Nature[28-30].In the same year,J.Jortner,Ottolenghi and G.Stein observe by flash photolysis the same spectrum of eaq-produced by photodetachment from the iodide anion[31].

    Fig.3 Optical absorption spectrum of hydrated electron observedforthefirsttimebypulseradiolysisinasol utionof sodiumcarbonate(withthepeaksoftheradicalCO3-·at600 nm andeaq-at700nm)(a),andin pure water(witheaq- )(b),bothdeaerated[31].Todetectananomolarconcentration of eaq-,theoptical pathwas elongatedbyplacingthe4cm optical cellatthecenterofa multiple reflectionsystem.Atthis concentration,the decay ofeaq-byrecombinationsis veryslowandis observedformorethan50ms.

    4 The solvated electrons

    These results had a great impact and triggered a proliferation of research.A Weyl Symposium was created,with its first edition in1963[32],to commemorate the centenary since Weyl's discovery of metal solutions in ammonia.In addition to the recent works by specialists in the field,Jortner[32]presents a review on the evolution of theories on the structure of the solvated electron that preceded its semicontinuous model,which he applied not only to eam-but also for the first time to eaq-which had just been highlighted.This structure consisted of a cavity surrounded by a few polarized solvent molecules and then a continuum of solvent,characterized in particular by its density and dielectric constants,optical and static.The model accounts for the wavelengths of the respective maxima according to temperature and pressure.Very quickly,thanks to newly installed pulse radiolysis facilities and shorter pulses,a very wide variety of liquids,more or less polar,were ionized and solvated electrons detected.Despite their instability,the very similar properties of their transient absorption spectra were compared with fast IR detections in alcohols and polyols,amines,ethers,sulphides,carbonates,ionic liquids and even hydrocarbons[33-36](Fig.4),or their reactivity with series of molecules.

    Fig.4 Optical absorption spectra of electrons solvated in different liquids,calibrated into molar absorption coefficients.GLY:glycol;PD:propane diol;EG:ethylene glycol;MeOH:methanol;EtOH:ethanol;PrOH:propanol;EDA:ethane-1.2-diamine;DEA:diehanolamine;13PDA:propane-1.3-diamine;THF:tetrahydrofurane;DME:dimethylether;DEE:diethylether;Diglyme:bis(2-methoxyethyl)ether;R4NNTf2:methyl-tributyl-ammonium bis[trifluoromethyl-sulfonyl]imide;DEC:diethylcarbonate.(Adapted from[33-36]).

    Hereafter,the following editions of the Weyl Symposiums[36]have brought together experimentalists and theorists discussing solvated electrons produced either by pulsed radiolysis or by dissolution of alkaline and alkaline-earth metals in liquid ammonia,amines and certain ethers.One of the interesting aspects of the solvated electron is to appear thus as the smallest solvated chemical species which,despite its transient nature,can be formed and studied in the greatest number of environments.It is also compared with electrons trapped in irradiated ices[37].

    Thanks to the developments of the simulation,numerous theoretical models have been proposed to account for the properties of the solvated electron,including the hydrated electron,and to describe its Structure(Fig.5)[38].

    Fig.5 Structure of the hydrated electron simulated by molecular dynamics[38].The charge of the electron is delocalized in the2.5A radius cavity.H2O molecules are oriented towards the central charge by one of their H atoms.

    The pertubations of water molecules in the solvation layer are sometimes calculated[39].A recent review analyzed these models in detail.The simulated optical absorption spectrum that is closest to the experiment is composed of transitions between the fundamental state and about fifteen excited states(Fig.6)[40].

    Fig.6 Comparison between the optical absorption spectra of the hydrated electron obtained by the experiment or based on simulations based on the theory of the functional of density with3or15states[40].

    5 Box1-Instability of esolv-

    How to explain the large difference between the eammetastability in blue metal solutions in ammonia or amines,and the rapid decay of solvated electrons produced by pulse radiolysis,including in NH3(which explains why the1953experiments failed to observe any blue color[24])?In fact,the solvated electron is in a fundamental state,which would be stable if its existence were not limited by its very high chemical reactivity that depends on the conditions(and improperly characterized by a lifetime).In NH3and amines,it is inert against alkaline or alkaline-earth cations.It therefore decreases only very slowly with impurities or acidic ions slowly released from the walls of the container(the ionization product of NH3itself is only Kion-10-23M2).While in radiolysis,eam-reacts with the NH4+cations and other radical species formed simultaneously.In addition,it was shown by pulse radiolysis that in water the dismutation reaction between two eaq-was very fast in producing dihydrogen and OH-.It also occurs during the contact between water and sodium metal and produces hydrogen explosions with oxygen from the air,well known to apprentice chemists.

    But,provided that liquid ammonia is added with hydrogen to capture oxidizing radicals,and Alkaline amidurn NaNH2to capture NH4+ions,theradiationinduced electron eambecomes as stable as in metal solutions.Thanks to this inertia,the characteristic blue color was observed in this case after a simple stationary irradiation(Fig.7)[41],and also after photolysis and photodetachment from NHWhatever the mode of formation,the identity between the solvated electrons was thus definitively established.Blue eamsolutions were also obtained in NH3by electrochemistry(with alkaline halide as the electrolyte)[2,42]or by photo-injection from a semiconductor[43].

    Fig.7 Optical absorption spectrum of a hydrogen and sodium amide solution in liquid ammonia irradiated at20°C(spectrum is recorded in a sealed test tube,resistant to91.19kPa[41]).

    A.J.Swallow[44]even calculated that,given the formation of eaq-by irradiation by cosmic rays and by photodetchment from chlorides by the Sun's UV rays,its near-stationary concentration in the oceans would be about10-9molar("Many of the short-lived chemical species......are known to exist naturally......")(Fig.8).

    Fig.8 Formation of eaq-in the oceans[44].

    As early as1971,Baxendale and Wardman[45]observed for the first time after a5ns pulse the solvation dynamics of an electron in the viscousnpropanol at low temperature,which slowed down molecular movements(Fig.9).The initial spectrum is located in the infrared and the absorption at1300nm then disappears in1μs while simultaneously the spectrum of the completely solvated electron develops and stabilizes with its maximum at500nm.The first spectrum is assigned to a pre-solvated electron and the solvation time is estimated atτ1/2=50ns(Fig.9,insets).

    Fig.9 Solvation of es-in the n-propanol at152K after ionization by a5ns pulse of a pulse accelerator[45].Insets:pre-solvated electron decay at1300nm and growth of es-at500nm.

    It will be necessary to wait for the pulses of100 femtoseconds offered by the lasers with a biphotonic UV excitation for the electron solvation,much faster at room temperature,can be observed in water(τ1/2=200fs)[46](Fig.10)or polyols(τ1/2=10ps for glycerol)[47].In liquid ammonia at-50°C,solvated electrons in blue solutions were excited in the IR band at1280 nm to eject them from their solvent cavity and the relaxation time to the solvent state wasτ1/2=150fs[48],which,given the temperature,is even faster than in the water.On the other hand,the solvation relaxation of an electron in the ionic liquid[C4mpyr][NTf2],with larger molecules and heterogeneous density domains,is distinguished by two different velocity processes(τ1/2=70.4ps andτ1/2=574ps)[49].

    Fig.10 Solvation of eaq-after ionization of water molecules at 294K by a biphotonic UV excitation by a laser pulse of100fs(τ1/2=200fs)[46].

    Gradually,advances in pulse radiolysis of water solutions have helped to determine the UV optical absorption spectra of H-and OH-radicals.But after subtracting these bands from the total spectrum in pure water,it remained another component,correlated with the infrared absorption band of eaq-,and shifted like it between20and34℃to the larger wavelengths,but much less intense(Fig.11,inset)[50].With this precise deconvolution,the authors concluded that the UV component must be assigned to eaq-and that it corresponds to the edge of the absorption band,shifted to the visible,of water molecules from the solvation layer,disturbed by the transfer of the electron charge.This would therefore be the first observation of a spectrum of a solvation layer.

    Given the very comparable properties of all solvated electrons,the UV absorption spectra of very pure sodium solutions in ammonia were in turn examined at-50℃and20℃[51].In this case,the solution contains only eam-and Na+.The spectra display indeed UV absorption bands proportional to the concentration of the metal and also correlated with the IR bands of eam-(Fig.11).They are shifted from the band edge of pure ammonia,as well as those of eaq-at20℃and34℃compared to the pure water band edges(Fig.11,inset).These elements therefore support the previous interpretation of a spectrum due to solvation molecules,which,by analogy,should also appear in the spectra of all other solvated electrons.More generally,the'solvation'absorption band should exist for ions whose spectrum is also due to a charge transfer to solvent,such as halides,but in this case it would be masked by the main UV spectrum.

    Fig.11 UV-visible optical absorption spectra of the ammoniated electron at-50℃and20°C.Inset:comparison between the UV optical absorption bands of eam-at-50℃and 20°C and eaq-at20°C and the NH3and H2O solvents;scales multiplied by4;adapted from[50]and[51].

    6 Conclusion

    A consensus seems to emerge that the solvated electron occupies a cavity of size and shape varying with temperature and pressure,that it attracts towards its negative charge the H atoms of one of the polar groups of the solvation molecules whose structure is perturbed,and that its optical spectrum,very dissymmetrical in energy,results from a transition between a fundamental state and several linked excited states.Actually,the solvated electron remains a particularly interesting probe of solvation in all kinds of environments,and therefore of their structure,and this strange chemical species will probably spark much more research.

    (Translated with permission from L’Act.Chim.,2021,460-461,p.17-22.)

    猜你喜歡
    薩克雷洛尼杰奎琳
    東印度公司與《名利場(chǎng)》中的帝國(guó)書(shū)寫(xiě)
    杰奎琳駕馭身體密碼
    特別健康(2018年4期)2018-07-03 00:38:24
    ENSAE學(xué)院巴黎薩克雷校區(qū)
    名利場(chǎng)意象分析之五味酒
    偷拍杰奎琳
    愛(ài)你(2016年17期)2016-11-26 07:45:45
    偷拍杰奎琳
    《名利場(chǎng)》與《純真年代》中的女性形象比較
    來(lái)自中國(guó)的小鴨子
    人人妻人人添人人爽欧美一区卜| 亚洲内射少妇av| kizo精华| 日本vs欧美在线观看视频 | 少妇丰满av| 内射极品少妇av片p| 精品少妇内射三级| 搡女人真爽免费视频火全软件| 波野结衣二区三区在线| 久久久a久久爽久久v久久| 免费在线观看成人毛片| 国产av国产精品国产| 成人影院久久| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品国产av蜜桃| 久久久久网色| 青春草亚洲视频在线观看| 天天操日日干夜夜撸| 99re6热这里在线精品视频| 国产精品一二三区在线看| 亚洲成人手机| 夫妻午夜视频| 桃花免费在线播放| 欧美精品人与动牲交sv欧美| 国产在线一区二区三区精| 91精品国产国语对白视频| 五月伊人婷婷丁香| 女性生殖器流出的白浆| 99热全是精品| 少妇裸体淫交视频免费看高清| 蜜臀久久99精品久久宅男| 国产日韩欧美在线精品| 亚洲四区av| 亚洲av.av天堂| 久久99一区二区三区| 人妻 亚洲 视频| 啦啦啦视频在线资源免费观看| 最新中文字幕久久久久| 成人亚洲欧美一区二区av| 精品人妻一区二区三区麻豆| 国产精品嫩草影院av在线观看| 午夜激情久久久久久久| 少妇的逼水好多| 色视频www国产| 熟女人妻精品中文字幕| 2021少妇久久久久久久久久久| 久久人人爽av亚洲精品天堂| 黑人高潮一二区| 一本—道久久a久久精品蜜桃钙片| 国产真实伦视频高清在线观看| 亚洲精品乱码久久久久久按摩| 欧美xxⅹ黑人| 永久免费av网站大全| 寂寞人妻少妇视频99o| h日本视频在线播放| 三级国产精品片| 男男h啪啪无遮挡| 免费大片18禁| 国产精品三级大全| www.色视频.com| 欧美激情极品国产一区二区三区 | 成年av动漫网址| 免费黄色在线免费观看| 日韩欧美精品免费久久| 亚洲综合精品二区| 一二三四中文在线观看免费高清| 久久影院123| 大陆偷拍与自拍| 久久精品熟女亚洲av麻豆精品| 天堂俺去俺来也www色官网| 毛片一级片免费看久久久久| 精品午夜福利在线看| 蜜臀久久99精品久久宅男| 亚洲av二区三区四区| 久久国产精品男人的天堂亚洲 | 成人免费观看视频高清| 黄色欧美视频在线观看| 日本黄色片子视频| 最后的刺客免费高清国语| 2018国产大陆天天弄谢| 最新的欧美精品一区二区| 国产成人精品久久久久久| 秋霞在线观看毛片| av女优亚洲男人天堂| 欧美日韩av久久| 国产精品99久久99久久久不卡 | 日韩精品免费视频一区二区三区 | 十八禁网站网址无遮挡 | 久久久久人妻精品一区果冻| 欧美日韩在线观看h| 日韩av不卡免费在线播放| 这个男人来自地球电影免费观看 | 国产亚洲最大av| 日韩av免费高清视频| 草草在线视频免费看| 男女免费视频国产| 少妇被粗大的猛进出69影院 | 久久婷婷青草| 蜜桃久久精品国产亚洲av| 国产精品久久久久久精品电影小说| 精品少妇久久久久久888优播| 丰满人妻一区二区三区视频av| 国产黄频视频在线观看| 免费观看在线日韩| 99国产精品免费福利视频| 一个人免费看片子| 国产精品伦人一区二区| 国产精品嫩草影院av在线观看| 日本av手机在线免费观看| 99久久中文字幕三级久久日本| 亚洲真实伦在线观看| 三级经典国产精品| 99久久精品一区二区三区| 在线观看免费视频网站a站| 人妻 亚洲 视频| 国产毛片在线视频| 日本黄色日本黄色录像| 黄色一级大片看看| 亚洲av二区三区四区| 18+在线观看网站| 男人添女人高潮全过程视频| 免费少妇av软件| 日韩欧美一区视频在线观看 | 少妇人妻久久综合中文| 亚洲第一区二区三区不卡| 日韩熟女老妇一区二区性免费视频| 精品少妇黑人巨大在线播放| 精品人妻一区二区三区麻豆| 又黄又爽又刺激的免费视频.| 丝袜喷水一区| 美女中出高潮动态图| 亚洲人成网站在线观看播放| 婷婷色av中文字幕| 中文乱码字字幕精品一区二区三区| 日日摸夜夜添夜夜爱| 搡老乐熟女国产| 亚洲一级一片aⅴ在线观看| 日本av免费视频播放| 99视频精品全部免费 在线| videos熟女内射| 欧美 日韩 精品 国产| 最近的中文字幕免费完整| 99久国产av精品国产电影| 一二三四中文在线观看免费高清| 亚洲欧洲精品一区二区精品久久久 | 内射极品少妇av片p| 欧美精品高潮呻吟av久久| 欧美3d第一页| 伊人久久国产一区二区| 成人综合一区亚洲| 80岁老熟妇乱子伦牲交| 欧美老熟妇乱子伦牲交| .国产精品久久| 国产女主播在线喷水免费视频网站| 三级经典国产精品| 性高湖久久久久久久久免费观看| 成人亚洲欧美一区二区av| 男女免费视频国产| 日韩一本色道免费dvd| 99视频精品全部免费 在线| 日本黄大片高清| 免费高清在线观看视频在线观看| 久久人妻熟女aⅴ| 一区二区三区精品91| 国产一区二区三区av在线| 最新中文字幕久久久久| 一边亲一边摸免费视频| 国产高清有码在线观看视频| 男人和女人高潮做爰伦理| 国产中年淑女户外野战色| 亚洲精品国产av成人精品| 大片免费播放器 马上看| 久久6这里有精品| 色视频在线一区二区三区| 久久久久人妻精品一区果冻| 一级毛片电影观看| 精品久久国产蜜桃| 中文精品一卡2卡3卡4更新| av免费在线看不卡| 最新中文字幕久久久久| 免费观看a级毛片全部| 只有这里有精品99| 婷婷色综合大香蕉| 大码成人一级视频| 综合色丁香网| 在线 av 中文字幕| 女的被弄到高潮叫床怎么办| 国产日韩欧美亚洲二区| 尾随美女入室| 你懂的网址亚洲精品在线观看| 全区人妻精品视频| 欧美精品人与动牲交sv欧美| 看非洲黑人一级黄片| 久久人人爽人人爽人人片va| 色视频在线一区二区三区| 丰满少妇做爰视频| 嫩草影院入口| 国产中年淑女户外野战色| 精品亚洲成a人片在线观看| 亚洲图色成人| 欧美精品高潮呻吟av久久| 国产伦在线观看视频一区| 你懂的网址亚洲精品在线观看| 国产精品福利在线免费观看| 少妇的逼好多水| 天美传媒精品一区二区| 免费不卡的大黄色大毛片视频在线观看| 亚洲av成人精品一二三区| 99热国产这里只有精品6| 视频区图区小说| 日韩制服骚丝袜av| 中国三级夫妇交换| 国产男人的电影天堂91| 亚洲一级一片aⅴ在线观看| 日韩中文字幕视频在线看片| 免费不卡的大黄色大毛片视频在线观看| 最近最新中文字幕免费大全7| 亚州av有码| 一级a做视频免费观看| 欧美另类一区| 久久人人爽av亚洲精品天堂| 观看美女的网站| 午夜福利视频精品| 女性被躁到高潮视频| 国语对白做爰xxxⅹ性视频网站| 99热全是精品| a级一级毛片免费在线观看| 精品国产露脸久久av麻豆| 国产精品福利在线免费观看| 亚洲国产av新网站| 搡老乐熟女国产| 一本一本综合久久| 亚洲av在线观看美女高潮| 老女人水多毛片| 国产一区有黄有色的免费视频| 久久婷婷青草| 色网站视频免费| 日本午夜av视频| 一级a做视频免费观看| 亚洲精品国产成人久久av| 毛片一级片免费看久久久久| 韩国av在线不卡| 国产精品久久久久久精品古装| 一级爰片在线观看| 看免费成人av毛片| a级毛片在线看网站| av免费在线看不卡| 亚洲欧洲日产国产| 亚洲欧美清纯卡通| 国产精品久久久久久精品古装| 特大巨黑吊av在线直播| 亚洲美女搞黄在线观看| 99热这里只有是精品50| 久久这里有精品视频免费| 亚洲性久久影院| 黄色日韩在线| 99视频精品全部免费 在线| 欧美精品人与动牲交sv欧美| 免费人妻精品一区二区三区视频| 日韩中字成人| 大码成人一级视频| 中国国产av一级| 亚洲高清免费不卡视频| 在线 av 中文字幕| 性色av一级| 中文字幕人妻熟人妻熟丝袜美| 午夜影院在线不卡| 午夜福利,免费看| 国产高清不卡午夜福利| 午夜福利网站1000一区二区三区| 成人午夜精彩视频在线观看| 国产在线免费精品| 精品国产露脸久久av麻豆| 日韩av在线免费看完整版不卡| 日韩三级伦理在线观看| 嫩草影院入口| 极品教师在线视频| 国产成人精品婷婷| 国国产精品蜜臀av免费| 中文字幕av电影在线播放| 性色av一级| 国产成人一区二区在线| 亚洲精品视频女| 91久久精品国产一区二区三区| 2021少妇久久久久久久久久久| 国产精品伦人一区二区| 国产成人午夜福利电影在线观看| 91久久精品电影网| 国产亚洲午夜精品一区二区久久| 久久精品久久精品一区二区三区| 久久久久精品性色| 久久久a久久爽久久v久久| 美女脱内裤让男人舔精品视频| 久久久久精品久久久久真实原创| 国产日韩一区二区三区精品不卡 | 亚洲精品国产av成人精品| 久久99热这里只频精品6学生| 高清av免费在线| 成人黄色视频免费在线看| 纵有疾风起免费观看全集完整版| 日本黄色日本黄色录像| 青春草视频在线免费观看| 久久久久久久国产电影| 97精品久久久久久久久久精品| 欧美日韩国产mv在线观看视频| 一级二级三级毛片免费看| 国产精品免费大片| 一本色道久久久久久精品综合| 精品国产乱码久久久久久小说| 午夜日本视频在线| 欧美三级亚洲精品| .国产精品久久| 精品酒店卫生间| 亚洲一区二区三区欧美精品| 七月丁香在线播放| 欧美日韩视频高清一区二区三区二| 女性被躁到高潮视频| 自线自在国产av| 亚洲性久久影院| av网站免费在线观看视频| 色婷婷av一区二区三区视频| 国产精品女同一区二区软件| 亚洲精品成人av观看孕妇| 国产成人精品一,二区| 少妇高潮的动态图| 又大又黄又爽视频免费| videossex国产| 国产亚洲av片在线观看秒播厂| 熟女电影av网| 五月玫瑰六月丁香| 免费观看的影片在线观看| 精品一区二区三卡| 日本黄大片高清| 2018国产大陆天天弄谢| 成人无遮挡网站| 高清毛片免费看| 在线播放无遮挡| 欧美精品一区二区免费开放| 日本av手机在线免费观看| 久久久久久久国产电影| 免费av不卡在线播放| 哪个播放器可以免费观看大片| 午夜免费鲁丝| 国产欧美日韩一区二区三区在线 | 国产亚洲av片在线观看秒播厂| 波野结衣二区三区在线| 99久久精品热视频| 欧美日韩国产mv在线观看视频| 观看免费一级毛片| 全区人妻精品视频| 99久久精品热视频| 日日爽夜夜爽网站| 国产精品99久久99久久久不卡 | 久久免费观看电影| 国产欧美另类精品又又久久亚洲欧美| 嫩草影院入口| 国产91av在线免费观看| 日韩成人伦理影院| 亚洲一区二区三区欧美精品| 久久久国产一区二区| 2021少妇久久久久久久久久久| 97在线人人人人妻| 人人妻人人澡人人爽人人夜夜| 九九在线视频观看精品| 国产极品天堂在线| 一边亲一边摸免费视频| 大香蕉97超碰在线| 亚洲成人一二三区av| 国产色爽女视频免费观看| 99re6热这里在线精品视频| 免费观看av网站的网址| 久久午夜综合久久蜜桃| 晚上一个人看的免费电影| 久久久久久久久久人人人人人人| 爱豆传媒免费全集在线观看| av女优亚洲男人天堂| 日韩在线高清观看一区二区三区| 男人添女人高潮全过程视频| 夫妻性生交免费视频一级片| 国产亚洲91精品色在线| 国内精品宾馆在线| 精品人妻一区二区三区麻豆| 99视频精品全部免费 在线| 自拍欧美九色日韩亚洲蝌蚪91 | 免费av不卡在线播放| 五月玫瑰六月丁香| 国产精品一二三区在线看| 国产毛片在线视频| 欧美日韩在线观看h| 久久国产亚洲av麻豆专区| 国产日韩欧美在线精品| 成人毛片a级毛片在线播放| 中国三级夫妇交换| 日本欧美国产在线视频| 亚洲精华国产精华液的使用体验| 日本午夜av视频| 国产在视频线精品| 国产精品国产av在线观看| 午夜av观看不卡| 日本爱情动作片www.在线观看| 建设人人有责人人尽责人人享有的| 日韩在线高清观看一区二区三区| 国产黄色免费在线视频| 国产视频首页在线观看| 欧美xxxx性猛交bbbb| 日韩在线高清观看一区二区三区| 精华霜和精华液先用哪个| 色视频在线一区二区三区| 妹子高潮喷水视频| 国产男女超爽视频在线观看| 免费久久久久久久精品成人欧美视频 | 久久国产亚洲av麻豆专区| 国产高清三级在线| 日日啪夜夜撸| 丰满少妇做爰视频| 日韩精品免费视频一区二区三区 | 啦啦啦在线观看免费高清www| 麻豆精品久久久久久蜜桃| 看十八女毛片水多多多| 国产精品三级大全| 亚洲国产欧美日韩在线播放 | 国产男女内射视频| 国产精品久久久久久久久免| 你懂的网址亚洲精品在线观看| 色哟哟·www| 国产日韩欧美视频二区| 日韩成人伦理影院| www.色视频.com| 51国产日韩欧美| 女性生殖器流出的白浆| 免费久久久久久久精品成人欧美视频 | 久久综合国产亚洲精品| 韩国高清视频一区二区三区| 免费看光身美女| 亚洲怡红院男人天堂| 卡戴珊不雅视频在线播放| 久久久久久久久久久丰满| 免费观看av网站的网址| 午夜久久久在线观看| 久久人人爽人人片av| 午夜免费男女啪啪视频观看| 国产一区二区三区av在线| 高清午夜精品一区二区三区| 少妇人妻 视频| 狂野欧美激情性bbbbbb| 久久久久久久久久久免费av| 少妇的逼好多水| 99久久精品国产国产毛片| 日日啪夜夜爽| 女人久久www免费人成看片| 看非洲黑人一级黄片| 国产成人免费无遮挡视频| 欧美丝袜亚洲另类| 99国产精品免费福利视频| 欧美精品人与动牲交sv欧美| 99热网站在线观看| 亚洲精品久久午夜乱码| 欧美3d第一页| 日韩,欧美,国产一区二区三区| 国产伦精品一区二区三区视频9| 插阴视频在线观看视频| videos熟女内射| 伊人久久精品亚洲午夜| 91久久精品国产一区二区三区| 久久久久久久大尺度免费视频| 两个人的视频大全免费| 国产综合精华液| 国产精品麻豆人妻色哟哟久久| 在线观看免费日韩欧美大片 | 欧美国产精品一级二级三级 | 人人妻人人澡人人看| 中文乱码字字幕精品一区二区三区| 人人妻人人看人人澡| 又大又黄又爽视频免费| 女性被躁到高潮视频| 一个人看视频在线观看www免费| 少妇被粗大猛烈的视频| 春色校园在线视频观看| 熟女av电影| 一级毛片 在线播放| 一级黄片播放器| 人人妻人人澡人人爽人人夜夜| 国产精品三级大全| 精品99又大又爽又粗少妇毛片| 成人特级av手机在线观看| a级毛色黄片| 高清午夜精品一区二区三区| 搡老乐熟女国产| 亚洲精品一区蜜桃| 22中文网久久字幕| 国产精品久久久久久av不卡| 久久这里有精品视频免费| 国产欧美日韩综合在线一区二区 | 国产在线一区二区三区精| 亚洲av中文av极速乱| 亚洲高清免费不卡视频| a级一级毛片免费在线观看| 哪个播放器可以免费观看大片| 曰老女人黄片| 欧美最新免费一区二区三区| 校园人妻丝袜中文字幕| 赤兔流量卡办理| 亚州av有码| 久久精品国产鲁丝片午夜精品| 国产 一区精品| 少妇熟女欧美另类| 日本黄大片高清| 国产综合精华液| 久久这里有精品视频免费| 久久久久精品久久久久真实原创| 99热6这里只有精品| 日本-黄色视频高清免费观看| 免费观看无遮挡的男女| 日韩成人伦理影院| 又粗又硬又长又爽又黄的视频| 精品亚洲乱码少妇综合久久| 日本色播在线视频| 色婷婷久久久亚洲欧美| 日韩,欧美,国产一区二区三区| 日韩av免费高清视频| 久久精品国产鲁丝片午夜精品| 国产一区二区三区av在线| 成年人午夜在线观看视频| 色网站视频免费| 亚洲欧美日韩卡通动漫| 免费看av在线观看网站| 看十八女毛片水多多多| 国产精品免费大片| 新久久久久国产一级毛片| 日本av免费视频播放| 丝袜脚勾引网站| 亚洲成人av在线免费| 久久99热这里只频精品6学生| 18+在线观看网站| 日韩av免费高清视频| 日日啪夜夜爽| 久久精品久久久久久噜噜老黄| 香蕉精品网在线| 午夜日本视频在线| 亚洲人与动物交配视频| 中文天堂在线官网| 日韩亚洲欧美综合| 肉色欧美久久久久久久蜜桃| 性色avwww在线观看| 伦理电影大哥的女人| 亚洲,一卡二卡三卡| 精品少妇黑人巨大在线播放| 国产日韩一区二区三区精品不卡 | 亚洲高清免费不卡视频| 一个人看视频在线观看www免费| 久久ye,这里只有精品| 两个人免费观看高清视频 | 丝袜喷水一区| 女人精品久久久久毛片| 极品少妇高潮喷水抽搐| 日韩制服骚丝袜av| 伊人久久国产一区二区| 日韩伦理黄色片| 免费看日本二区| 国产精品福利在线免费观看| 青春草国产在线视频| 午夜日本视频在线| 99热6这里只有精品| 伊人亚洲综合成人网| 国内精品宾馆在线| av.在线天堂| av不卡在线播放| 国产av精品麻豆| 国语对白做爰xxxⅹ性视频网站| 国产白丝娇喘喷水9色精品| 高清不卡的av网站| 国产在线视频一区二区| 在线观看美女被高潮喷水网站| 国产午夜精品一二区理论片| 一级片'在线观看视频| 亚洲国产毛片av蜜桃av| 九九久久精品国产亚洲av麻豆| 国产欧美日韩一区二区三区在线 | 日本黄大片高清| 中文字幕精品免费在线观看视频 | 亚洲色图综合在线观看| 高清视频免费观看一区二区| 成人影院久久| 人人妻人人看人人澡| 黑人猛操日本美女一级片| 日韩精品免费视频一区二区三区 | 好男人视频免费观看在线| 岛国毛片在线播放| 国产高清有码在线观看视频| 内射极品少妇av片p| 国产综合精华液| 人人妻人人爽人人添夜夜欢视频 | 日韩亚洲欧美综合| 夜夜看夜夜爽夜夜摸| 插阴视频在线观看视频| 一级毛片黄色毛片免费观看视频| 免费观看性生交大片5| 国产日韩欧美在线精品| 桃花免费在线播放| 国产精品麻豆人妻色哟哟久久| 国产亚洲91精品色在线| 日韩欧美一区视频在线观看 | 亚洲丝袜综合中文字幕| 黑人猛操日本美女一级片| 久久亚洲国产成人精品v| 欧美日韩视频高清一区二区三区二| 国产探花极品一区二区| 91精品伊人久久大香线蕉| 亚洲电影在线观看av| 亚洲人与动物交配视频| 国产精品成人在线| 午夜精品国产一区二区电影| 亚洲伊人久久精品综合| 国产精品麻豆人妻色哟哟久久| 日本猛色少妇xxxxx猛交久久|