齊兆輝, 劉勇, 劉若炎
1 中國科學院國家空間科學中心 空間天氣學國家重點實驗室, 北京 100190 2 中國科學院大學, 北京 100049
太陽風是從太陽表面源源不斷向外流出的超音速等離子體流,它主要由質子、阿爾法離子和重離子等元素構成,也是影響空間天氣的重要因素之一(Parker, 1958; Cranmer et al., 2017).早期的研究工作根據速度把太陽風大致分為快風(VP>550 km·s-1)和慢風(VP<450 km·s-1)兩種(McComas et al., 2000; Schwenn, 2006).進一步的研究表明,除了速度之外,快風具有較低的質子密度、較高的質子溫度和氦氫比以及較低的電子溫度,慢風的參數特征則正好相反(Xu and Borovsky, 2015; Borovsky, 2016; Zhao et al., 2017; Verscharen et al., 2019).結合太陽風參數和源區(qū)位置,研究發(fā)現快慢風的起源是不同的,其中快太陽風起源于具有開放磁力線的極區(qū)冕洞區(qū)域(Zirker, 1977; Antonucci, 2000),而慢太陽風則起源于以閉合磁力線為主的盔冕流區(qū)域附近(Borrini et al., 1981; Crooker et al., 1996; Stakhiv et al., 2015; Abbo et al., 2016; Ko et al., 2018).快慢風之間的區(qū)分標準有時則比較模糊,研究發(fā)現即使在速度較低的慢太陽風中,也存在一些成分更接近快太陽風的慢風,因此對太陽風分類的時候要結合更多信息(Zhao et al., 2009; Liu et al., 2020).
除了等離子體和成分信息的差異外,太陽風中的阿爾芬度也是區(qū)分快慢太陽風的重要特征.太陽風中存在大量擾動,擾動一方面是由多種波模混合在一起形成的,另一方面是由于湍流和不穩(wěn)定性等造成的,阿爾芬度則是用來衡量太陽風中的擾動是否主要為阿爾芬擾動,快太陽風有較高的阿爾芬度,而慢太陽風則通常較低(Roberts et al., 1987b; Tu and Marsch, 1995).高阿爾芬度慢風是一類特殊的太陽風,有一些研究者發(fā)現,除了速度慢之外,這種風通常還具有和快風類似的成分特征,而且它可能起源于低緯度小冕洞區(qū)域(D′Amicis and Bruno, 2015; D′Amicis et al., 2018; Wang et al., 2019; Stansby et al., 2020).高阿爾芬度慢風在地球附近出現的幾率低于在太陽附近,而且出現的幾率受到太陽活動的影響,太陽活動高年的低速流出現高阿爾芬性的概率比低年的低速流要高一些(Roberts et al., 1987a; Bruno et al., 2006; Wang et al., 2019; D′Amicis et al., 2020).Kasper等(2019)利用PSP第一軌道近日點附近的數據探測到一段起源于小冕洞區(qū)域的高阿爾芬慢風,這個觀測也支持了太陽附近高阿爾芬度風起源于小冕洞的觀點.不過Huang等(2020)最近利用WIND衛(wèi)星的統計研究發(fā)現,1 AU附近處的高阿爾芬度慢太陽風的氦氫比和其他慢風的相比并沒有顯著的差別,因此他們認為高阿爾芬度的慢風也可能有不同的起源,和高阿爾芬度慢風起源于小冕洞區(qū)域的觀點是不一致的.
這些研究者都假定在傳播過程中阿爾芬波和它一起出發(fā)的太陽風等離子體具有相同的源區(qū),并在傳播中不會變化,就像是綁定在一起一樣(D′Amicis and Bruno, 2015).早期關于阿爾芬波在太陽風中的傳播研究認為阿爾芬擾動在從太陽表面向外傳播的過程中,阿爾芬擾動不一定沿著彎曲磁力線的方向傳播(V?lk and Aplers, 1973; Richter and Olbers, 1974; Hollweg, 1975).那么阿爾芬波一定和等離子是綁定的嗎?Liu等(2020)最近報道了一個非常典型的小冕洞風多衛(wèi)星聯合觀測事例.這段小冕洞風位于太陽活動極小年期間地球附近的共轉相互作用區(qū)(CIR)內流界面(SI)前的高密度慢風中,除了速度不高外,它還具有極低的質子密度、增高的質子溫度和氦氫比、降低的低電子溫度等快太陽風特征,并且他們利用二次回溯的方法確定該段太陽風的源區(qū)為中低緯度活動區(qū)附近的小冕洞區(qū)域(Neugebauer et al., 2002; Fu et al., 2015).既然起源于具有開放磁力線的小冕洞區(qū)域且具有快風的特征,我們認為這段小冕洞風應該具有高阿爾芬度特性,不過經過計算我們發(fā)現這段小冕洞風并沒有較高的阿爾芬度.那么是什么原因造成慢風中小冕洞風阿爾芬度降低的呢?我們認為是由于阿爾芬波在太陽風傳播過程中并不一定和等離子綁定造成的.
為了進一步驗證這個假設,我們利用一個簡單的太陽風模型對赤道小冕洞發(fā)出的等離子體和阿爾芬波動的傳輸進行了模擬,并對模擬結果進行了討論.文章的安排如下,在第二節(jié)中,我們給出了Liu等(2020)報道的特殊事件的阿爾芬度的計算結果.第三節(jié)給出了模型的描述以及模擬結果.第四節(jié)對結果進行的分析和討論.最后在第五小節(jié)為文章的結論.
圖1給出了1 AU附近WIND衛(wèi)星在2007年4月觀測到的小冕洞風事例(Liu et al., 2020).等離子體數據來自3D Plasma and Energetic Particles Experiment(3DP)儀器(Lin et al., 1995),分辨率為3 s;磁場數據來自WIND衛(wèi)星的Magnetic Field Investigation (MFI)儀器(Lepping et al., 1995),分辨率為3 s.從上到下分別是質子數密度(Np)、太陽風速度(Vp)、質子溫度(Tp)、氦氫比(Nα/Np)、歸一化交叉螺度(σC)和歸一化剩余能量(σR),紅色區(qū)域標識出被觀測到的小冕洞風部分,黑色垂實線為流界面(Stream Interface, SI)的位置,流界面為快慢風相互作用的界面(Jian et al., 2006; Simunac et al., 2009).這個小冕洞風最顯著的特點是質子密度非常低(低于未壓縮的慢風),除了速度之外,質子溫度和氦氫比也和流界面后的快風非常契合,Liu等(2020)對這段太陽風氧離子和碳離子的電荷態(tài)比值等成分信息進行了詳細的分析,這里不再贅述,他們發(fā)現小冕洞風具有和冕洞起源的太陽風相似的成分特征.
圖1 WIND觀測到的小冕洞事例,紅色區(qū)域為小冕洞風的位置,黑色垂直實線為流界面的位置(SI)從上到下分別為:質子密度Np(cm-3),質子速度Vp(km·s-1),質子溫度Tp(eV),氦氫比(Nα/Np),阿爾芬度歸一化磁螺度σC和歸一化剩余能量σR.紅色水平虛線為高阿爾芬度的輔助線σC=±0.8,σR=0.Fig.1 The small coronal hole wind observed by WIND marked by red shaded region while the SI marked by vertical solid black lineFrom top to bottom panels are Np(cm-3), Vp(km·s-1), Tp(eV), Nα/Np, σC and σR. Red horizontal dashed lines help to indicate high Alfvénicity period with criteria for σC=±0.8 and σR=0 respectively.
為了研究從太陽表面小冕洞區(qū)域同時出發(fā)的阿爾芬波和等離子體在傳播過程中是否會發(fā)生分離,我們構建了一個簡易太陽風模型.在這個模型中考慮了慢太陽風和小冕洞風,如圖2所示.
圖2 簡易太陽模型示意圖藍色曲線為源表面和太陽旋轉方向,黑色箭頭為小冕洞區(qū)域以及小冕洞發(fā)出的開放磁力線, 紅色曲線為阿爾芬波動, 小冕洞周圍是典型慢風.Fig.2 The cartoon illustration of the model in the ecliptic planeBlue curves are the source surface (2.5 RS) and solar rotation direction. The open field (black arrow) and Alfvén wave (red curve) are emitted from a small coronal hole which surrounded by the typical slow wind.
為了計算方便,假定所有方向和位置上太陽風的速度都是沿著徑向而且大小相同.我們還假定太陽風的密度只隨日心距r變化,如下:
(1)
其中Np0為源表面r0距離處的密度值.這里我們忽略了快太陽風的貢獻,也忽略了太陽附近可能存在的太陽風的切向速度.另外實際探測到的小冕洞風和周圍典型慢風的等離子體和成分特性存在差異,但是我們發(fā)現這些差異不會影響等離子體和阿爾芬波分離的結果,為了方便計算,我們假設在實際的計算中小冕洞風和周圍典型慢風具有一致的等離子體特性,但是在考慮問題的時候小冕洞風和周圍慢風等離子體和成分特性是不同的.
磁場滿足理想帕克螺旋線模型,即磁場在源表面處只有徑向分量,而在源表面之外的行星際中具有徑向和切向兩個分量(Parker, 1958; Owens and Forsyth, 2013).由于磁通量守恒,徑向磁場大致滿足距離平方反比關系,而切向磁場與徑向磁場的比值等于切向速度和徑向速度的比值,負號表示與太陽自轉方向相反,即
(2)
Bφ=-BrΩr/Vpr,
(3)
其中Br0為源表面r0距離處的徑向磁場,Vpr為質子速度的徑向分量,Br為磁場徑向分量,Bφ為磁場切向分量.從太陽源表面出發(fā)的典型慢太陽風中沒有阿爾芬波,阿爾芬波只從小冕洞區(qū)域出發(fā),沿著磁力線向外傳播.Wang和Panasenco(2019)對太陽活動高年活動區(qū)附近的中低緯度小冕洞的極紫外(EUV)成像進行了研究,發(fā)現由于分辨率和視場效應等因素的影響,小冕洞的準確位置很難確定,但是統計發(fā)現它們的角寬度大約為3°~10°,為了更清楚地顯示,模型中小冕洞在源表面處的方位角寬度選為10°.
(4)
(5)
根據速度我們可以求出阿爾芬波在太陽風中的傳播(Alfvén, 1942; Hollweg, 1975; Müller et al., 2020).
經過校準系統測量得到接收通道頻率響應后,結合式(6)~(8)可求解接收通道特性對理想信號測距的影響,考慮到每顆衛(wèi)星偽碼特性并不完全一致,遍歷仿真所有衛(wèi)星的理想偽碼求解其S曲線過零點偏差,得到最大測距偏差如下表所示:
由于模擬的是具有相同等離子體特征的慢風和小冕洞風,因此可以利用1 AU處典型慢風的統計結果作為輸入參量代入模型進行計算.根據Cranmer等(2017)工作中對慢太陽風的統計結果,我們選取了合適的參數,其中Np(1 AU) = 12.5 cm-3,Vr(1 AU) =350.0 km·s-1,由于Cranmer等(2017)工作中沒有給出磁場的值,我們對該事例中的慢風的徑向磁場取平均值Br(1 AU)=10.0 nT.假設小冕洞連續(xù)釋放等離子體和阿爾芬波并且持續(xù)了10 h,之后小冕洞消失.小冕洞的延續(xù)時間沒有對應的研究資料,根據Liu等(2020)對小冕洞風的空間分布可以推測出這個小冕洞可能存在的時間在5 h以上,因此10 h是一個合理的選擇.我們以0.5 h為時間間隔,把以上輸入參數代入模型進行計算得到以下模擬結果.
圖3為t=10.5 h的模擬結果,由于阿爾芬波傳播的速度比等離子體速度快,因此阿爾芬波動分布的區(qū)域(綠色區(qū)域)和從同時從小冕洞出發(fā)的等離子體(紫色區(qū)域)出現了非常明顯的分離.最早出發(fā)的阿爾芬波已經傳到接近55.5RS附近,而最早出發(fā)的等離子體才剛剛抵達21.5RS附近.小冕洞等離子體和阿爾芬波部分分離會形成低阿爾芬度冕洞風、高阿爾芬典型慢風和高阿爾芬冕洞風三個類型.
圖3 模型在t=10.5 h的模擬結果圖中紫色區(qū)域代表小冕洞發(fā)出的等離子體,綠色區(qū)域代表小冕洞發(fā)出的阿爾芬波,它們重疊的部分用格子圖案來表示.虛線圓為35.8 RS的區(qū)域,右下角為該模型所用到的初始參數(1 AU處典型慢風).Fig.3 Model result at t=10.5 hThe purple region denotes small coronal hole plasma, the green region denotes Alfvén wave, the overlapped region shaded in grid. The dashed circle indicates the 35.8 RS, the initial parameter for the model listed at bottom right (typical slow wind at 1 AU).
圖4a表示在t=12.0 h時從小冕洞同時出發(fā)的等離子體和阿爾芬波動正好發(fā)生完全分離發(fā)生,隨后在傳播中等離子體和阿爾芬波之間的距離會逐漸增大.圖4b為在t=116.5 h時低阿爾芬度小冕洞等離子體(紫色區(qū)域)到達1 AU附近,此時具有冕洞特征的慢風出現在典型慢風的中間,并且它的阿爾芬特性不高,這就解釋了Liu等(2020)報導的小冕洞風被慢風包裹著且阿爾芬度不高的現象.
圖4 模型在t=12.0 h(a)和t=116.5 h(b)的模擬結果,圖中格式和圖3一致Fig.4 Model result at (a) t=12.0 h and (b) t=116.5 h. Other format are same as Fig.3
Kasper等(2019)利用帕克號太陽探針(PSP)在第一軌道的近日點附近(35.8RS)探測到起源于小冕洞區(qū)域的高阿爾芬度慢風,且高阿爾芬度區(qū)間出現密度降低的特征,這個現象表明這段冕洞起源的等離子體和阿爾芬波在傳播至35.8RS時重疊的部分被衛(wèi)星探測到.我們注意到和圖3利用1 AU典型慢風的模擬結果表明在35.8RS時等離子體和阿爾芬波已經完全分離,我們認為造成的結果不一致的原因可能是參數不同.為了驗證我們的想法,我們選取PSP衛(wèi)星在近日點,35.8RS附近(2018-11-06/11∶39∶47—2018-11-06/12∶59∶47)的太陽風數據的平均值作為新的輸入參數.其中密度和速度數據來自PSP的Solar Wind Electrons, Alphas, and Protons(SWEAP)儀器,分辨率為60 s(Kasper et al., 2016);磁場數據來自PSP的FIELDS儀器組,分辨率為60 s(Bale et al., 2016).最后得到模型的輸入參量為Np(35.8RS) = 321.7 cm-3,Vr(35.8RS)=320.0 km·s-1,Br(35.8RS)=87.9 nT,小冕洞仍然持續(xù)10 h,代入模型得到了太陽附近小冕洞風和阿爾芬波的模擬結果,如圖5所示.
圖5 模型在t=20.5 h的結果,輸入參數為35.8 RS附近的太陽風平均值.其他格式同圖3Fig.5 Model result at t=20.5 h, the initial parameter is the average properties of the solar wind at 35.8 RS. Other format are same as Fig.3
從圖5中我們可以看到在t=20.5 h的時候,它們近日點時還沒有完全分離(t=24 h時完全分離),此時存在重疊區(qū)域,如果衛(wèi)星正好穿過重疊區(qū)域,就可以觀測到高阿爾芬度低密度慢風,這個結果就解釋了Kasper等(2019)的探測結果.但是我們也發(fā)現,在該輸入參數下低密度小冕洞等離子體和阿爾芬波重疊的面積非常小,這也會導致衛(wèi)星也有很大的概率觀測到低阿爾芬度的冕洞風或者高阿爾芬度的普通慢風.然而在公開的文獻中并沒有發(fā)現這樣的事例被報道,還需要進一步研究.
Huang等(2020)利用WIND衛(wèi)星數據對‘2018-11-01/06∶00 UT’到‘2018-11-04/01∶00 UT’時間范圍內慢風的阿爾芬度、氦氫比和溫度各向異性進行統計分析,結果表明高阿爾芬度慢太陽風的氦氫比與低阿爾芬度的慢風的沒有顯著的區(qū)別,由于氦氫比可以用來判斷太陽風的起源,他們得出高阿爾芬慢風可能有多種起源來解釋這一統計結果.
這個結果也可以利用等離子體和阿爾芬波分離的來解釋.我們對該段時間內WIND衛(wèi)星探測到的慢風(<450 km·s-1)的密度、速度和徑向磁場平均值進行計算,得到Np(1 AU)=7.9 cm-3,Vr(1 AU) = 360.7 km·s-1,Br(1 AU) = 3.8 nT,由于這段太陽風也被太陽附近近日點處的PSP先觀測到,因此我們假設這些風是起源于小冕洞區(qū)域,并且小冕洞的持續(xù)時間為10 h,把這些輸入參數代入到模型中,模擬結果如圖6所示.
圖6a為t=18.0 h時等離子和阿爾芬波在近日點附近剛剛分離,因此在傳播至1 AU的時候,它們已經完全分離.圖6b為t=95.0 h時高阿爾芬慢風(綠色區(qū)域所示)被地球附近的衛(wèi)星探測到,由于都是普通的慢風,因此它們的氦氫比也沒有明顯的差異,這一點也解釋了Huang等(2020)的統計結果,其中的高阿爾芬度慢風在等離子體密度、溫度各項異性和氦氫比都沒有顯著的特點.
圖6 模型在t=18.0 h(a)和t=95.0 h(b)的模擬結果圖中格式和圖3一致.模型輸入參數為WIND衛(wèi)星在2018-11-01/06∶00 UT—2018-11-04/01∶00 UT時間內的慢風的平均參數.Fig.6 Model result at (a) t=18.0 h and (b) t=95.0 hThe initial parameter is the average properties of the solar wind observed by WIND at 1AU during 2018-11-01/06∶00 UT—2018-11-04/01∶00 UT. Other format are same as Fig.3.
我們利用一個簡單的太陽風模型計算了慢太陽中,從一個小冕洞風同時發(fā)出的等離子和阿爾芬波動的在行星際空間中的傳播.計算結果顯示在傳播過程中,等離子體和波動發(fā)生了非常顯著的分離.這一結果解釋了Liu等(2020)最近的觀測事例中低密度慢風中阿爾芬度不高的現象,也解釋了黃佳等人對高阿爾芬度慢太陽風的統計結果.
為了計算方便對這個模型做了一些合理的近似假設,比如太陽風是理想太陽風,忽略了快風和慢風、慢風與小冕洞風、阿爾芬波和等離子體之間的相互作用,忽略了傳播中太陽風速度變化,利用幾何光學近似研究波動在太陽風中的傳播等等.這些近似可能會影響等離子體和波動分離的具體時間和分離距離的大小,但是不會改變他們分離這一結果.
由此我們得出了以下三點結論:
(1) 從小冕洞出發(fā)的慢太陽風等離子體在行星際傳播的過程中,會和同時出發(fā)的阿爾芬波分離.
(2) 在1AU處觀測到的成分,密度像快太陽風的小冕洞風并不一定具有高的阿爾芬度,因為同時出發(fā)的阿爾芬波傳輸到了其他區(qū)域.
(3) 高阿爾芬度慢風的成分和其他慢風沒有顯著區(qū)別.因為阿爾芬波并不和同時出發(fā)的等離子相互綁定.
關于PSP 在太陽附近的觀測結果需要在未來進一步研究.如果結合PSP,Solar Orbiter等衛(wèi)星計劃的觀測結果(Müller et al., 2020),證實在太陽不同距離上的阿爾芬度慢風在統計學上有顯著的區(qū)別,對分離的理論就是一個非常有用的支持.
致謝感謝NASA的WIND(SPDF/CDAWeb https:∥spdf.gsfc.nasa.gov/pub/data/wind/)和PSP(SPDF/CDAWeb https:∥spdf.gsfc.nasa.gov/pub/data/psp/)的數據.