• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interferometric sampling oscilloscopes for light waves

    2021-11-08 02:18:36Theodornsch
    關鍵詞:測量信號

    Theodor W.H?nsch

    (Max Planck Institute for Quantum Optics, Ludwig-Maximilian University, Munich, Germany)

    Abstract: With the rapid development of femtosecond laser technology and nonlinear optics at the beginning of this century, optical frequency comb technology has become an important precision frequency measurement technology.It connects the radio and optical frequency realm by inching through the vast frequency gap via the coherent relationship between their separated frequencies and phases, which has a significant application value in the fields of time-keeping and frequency standards, precision spectral metrology and constants measurement in fundamental physics.

    Keywords:optical frequency comb;single photon;Nobel prize in physics;precision spectroscopy

    Editor’s note: This paper was organized and translated by Professor Yong Ma and Professor Guangyu Wang of Chongqing University of Posts and Telecommunications, based on the academic presentation of Professor Theodor W.H?nsch on the 70th anniversary of Chongqing University of Posts and Telecommunications in October 2020.The paper was revised and authorized by Professor H?nsch for publication in this journal.Since 2015, Chongqing University of Posts and Telecommunications has established extensive academic exchanges and cooperation with the Nobel Prize Laboratory led by Professor H?nsch.

    編者按:本文由重慶郵電大學馬勇教授、王光宇教授,根據(jù)西奧多·W·漢希 于2020 年 10 月重慶郵電大學建校70周年慶典的學術報告整理、翻譯,并經(jīng)漢希教授修訂后授權本刊發(fā)表。重慶郵電大學從2015年開始和漢希教授領導的諾貝爾獎實驗室建立了廣泛的學術交流及合作。

    Visible light has approximately 500,000 billion oscillations per second.These sampling oscilloscopes create a new type of spectroscopy where the radiation emitted by complex molecules over a broad spectral range can be analyzed.This approach is based on the laser frequency comb, invented 20 years ago[1-6].This tool measures the optical frequencies of hundreds of thousands of terahertz.Further, it provides a phase-coherent link between the optical and radio frequency regions and offers a clockwork mechanism for optical atomic clocks, where the pendulum is formed by atoms or ions oscillating with the frequency of light.

    眾所周知,可見光每秒鐘振蕩500 000億次。光波的高速振蕩采樣可以實現(xiàn)一種新的光譜分析技術,能夠在很寬的光譜范圍內(nèi)對復雜分子的熒光信息進行分析,其核心技術是20年前發(fā)明的光頻率梳技術[1-6]。光頻率梳技術可用于測量頻率為104 THz的光學振蕩。它提供了光學和射頻區(qū)域之間的相位相干鏈接,并基于此技術制造光學原子鐘,其“鐘擺”由以光頻率振蕩的原子或離子形成。

    A frequency comb is explained in the time domain as follows.Fig.1 shows the spectrum of a laser that emits an ultrashort pulse.A broad spectrum is observed for ultrashort pulse, i.e., the shorter the pulse, the broader the spectrum.If two identical pulses are considered, instead of one, then they interfere and produce fringes in the spectrum.Interestingly, this is comparable to Young’s double-slit experiment, where two slits separated in space produce spatial interference fringes on the screen.Here two laser pulses separated in time produce interference fringes in the spectrum.The separation between two interference maxima precisely equals the inverse time interval between the two pulses.The further apart the two pulses, the closer the fringes become, resembling a comb.Notable, two pulses only can produce a frequency comb; however, with blunt teeth.

    Fig.1 Two pulses separated in time and their spectrum

    時域分析可以用來闡述光頻梳的性質(zhì)。圖1給出了激光器發(fā)射的超短脈沖的光譜。超短光脈沖的光譜很寬,且脈沖越短產(chǎn)生的光譜就越寬。在發(fā)射2個相同且性質(zhì)一致的脈沖時,脈沖之間會產(chǎn)生干涉。這種現(xiàn)象類似于楊氏的雙縫實驗,楊氏實驗中,光經(jīng)過2個在空間上分開的狹縫后會在空間屏幕上產(chǎn)生干涉條紋。2個時間分開的脈沖也會在光譜上產(chǎn)生干涉條紋。2個干涉條紋最大值之間的頻率間隔等于脈沖時間間隔的倒數(shù)。2個脈沖相距越遠,干涉條紋就越相互靠近。光譜干涉條紋的形狀類似于常見的梳子。2個時域脈沖就可以產(chǎn)生光頻梳,只是其“梳齒”不是很鋒利。

    Nevertheless, if a whole train of regular pulses, such as produced by a mode-locked femtosecond laser, is used rather than two pulses, then an interference pattern with sharp comb lines can be produced.The longer the interval between pulses, the sharper these lines become.Comb lines as sharp as continuous-wave radiation from a well-stabilized laser can be obtained with precisely controlled timing only.Any small random fluctuations in timing or phase will disrupt the spectrum.

    如果使用一整列規(guī)則脈沖,如鎖模飛秒激光器產(chǎn)生的脈沖,而不是2個脈沖,那么就可以產(chǎn)生具有尖銳梳狀線的干涉圖案。脈沖間隔時間越長,梳狀譜線會越尖銳,在精準時間控制下,其譜線堪比高穩(wěn)定激光器發(fā)出的連續(xù)波輻射對應的頻譜。在時間或相位上任何小的隨機波動都會破壞這種頻譜。

    This technical challenge can be overcome by different means, including electronic servo-controls, which can produce an octave-spanning comb.However, this was not anticipated by most experts.Although the principle of comb generation is simple, nobody expects these principles to produce an octave-spanning rainbow of colors., This rainbow is not an ordinary rainbow but consists of 100,000 to as many as 1 million sharp comb lines.

    時間控制技術可以通過不同的方法來實現(xiàn),包括可以產(chǎn)生八跨度光頻梳的電子伺服控制器。然而,大多數(shù)專家并沒有預料到,如此簡單的光頻梳生成原理,可以產(chǎn)生如彩虹似的跨越八度的光頻梳,且這種“彩虹”不是普通的彩虹,而是由10萬到100萬條鋒利的光頻梳譜線組成。

    The spacing between adjacent comb lines precisely equals the repetition frequency of the laser, measured using a cesium atomic clock[7].The entire comb can be slightly shifted using the carrier-envelope offset frequency, which depends on slips of the phase of the pulses.This carrier-envelope offset frequency can be easily measured using an octave-spanning comb.Then, the two radio frequencies act as the absolute optical frequency for each comb line.If the frequency of an unknown laser needs to be measured, an interference signal in the form of a beat node between the unknown and comb lines should be identified.Conversely, one comb line can be taken and locked electronically to a sharp optical transition in some atom or iron; thus, the repetition frequency can be related to the optical frequency.Essentially, an optical atomic clock works on this mechanism.

    相鄰梳狀光譜線之間的頻率間距非常精確地等于激光的重復頻率,其測量精度不亞于銫原子鐘[7]。整個光頻梳由于載波包絡截止頻率產(chǎn)生略微偏移,而載波包絡截止頻率取決于脈沖相位的斜率。該載波包絡截止頻率也可以很容易地通過使用倍頻八跨度梳進行測量。2個無線電頻率用于確定每條梳狀線的光頻率絕對值。通過測量未知譜線和光頻梳的頻譜線之間的差頻干涉信號來計算待測激光器的頻率。另一方面,光頻梳譜線可以用于鎖定某個原子或離子中非常尖銳的光學躍遷,從而使得激光器的重復頻率同該光頻率相關,得到一個光學原子鐘的“發(fā)條”。

    This spectroscopic tool has been particularly useful for high resolution and precision spectroscopy of atomic hydrogen[8-9].Atomic hydrogen exhibits a very sharp line corresponding to the 1S-2S transition that can be excited with an ultraviolet laser beam.For this, the frequency of the laser beam that excites the atoms needs to be measured.The accuracy was improved up to 15 decimal digits[10-11].The accuracy of the unit of time, i.e., second, defined in terms of the microwave cesium clock, is nearing the limits of what is possible with that technology.However, much greater precision is can be achieved with optical clocks in future.

    這種光譜工具對于氫原子的高分辨率和精密光譜學非常有用[8-9]。氫原子在1S-2S躍遷時有一條非常清晰的能級線,可以通過紫外激光束激發(fā)出來,故需要測量激發(fā)原子的激光束的頻率。同時,我們已經(jīng)將光頻梳的測量精度提高到1015,幾乎達到現(xiàn)在已知的根據(jù)微波銫鐘定義的單位時間—秒的精度極限[10-11]。未來,使用光學時鐘可以實現(xiàn)更高的精度。

    Why is this important? Because hydrogen is the simplest atom, its energy levels and transition frequencies can be calculated more accurately than other atoms using the sophisticated theory of quantum electrodynamics.

    為什么這很重要?因為氫是最簡單的原子,相對其他原子,我們可以使用復雜的量子電動力學理論比較準確地計算出氫的能級和躍遷頻率。

    Furthermore, validation of the theory is equally important.In particular, precision spectroscopy can be used to validate the theory.Based on this theory, fundamental constants, including the Rydberg constant and proton charge radius, which form cornerstones in the system of fundamental constants, can be obtained[12].However, an important question is whether these constants are constant or slowly change with time.For example, consider hydrogen and its antimatter anti-hydrogen.Are they precisely mirror images of each other? Are they precisely the same? Alternatively, is there any difference? Any difference would violate the standard model; thus, precision spectroscopy would allow searching for new physics.Perhaps, this may have been the motivation for the Nobel committee to award the physics Nobel Prize for high-resolution laser spectroscopy, including the frequency comb technique to the author and John L.Hall in 2005.Interestingly, Roy Glauber also received the Nobel Prize in the same year for his pioneering contributions to quantum optics[1-2].

    另一方面,如果該理論正確,那么可以通過光頻梳技術測量相關物理學基本常數(shù)的精確值。特別是構成了物理學基本常數(shù)系統(tǒng)基石的里德堡常數(shù)和質(zhì)子電荷半徑[12]。這里我們也許會問一個非常重要的問題:這些常數(shù)真的是常數(shù)還是隨著時間慢慢變化?如考慮氫及其對應反物質(zhì)的反能量,兩者是否恰好是彼此的鏡像?或者完全相同還是有什么區(qū)別?任何差異都會撼動我們的標準模型,因此精密光譜技術提供了探索物理學新知識的機會,也是驗證該理論實際效果的重要方法之一。這可能是諾貝爾委員會授予高分辨率激光光譜諾貝爾物理學獎的原因,包括2005年授予作者和約翰·霍爾的頻率梳技術。有趣的是,因?qū)α孔庸鈱W開創(chuàng)性的貢獻,2005年諾貝爾物理學獎同時授予了Theodor W.H?nsch,John L.Hall和Roy[1-2]。

    Nowadays, frequency combs have become standard tools for frequency metrology.The optical frequencies of complete systems, including lasers and all electronics, can be measured with unprecedented precision.It has become the most precise measurement tool known to man.Even the frequency comb of a smart desktop size can be obtained.The light from a laser of unknown frequency can be sent through a fiber into the frequency comb.Then, the absolute frequency can be read to as many digits as a reference clock will allow.

    如今,光頻梳已成為頻率計量的標準工具。完整的光學頻率系統(tǒng)、激光器和所有電子設備,達到前所未有的測量精度。光頻梳技術已經(jīng)成為人類已知的最精確的測量工具,其尺寸甚至可以小至桌面大小。通過將未知頻率的激光經(jīng)過光纖發(fā)送到該儀器中就能夠獲取其絕對頻率,精度可以達到參考時鐘允許的盡可能多的位數(shù)。

    Chip-scaled comb generators based on microscopic frequencycombs areemerging.The pioneering work for the chip-scaled comb generators was completed in the Max Planck Institute, by Kippenberg’s group, now a professor at the Swiss Federal Institute of Technology, Lausanne[13].They showed that microscopic ring resonator formed using silica could be used with light from a continuous-wave laser through evanescent wave coupling.In this ring, the intensity can be increased to a high level, so that four wave-mixing and soliton formation can result in a comb of evenly spaced comb lines.

    微型光頻梳發(fā)生器以及芯片級的片上光頻梳發(fā)生器正在出現(xiàn)。Kippenberg課題組在馬克思普朗克研究所完成了一些開創(chuàng)性工作[13],他本人現(xiàn)在是位于洛桑的洛桑聯(lián)邦理工學院(EPFL)的教授。通過使用由二氧化硅構成的微型環(huán)形諧振器同來自連續(xù)激光器的漸逝波耦合實現(xiàn)光耦合進入微型環(huán)形諧振器。環(huán)中形成的高強度電場促使產(chǎn)生4波混合效應,產(chǎn)生的光孤子可以給予光頻梳均勻的頻率間隔。

    Widespread interests in frequency combs are due to their broad spectrum of applications.Fig.2 shows the evolutionary tree of frequency comb applications.

    Fig.2 Evolutionary tree of the applications of frequency combs

    更多遠遠超出了最初想象的應用出現(xiàn)促使光頻梳更加引起關注,包括光學頻率的高精度測量、光鐘的實用化、精密光譜學工具等,其應用演化樹如圖2。

    Frequency combs are used to measure optical frequencies accurately and realize optical clocks.In addition, they serve as a tool for precision spectroscopy.Nowadays, combs are used to compare distant atomic clocks, by time and frequency transfer over large distances.If frequencies can be measured, lengths can also be estimated; thus, frequency combs are also used for length metrology, including light detection and ranging remote sensing.Astronomers employ frequency combs as calibration tools for analyzing large astronomical spectrographs.They search for earth-like planets around distant stars using the radial velocity method(Doppler shifts)as the star and planet orbit around a common center of gravity.Frequency combs are finding new uses in radio frequency photonics.For instance, the most stable microwaves with the lowest phase and timing jitter have been produced using laser frequency combs.

    光頻梳還可用于比較相距很遠的2個原子鐘經(jīng)過遠距離信號傳輸后的時間以及頻率。因為能夠測量頻率,就可以測量長度。因此,光頻梳可以作為長度的計量工具,例如LIDAR遙感應用。由于恒星和行星都圍繞著一個共同的重心運行,因此天文學家將光頻梳作為大型天文光譜圖的校準工具,以使用測量徑向速度的方法(多普勒頻移)搜索遙遠恒星周圍的類地行星。光頻梳在射頻光子學中獲得了新的用途。例如,在激光頻梳的幫助下,產(chǎn)生具有最低相位和時序抖動的最穩(wěn)定的微波。

    Moreover, they have been used in low noise microwaves, communications, radars, and other applications.Frequency combs are essential in attosecond science because they facilitate the control of the phase of the electric field inside the short pulse, making it possible to produce controlled single pulses of high harmonic generation, lasting only tens of attoseconds.

    此外,低噪聲微波不僅被用在通信中還被用于在雷達或其他方面。光頻梳已成為阿秒科學的關鍵工具,因為有助于控制短脈沖內(nèi)電場的相位,這種方法可以通過高次諧波產(chǎn)生可控的單個脈沖,該脈沖持續(xù)時間僅為幾十阿秒。

    Concentrating on spectroscopy with frequency combs, Fig.3 shows direct frequency comb spectroscopy[14].

    Fig.3 Direct frequency comb spectroscopy

    本文主要聚焦于光頻梳光譜技術應用的討論和分析。圖3給出了直接頻梳光譜測量方法[14]。

    In this spectroscopy, the frequency comb is not used as a calibration tool but all the comb lines in the multiplex are used to interrogate broad spectra with high resolution.While conducting these spectroscopic investigations, light from a frequency comb source is sent through an absorbing gas cell using either Fourier transform or grating spectrometers.Upon absorption, the corresponding comb lines attenuate.Notably, by replacing the incoherent light source of a Fourier spectrometer with a comb, a substantial gain in sensitivity and recording speed are achieved.However, resolving the comb lines with a conventional spectrometer remains difficult.Otherwise, the frequencies of these comb lines can be known with the accuracy of an atomic clock.Nevertheless, how high-resolution can be obtained? In this respect, dual-comb spectroscopy is a technique that is comparable to a sampling oscilloscope for optical radiation.If a gong is hit, it reverberates and emits sound waves that can be analyzed using a microphone and an oscilloscope to learn about the different vibrational eigenmodes of this gong.Similarly, molecules can be hit with a short light pulse, resulting in their oscillation and reverberation.If this radiation can be analyzed using an oscilloscope, the dynamics of the molecules can be learned.However, how can this be accomplished? Using two frequency combs.Fig.4 shows a schematic of the approach.

    Fig.4 Dual-comb spectrometer

    光頻梳技術不僅可以作為校準工具,而且可以在很寬的光譜范圍內(nèi)使用所有的梳狀譜線,以多路復用方式實現(xiàn)高分辨率的光譜技術。這類光譜分析技術中,光頻梳作為光源并通過吸收氣室傳輸?shù)焦庾V儀,例如傅里葉變換光譜儀或光柵光譜儀。當有吸收時,相應的梳狀線會衰減。如果用光頻梳代替傅里葉光譜儀的非相干光源,可以大大提升光譜儀的靈敏度和測量速度。傳統(tǒng)的光譜儀很難分辨光頻梳的譜線。如果可以實現(xiàn)譜線的分辨,那么就可以通過使用一個高精度的原子鐘獲取這些光頻梳的精確頻率。那么怎樣才能達到高分辨率?在這方面,雙頻梳光譜技術有其用武之地,可以與用于光輻射的采樣示波器相提并論。假設敲擊一個鑼,其回響及發(fā)出的聲波可以通過麥克風和示波器進行分析,獲取鑼的本征振動模式。如果短光脈沖激勵一個分子,也會產(chǎn)生振蕩和反饋,利用示波器分析其發(fā)出的輻射就可以得到很多關于分子動力學的信息??梢允褂?個雙光頻梳實現(xiàn),如圖4。

    In this technique, one frequency comb emits a train of regular pulses, which hit the molecules and reverberate them.To investigate that radiation, a second frequency comb with a slightly different repetition frequency is used.Both beams are combined and a single photodetector is used to record the interference in the time domain.This is called asynchronous sampling.Because the repetition frequencies are different, the time interval between combs 1 and 2 pulses shift and change from pulse to pulse.Such that coinciding of two pulses on the detector results in a big burst of interference.On the contrary, if the weak free induction decay is analyzed, a weaker interference signal is obtained, which is ideally the sampling trace of the molecular waveform.Over a sufficiently long time, the interference disappears, as there is no overlap.There is one way of paying attention to a particular aspect of this type of two combs spectroscopy.Consider a repetitive waveform, where the molecules are hit periodically by these pulses, and the free induction decay is greatly simplified.If this periodically repetitive waveform is sampled, a waveform that appears stretched in time is obtained,as shown in Fig.5.

    Fig.5 Optical sampling oscilloscope.

    一個光頻梳發(fā)射一串規(guī)則脈沖并激勵分子,產(chǎn)生反饋。使用重復頻率略有不同的第2個光頻梳用以研究分子產(chǎn)生的熒光輻射的特性(這里指的是分子產(chǎn)生的熒光輻射)。該過程將2束光束通過合束器合束,并在時域中觀察在單個光電探測器上的干涉信號,稱為異步采樣。由于2個激光器的重復頻率不同,梳1脈沖和梳2脈沖之間的時間間隔會隨著脈沖而變化。如果2個脈沖在檢測器上重合,會出現(xiàn)明顯的干涉信號。相反,如果我們測量微弱的自由感應衰減,就會得到一個較弱的干涉信號,實際上是分子的波形采樣軌跡。當然,如果測量時間足夠長,干涉就會消失,就像沒有重疊一樣。如果有一個重復的脈沖波形周期性地撞擊分子,自由感應衰減會顯著減小。但是,如果采用這種周期性重復的波形并對其進行采樣,就會得到一個時域上延展的波形。因此,這是采樣示波器需要注意的一個方面,如圖5。

    However, small fluctuations in timing appear magnified, indicating that considerable attention needs to be paid to the stability of the lasers.Similar situations can be considered in the frequency domain.Consider two combs with slightly different comb line spacing.Radio frequency beat notes in megahertz units can be detected between pairs of comb lines, whereas the original optical frequency is measured in terahertz units.Figs.6 and 7 show the dual-comb spectroscopy in both time and frequency domains.

    然而,時間微小的波動,就會放大信號,所以需要注意激光器的穩(wěn)定性。在頻域中也要考慮類似的情況:2個梳線間距略有不同的光頻梳,通過檢測光頻梳譜線之間的射頻差頻信號就會得到一個常規(guī)頻梳。其中檢測到的射頻信號以兆赫茲為單位測量,原始光學頻率以太赫茲為單位測量。圖6和圖7顯示了時域和頻域的雙頻梳光譜測量技術。

    The conversion factor corresponds to the difference in the repetition rates of both lasers divided by the repetition rate.Here is an example of such a signal.Given the instances where the pulses from the two lasers overlap, suppose mode-locked Er-doped fiber lasers operating in the telecommunications band are used.After this burst, smaller signals that need to be magnified are obtained.The free induction decay is clearly seen with the help of the sampling oscilloscope.

    轉(zhuǎn)換系數(shù)就是2個激光器(激光器1和激光器2)的重復頻率之差除以激光器2的重復頻率。圖7就是此類信號的示例。在2個激光器脈沖重疊的特殊情況下,使用在電信波段中工作的摻鉺光纖激光器實現(xiàn)鎖模,可以使微弱信號得到放大。目前,利用采樣示波器可以清楚地看到自由感應的衰減。圖8是通過傅立葉變換后信號的光譜[15]。

    Fig.6 Dual-comb spectroscopy in time domain.

    Fig.7 Dual-comb spectroscopy in the frequency domain.

    Fig.8 depicts the use of a Fourier transformation to obtain a spectrum from this signal[15]for acetylene in the v1+v3 combination band[15].The resolution achieved is 3 GHz only.A similar resolution can be achieved using the traditional Fourier spectrometer.However, this spectrum is recorded in just 42 μs, which is quite remarkable considering that a traditional Fourier spectrometer requires several minutes to produce a spectrum of this quality.This shows one potential advantage of dual-comb spectroscopy.

    Fig.8 Fourier transformation of a time-domain interference signal shown in Fig.6. Through transformation, the absorption spectrum of acetylene(C2H2)is obtained

    圖8描述了使用傅立葉變換可以得到處于v1+v3重疊能級中的乙炔光譜,實現(xiàn)的分辨率是3 GHz[14]。該結果不是特別顯著。使用傳統(tǒng)的傅里葉光譜儀也可以獲得類似的分辨率。但值得注意的是,該頻譜僅在42 μs內(nèi)記錄下來,而對于傳統(tǒng)的傅立葉光譜儀,至少需要幾分鐘才能產(chǎn)生這種質(zhì)量的光譜。因此,這是雙光頻梳光譜技術的一項潛在優(yōu)勢。

    Much faster measurements are possible because no limits exist in the mechanical motion or motion path of the Fourier spectrometer.Besides, the telecommunications band is easier to access.However, it is not the most sought out region in molecular spectroscopy, as most molecules have strong characteristic absorption bands in the molecular fingerprint region of the mid-infrared.Thus, producing frequency combs in the mid-infrared is highly desired.In this respect, several approaches have been adopted over many years and are still being investigated.A readily accessible is to start with near-infrared telecom-type fiber lasers and produce mid-infrared spectra using difference frequency generation.

    由于傅里葉光譜儀的機械運動或運動路徑?jīng)]有限制,這使可以更快地進行光譜測量成為可能。此外,電信頻段光源的獲取相對容易,但是分子光譜學最重要的頻譜信息并不是處于這個波段。大多數(shù)分子在中紅外的分子指紋區(qū)具有很強的特征吸收帶。因此,在中紅外線中產(chǎn)生頻率梳是非常理想的。在這方面,多年來已經(jīng)使用了幾種方法,有的方法還在研究中。一種方法是利用近紅外、光通信波段光纖激光器通過差頻產(chǎn)生中紅外光頻梳信號。

    Recently, this was achieved when frequency combs of approximately 3 μm were produced and used to investigate the spectrum of ethylene.Fig.9 shows the dual-comb absorption spectrum of ethylene near 3 μm[16].

    Fig.9 Dual-comb absorption spectrum of ethylene near 3 μm.

    我們最近做的工作獲得了差不多3 μm波長的光頻梳,并且用來觀察乙烯的光譜。圖9顯示了3 μm左右的乙烯雙頻梳吸收光譜[16]。

    Ethylene’s vibrational modes v9 and v11 fall into this spectral region.At first sight, the spectrum looks all black; however, individual comb lines can be resolved.Figs.10 and 11 show the magnified ethylene spectra with reduced frequency range.First, the molecular lines are seen, and then, with further magnification, the comb lines become discernible.The comb line is a fantastic calibration tool because it provides precise frequency.

    乙烯的振動模式v9和v11屬于該光譜區(qū)域。雖然頻譜看起來全黑,實際上我們已經(jīng)解析了單獨的梳狀線。當我們把曲線的局部放大后就會逐漸看到分子線,如圖10。進一步放大時,就會看到梳狀線,如圖11。梳狀線是一個很有效的校準工具,因為它提供了精確的頻率。

    Although, setting up a laboratory to conduct all the above experiments is expensive, not much power is needed to produce these spectra because the detectors can saturate by intense short pulses.Typically, only a few microwatts of average power will suffice.Furthermore, investigations were performed to explore the lowest intensities where dual-comb spectroscopy can be performed.Through these explorations, the single-photon level was achieved by N.Picque and H?nsch[17].

    雖然建立一個實驗室來進行上述實驗是昂貴的,但產(chǎn)生這些光譜并不需要太多的能量,因為探測器可以被強烈的短脈沖飽和。通常,只有幾微瓦的平均功率就足夠了。另外,近期我們也在探索雙光頻梳光譜可以達到的最低強度,通過這些研究,我們實現(xiàn)了單光子能級。相關成果在美國國家科學院院刊PNAS發(fā)表[17]。

    Fig.10 Zooming into the ethylene spectrum shown in Fig.9 reveals comb lines and molecular absorption lines.

    Fig.11 Expanded region of the dual-comb spectrum of ethylene(12C2H4)showing both absorption and dispersion.

    To prove the fundamental experiment, two frequency-doubled Er-doped fiber lasers were used and both beams were combined.One beam was sent to a photodetector that detects when both pulses from the two lasers overlap and then triggers a scalar for the detected photons.The other beam probing the sample is attenuated dramatically so that the power is 20 fW or the detection is down to about only one detector click for a thousand pulses.Nevertheless, difficulties are encountered if a photon is imagined to exist before detection.

    為了驗證基礎實驗:采用2個摻鉺光纖激光器,在分束器上組合兩束光束以產(chǎn)生二次諧波信號。一束光被發(fā)送到光電檢測器,該檢測器檢測來自2個激光器的2個脈沖何時重疊后,觸發(fā)另外一個檢測光子的檢測器。透過樣品的另一束光衰減得非常大,最終我們只有低至20 fw或每1 000脈沖只觸發(fā)了一次探測信號,但它仍然能實現(xiàn)有效探測。但是如果試圖在探測器之前檢測光子的存在,就會很難。

    Otherwise, it opens intriguing prospects for future applications.This technique can still be applied for frequency comb sources in the extreme ultraviolet or soft X-ray regime, where very few photons are produced.Furthermore, it can be used to analyze backscattered light over a long distance through attenuating media.In addition, it is still possible to observe fluorescence signal from an individual molecule or a small nanostructure, although the photon count rate is small.However, what about a future miniaturized chip-scale instrument? Will it be possible to have a gas spectroscopy laboratory on a photonic chip? There is one obstacle to achieving these.

    但除此之外(指的基于單個光子探測的雙頻梳光譜儀是探測效率有待提高這個問題),未來的應用前景光明而有趣。這種技術可以應用于產(chǎn)生光子很少的極紫外或軟x射線的光頻梳源;該技術可以通過衰減介質(zhì)分析遠距離的背向散射光,也可能通過來自單個分子或小納米結構的熒光來觀察信號,即使光子計數(shù)率非常小仍然可以工作。另外,我們也在未來的小型化、芯片級儀器、基于光子芯片的氣體光譜研究方面遇到了一個個的挑戰(zhàn)。

    These microscopic frequency comb generators have large spacing of the comb lines, wider than the line widths of the molecular lines.Thus, molecular lines can be missed, resulting in a spectrum lacking all the desired information.One approach is to work with different positions of the comb line and generate a set of interleaved spectra.Thus, the molecular information can be retrieved, but not as a multiplex spectrum.

    以上展示的這些微型光頻梳發(fā)生器,其梳線間距往往很大。如果間距比分子線的線寬還要寬就可能會錯過分子線進而無法提供所需要的信息。一種解決方法是使用光頻梳線的不同位置,并生成一組交錯光譜,這樣就可以檢索分子信息,但它并不是真正的多路光譜。

    A comb with line spacing of a gigahertz or less, which corresponds to a round path of 30 cm in the cavity, is typically required.How is it possible to accommodate such a path in a microscopic sub-millimeter-sized chip cavity? This has been recently explored in collaboration with a group of B.Kuyken at the University of Ghent, Belgium[18].This group has designed a chip-based mode-locked laser using a SiO2waveguide on a silicon substrate for several years.This waveguide can be shaped into a spiral, winding the long interferometer path to a small coil.To realize a laser, gain and saturated absorbers are required, which are implemented with III-V semiconductor devices bonded to the silicon waveguide.Then, the pulse reaches the grating reflector and part of it is coupled out.Therefore, a small mode-locked laser is obtained.

    我們真正希望的是千兆赫茲或更小的線距梳子。1 GHz對應于腔中30 cm的圓形路徑,我們最近也在探索如何在微觀亞毫米尺寸的芯片腔中容納這樣長路徑的方法。該項工作是同比利時根特大學的B.Kuyken課題組進行的合作[18],該小組多年來設計基于芯片的鎖模激光器。當使用硅波導時,在SiO2襯底上可以將這個波導塑造成螺旋形,這樣就可以將長干涉儀路徑纏繞到一個小線圈上。為了實現(xiàn)這種激光器,需要一種與硅波導結合的III-V族半導體器件實現(xiàn)的增益和飽和吸收器。如果一切順利,脈沖到達光柵反射器,部分耦合出去。這樣,就得到了一個小型的鎖模激光器。

    One fundamental question is whether this laser is stable enough to perform dual-comb spectroscopy.The answer lies is in a sample wafer that carries quite a few laser devices.It comprises a laser, a coil, an amplifier, and a saturated absorber.As there are two lasers, whose outputs combine on the beam splitter, a dual-comb spectrometer on a chip may already exist.Unfortunately, two matching lasers could not be achieved.

    得到的鎖模激光器的主要問題是,該激光器是否足夠穩(wěn)定,可以實現(xiàn)雙頻梳光譜分析?答案在于一個攜帶相當多激光設備的樣品晶片,它包括激光器、線圈、放大器和飽和吸收器。2個激光器,其輸出通過分束器合并,一個芯片上的雙梳狀光譜儀就可能實現(xiàn)。不幸的是,由于需要2個激光器,但我們無法找到2個匹配的激光器。

    To characterize the chip-based mode-locked laser, a different type of experiment was conducted[19].For using only one of these lasers with its pulses as input for spectrometer, its pulses were sent through a gas cell into a detector.The comb lines were produced using a continuous-wave laser and an electro-optic modulator.The first experiment was unsuccessful because on-chip lasers are unstable.However, subsequent trials produced a stable comb.A key point is to take some continuous-wave lasers and incident them into the on-chip mode-locked laser so that one of the comb lines is injection-locked, and, as a consequence, all the comb lines.

    為了表征基于芯片的鎖模激光器,進行了一個不同類型的實驗[19]。采用一個激光器,用于輸出光譜儀所需的脈沖,并將脈沖通過氣室發(fā)送到檢測器中。參考光頻梳通過連續(xù)激光和電光調(diào)制器產(chǎn)生梳線。第一個實驗因為片上激光器不穩(wěn)定失敗了。隨后的試驗產(chǎn)生了一個穩(wěn)定的梳子。關鍵就是采用一些連續(xù)激光并將其注入片上鎖模激光器,以便能夠鎖定光頻梳中一根譜線,進而鎖定所有梳狀譜線。

    For instance, beat notes in the radio frequency region over 600 GHz are limited by the span of the electro-optic modulator comb.The on-chip comb is about three times wider and can be further broadened in nonlinear waveguides.However, enough stability has been achieved to resolve individual comb lines.Precise spectroscopy of the carbon monoxide can be achieved by analyzing its absorption line.No systematic distortion is observed for the complete spectrum of carbon monoxide on comparison with the calculated spectrum from the HITRAN database.The contributions from the carbon 13-isotope are easily recognized as a good technique to measure precise isotopic ratios.

    例如,超過600 GHz的射頻差頻信號會受到電光調(diào)制器光頻梳跨度的限制。片上光頻梳大約寬3倍且可以在非線性波導中進一步拓寬,但是已經(jīng)達到了足夠的穩(wěn)定性可以解析單個梳線。通過分析一氧化碳的吸收線,實驗獲得了一氧化碳的精確光譜,與HITRAN數(shù)據(jù)庫的光譜進行比較,結果表明有非常好的一致性,沒有產(chǎn)生系統(tǒng)失真,且很容易地識別出碳13的痕跡信號。因此,該方法能夠有效的測量精確的同位素含量。

    Fundamentally, we want to realize a complete spectrometer on a chip and work is ongoing to achieve this.Timeframes are uncertain but it remains an aspiration.An entire wafer with several such spectrometers is feasible.Each spectrometer has two mode-locked lasers and a spiral waveguide for evanescent wave detection of molecular absorptions.The size and power consumption can be reduced enough to integrate into a smartphone or smartphone accessory.Only with a single photodetector, the signal can be processed on the smartphone using the built-in computer.In this way, a small, portable, and inexpensive gas-phase spectrometer is realized.The high resolution can be used in medical diagnostics, pollution monitoring, industrial control, domestic air quality monitoring, and checking the fruit in the market.

    從根本上說,我們希望在芯片上實現(xiàn)一個完整的光譜儀,且正在努力進行,以期早日實現(xiàn)這一希望。一個完整晶片包含許多光譜儀單元,每個光譜儀都有2個鎖模激光器和一個螺旋波導,用于檢測某些分子吸收的倏逝波。因此尺寸和功耗足夠小,可以集成到智能手機或智能手機配件中。只需使用一個光電探測器,信號甚至可以通過內(nèi)置計算機在智能手機上進行處理。這樣,就實現(xiàn)了一種小型、便攜式、廉價的氣相光譜儀。高分辨率可用于醫(yī)療診斷、污染監(jiān)測、工業(yè)控制、國內(nèi)空氣質(zhì)量監(jiān)測和市場上的水果檢測。

    The possibilities are immense.Many creative research groups worldwide are likely to have new ideas and surprising novel applications.The molecular spectroscopy described in this paper was conducted at the Max Planck Institute of Quantum Optics, under the supervision of Dr.Nathalie Picque(1)https://www.frequency-comb.eu/index.html.

    可能性是無限的,世界各地的許多創(chuàng)意研究小組很可能會有新的想法和令人驚訝的新應用。本文中描述的分子光譜學是在馬克斯·普朗克量子光學研究所,在娜塔莉·皮克博士的監(jiān)督下進行的(2)https://www.frequency-comb.eu/index.html。

    Thanks are given to the sponsors, the European Research Council(3)https://erc.europa.eu/, Max Planck Foundation(4)https://www.maxplanckfoundation.org/?lang=en, and Carl Friedrich von Siemens Foundation(5)https://www.siemens-stiftung.org/en/.

    最后,感謝科研經(jīng)費提供單位:歐洲研究委員會(6)https://erc.europa.eu/、Max Planck基金會(7)https://www.maxplanckfoundation.org/?lang=en、Curl Friedrich Von Siemens基金會(8)https://www.siemens-stiftung.org/en/。

    猜你喜歡
    測量信號
    信號
    鴨綠江(2021年35期)2021-04-19 12:24:18
    完形填空二則
    把握四個“三” 測量變簡單
    滑動摩擦力的測量和計算
    孩子停止長個的信號
    滑動摩擦力的測量與計算
    測量的樂趣
    測量
    基于LabVIEW的力加載信號采集與PID控制
    一種基于極大似然估計的信號盲抽取算法
    国产成+人综合+亚洲专区| 日韩中文字幕视频在线看片| 最新美女视频免费是黄的| 亚洲成人手机| 黄色 视频免费看| a级片在线免费高清观看视频| 亚洲精品粉嫩美女一区| 麻豆国产av国片精品| 成人18禁在线播放| 9热在线视频观看99| 色在线成人网| 欧美激情高清一区二区三区| 无人区码免费观看不卡 | 窝窝影院91人妻| 色老头精品视频在线观看| 国产视频一区二区在线看| 日本欧美视频一区| 国产成人精品在线电影| 夜夜爽天天搞| 日本wwww免费看| 久久久精品94久久精品| 日日夜夜操网爽| 岛国在线观看网站| 国产欧美日韩一区二区三区在线| 久久精品人人爽人人爽视色| 高清毛片免费观看视频网站 | 少妇的丰满在线观看| 高清在线国产一区| 免费日韩欧美在线观看| 国产高清视频在线播放一区| 亚洲美女黄片视频| 国产欧美日韩一区二区三| 亚洲av日韩精品久久久久久密| 在线看a的网站| 成人黄色视频免费在线看| 国产成人欧美在线观看 | 亚洲午夜理论影院| 手机成人av网站| 激情视频va一区二区三区| 亚洲精品在线观看二区| 亚洲精品美女久久久久99蜜臀| 日本a在线网址| 成人黄色视频免费在线看| 又大又爽又粗| 十分钟在线观看高清视频www| www.精华液| 午夜福利视频精品| 丝袜在线中文字幕| 久久天堂一区二区三区四区| 国产伦理片在线播放av一区| 欧美精品人与动牲交sv欧美| 狂野欧美激情性xxxx| 9色porny在线观看| 97人妻天天添夜夜摸| 亚洲 国产 在线| 他把我摸到了高潮在线观看 | 一级毛片电影观看| 国产熟女午夜一区二区三区| 制服人妻中文乱码| 色婷婷久久久亚洲欧美| 国产亚洲精品第一综合不卡| 一本一本久久a久久精品综合妖精| 国产精品一区二区在线观看99| a级毛片在线看网站| 日韩有码中文字幕| 日本av手机在线免费观看| 中文字幕精品免费在线观看视频| 久久精品国产a三级三级三级| 1024香蕉在线观看| 国产伦人伦偷精品视频| 亚洲五月婷婷丁香| 大片电影免费在线观看免费| 国精品久久久久久国模美| 亚洲精品一卡2卡三卡4卡5卡| videos熟女内射| 国产不卡av网站在线观看| 大陆偷拍与自拍| 18在线观看网站| 国产区一区二久久| 窝窝影院91人妻| 夜夜骑夜夜射夜夜干| 999精品在线视频| 国产真人三级小视频在线观看| 亚洲精品美女久久久久99蜜臀| 老鸭窝网址在线观看| 99精品久久久久人妻精品| 最新在线观看一区二区三区| 亚洲成人手机| 女人高潮潮喷娇喘18禁视频| 午夜福利免费观看在线| 国产av又大| 国产成人啪精品午夜网站| 99九九在线精品视频| 中文亚洲av片在线观看爽 | 久久狼人影院| 免费高清在线观看日韩| 男女无遮挡免费网站观看| 亚洲中文av在线| 黄色 视频免费看| 国产不卡一卡二| av有码第一页| 别揉我奶头~嗯~啊~动态视频| www.精华液| 精品久久久精品久久久| 热re99久久精品国产66热6| 精品一品国产午夜福利视频| 在线看a的网站| 日本撒尿小便嘘嘘汇集6| 又黄又粗又硬又大视频| 91成人精品电影| 国产欧美日韩精品亚洲av| 亚洲精华国产精华精| 国产精品秋霞免费鲁丝片| 色婷婷av一区二区三区视频| 日日爽夜夜爽网站| 18禁观看日本| 啦啦啦 在线观看视频| 亚洲av国产av综合av卡| 欧美国产精品一级二级三级| 亚洲午夜精品一区,二区,三区| 人人妻,人人澡人人爽秒播| 精品少妇黑人巨大在线播放| 国产有黄有色有爽视频| 欧美亚洲 丝袜 人妻 在线| 国产单亲对白刺激| 久久精品国产综合久久久| 午夜91福利影院| 久久婷婷成人综合色麻豆| 欧美午夜高清在线| 一边摸一边抽搐一进一小说 | 国产99久久九九免费精品| av免费在线观看网站| 国产一区有黄有色的免费视频| 人人妻人人澡人人爽人人夜夜| 国产精品成人在线| 高清av免费在线| 中文字幕精品免费在线观看视频| 欧美av亚洲av综合av国产av| 精品免费久久久久久久清纯 | 国产日韩一区二区三区精品不卡| 精品少妇内射三级| 又紧又爽又黄一区二区| 亚洲熟女毛片儿| 国产成人系列免费观看| 香蕉丝袜av| 欧美日韩一级在线毛片| 亚洲精品av麻豆狂野| 亚洲精品成人av观看孕妇| 国产淫语在线视频| 国产免费福利视频在线观看| 亚洲avbb在线观看| 国产精品1区2区在线观看. | 久久久久久免费高清国产稀缺| 婷婷成人精品国产| 国产欧美亚洲国产| 欧美日韩福利视频一区二区| 一级片'在线观看视频| 午夜91福利影院| 黄色视频在线播放观看不卡| 欧美精品高潮呻吟av久久| 国产一区二区激情短视频| 久久九九热精品免费| 中文字幕最新亚洲高清| 欧美亚洲日本最大视频资源| 国产在线观看jvid| 18禁美女被吸乳视频| 首页视频小说图片口味搜索| 免费日韩欧美在线观看| av视频免费观看在线观看| 精品福利永久在线观看| 亚洲欧洲精品一区二区精品久久久| 在线 av 中文字幕| 久久久精品免费免费高清| 亚洲欧美一区二区三区黑人| 国产成人啪精品午夜网站| 一边摸一边抽搐一进一出视频| 亚洲国产毛片av蜜桃av| 亚洲av欧美aⅴ国产| 亚洲国产欧美在线一区| 9热在线视频观看99| 黑人巨大精品欧美一区二区蜜桃| 视频区欧美日本亚洲| 在线观看免费午夜福利视频| 精品少妇内射三级| 日韩欧美国产一区二区入口| 亚洲国产精品一区二区三区在线| 在线播放国产精品三级| 成年人午夜在线观看视频| 高清视频免费观看一区二区| 亚洲av国产av综合av卡| 日本av手机在线免费观看| 国产精品久久久久久精品古装| 美女高潮喷水抽搐中文字幕| 免费在线观看黄色视频的| 啦啦啦在线免费观看视频4| 国产成人欧美| 成人亚洲精品一区在线观看| 18禁裸乳无遮挡动漫免费视频| 亚洲专区字幕在线| 男人舔女人的私密视频| 黄色视频,在线免费观看| 一区二区av电影网| 国产精品久久久久成人av| 亚洲全国av大片| 国产在线免费精品| 成年女人毛片免费观看观看9 | 黄色怎么调成土黄色| 国产成人欧美| 精品一区二区三区av网在线观看 | 精品视频人人做人人爽| 久久天躁狠狠躁夜夜2o2o| 91大片在线观看| 国产精品免费视频内射| 另类亚洲欧美激情| 国产av一区二区精品久久| 国产一区二区三区综合在线观看| 亚洲熟女精品中文字幕| av国产精品久久久久影院| 妹子高潮喷水视频| 成人亚洲精品一区在线观看| 国产欧美日韩综合在线一区二区| av国产精品久久久久影院| 久久久久久久国产电影| 亚洲精品国产精品久久久不卡| 最黄视频免费看| 王馨瑶露胸无遮挡在线观看| 乱人伦中国视频| 免费高清在线观看日韩| 一级片'在线观看视频| 亚洲五月色婷婷综合| 日韩欧美一区视频在线观看| 午夜福利在线观看吧| 两个人看的免费小视频| 亚洲成人免费电影在线观看| av有码第一页| 欧美成人免费av一区二区三区 | 国产精品国产高清国产av | 亚洲专区中文字幕在线| 国产亚洲精品久久久久5区| 久久久久视频综合| 亚洲欧美日韩另类电影网站| 五月开心婷婷网| 午夜老司机福利片| 一级毛片精品| 亚洲第一av免费看| 免费看十八禁软件| 黑人猛操日本美女一级片| 亚洲欧美日韩另类电影网站| 国产欧美亚洲国产| 婷婷丁香在线五月| 91精品国产国语对白视频| 丝袜喷水一区| 这个男人来自地球电影免费观看| 午夜免费鲁丝| 999久久久国产精品视频| 亚洲人成77777在线视频| 精品久久蜜臀av无| 国产精品1区2区在线观看. | 99久久99久久久精品蜜桃| 日韩一区二区三区影片| 欧美日本中文国产一区发布| 亚洲人成电影免费在线| 一区二区三区乱码不卡18| 天天影视国产精品| 久久久久国内视频| 精品国产乱子伦一区二区三区| 999久久久国产精品视频| 91av网站免费观看| 亚洲欧洲精品一区二区精品久久久| 婷婷成人精品国产| 午夜福利在线免费观看网站| av又黄又爽大尺度在线免费看| 国产亚洲av高清不卡| 亚洲精品美女久久av网站| 人人妻人人澡人人看| 欧美人与性动交α欧美软件| 国产av一区二区精品久久| 国产色视频综合| 久久 成人 亚洲| tube8黄色片| 一边摸一边抽搐一进一小说 | 热99国产精品久久久久久7| av在线播放免费不卡| 青草久久国产| 久久精品国产综合久久久| 男女无遮挡免费网站观看| 成人手机av| 中文字幕高清在线视频| 欧美在线黄色| 免费观看a级毛片全部| 国产成+人综合+亚洲专区| 国产精品国产av在线观看| 亚洲天堂av无毛| 又黄又粗又硬又大视频| 亚洲视频免费观看视频| 18禁裸乳无遮挡动漫免费视频| 又紧又爽又黄一区二区| 国产午夜精品久久久久久| 婷婷丁香在线五月| 婷婷成人精品国产| 日韩欧美免费精品| 丰满迷人的少妇在线观看| 乱人伦中国视频| 老鸭窝网址在线观看| 国产99久久九九免费精品| 国产精品久久久av美女十八| 久久精品亚洲av国产电影网| 亚洲va日本ⅴa欧美va伊人久久| 国产91精品成人一区二区三区 | 久久国产精品影院| 日韩欧美一区二区三区在线观看 | 女人高潮潮喷娇喘18禁视频| 亚洲黑人精品在线| 中文字幕av电影在线播放| 丁香六月天网| 嫁个100分男人电影在线观看| 色综合婷婷激情| 国产精品香港三级国产av潘金莲| 成人黄色视频免费在线看| netflix在线观看网站| 搡老岳熟女国产| 麻豆国产av国片精品| 老司机亚洲免费影院| 亚洲成av片中文字幕在线观看| 色婷婷av一区二区三区视频| 热re99久久精品国产66热6| 久久中文字幕一级| 亚洲精品久久午夜乱码| 啦啦啦免费观看视频1| 国产精品成人在线| 我要看黄色一级片免费的| 欧美黄色片欧美黄色片| 99久久精品国产亚洲精品| 成年版毛片免费区| 成人亚洲精品一区在线观看| 午夜久久久在线观看| 在线亚洲精品国产二区图片欧美| 亚洲av欧美aⅴ国产| 国产在线精品亚洲第一网站| 美女午夜性视频免费| 亚洲五月婷婷丁香| 亚洲自偷自拍图片 自拍| 亚洲九九香蕉| 国产精品一区二区在线不卡| 国产男靠女视频免费网站| 国产成人影院久久av| 久久人人爽av亚洲精品天堂| 丝袜喷水一区| 中文字幕人妻熟女乱码| 久久毛片免费看一区二区三区| 在线观看免费午夜福利视频| 欧美性长视频在线观看| 啦啦啦免费观看视频1| 狠狠婷婷综合久久久久久88av| 一级片免费观看大全| 精品人妻1区二区| 女人高潮潮喷娇喘18禁视频| 亚洲成人国产一区在线观看| 后天国语完整版免费观看| 极品人妻少妇av视频| 一区二区三区国产精品乱码| 亚洲欧美激情在线| 日韩成人在线观看一区二区三区| 欧美激情极品国产一区二区三区| 日本av免费视频播放| 高清在线国产一区| 亚洲欧美日韩另类电影网站| 亚洲国产欧美日韩在线播放| 国产精品免费一区二区三区在线 | 精品久久久精品久久久| 精品亚洲成a人片在线观看| 91麻豆精品激情在线观看国产 | 欧美另类亚洲清纯唯美| 色婷婷久久久亚洲欧美| 露出奶头的视频| 国产人伦9x9x在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 69精品国产乱码久久久| 97人妻天天添夜夜摸| 成人亚洲精品一区在线观看| 国产成人av激情在线播放| 精品亚洲成国产av| 国产极品粉嫩免费观看在线| 精品少妇一区二区三区视频日本电影| 久久人妻熟女aⅴ| 亚洲精品久久午夜乱码| 热99久久久久精品小说推荐| 人妻久久中文字幕网| 999久久久国产精品视频| 老鸭窝网址在线观看| 国产亚洲精品一区二区www | 免费观看av网站的网址| 精品少妇久久久久久888优播| 亚洲第一av免费看| 国产麻豆69| 亚洲三区欧美一区| 黄频高清免费视频| 99国产精品99久久久久| 99re6热这里在线精品视频| 高清av免费在线| videos熟女内射| 69精品国产乱码久久久| 丰满饥渴人妻一区二区三| 69av精品久久久久久 | 90打野战视频偷拍视频| 久久影院123| 97在线人人人人妻| 嫁个100分男人电影在线观看| 色婷婷久久久亚洲欧美| 午夜福利在线免费观看网站| 91老司机精品| 一个人免费看片子| 电影成人av| 午夜日韩欧美国产| 午夜福利乱码中文字幕| 青草久久国产| 激情在线观看视频在线高清 | a在线观看视频网站| 精品熟女少妇八av免费久了| 下体分泌物呈黄色| 黄色视频不卡| 两个人看的免费小视频| 一进一出好大好爽视频| 777米奇影视久久| 日韩欧美国产一区二区入口| 亚洲一卡2卡3卡4卡5卡精品中文| 久热爱精品视频在线9| 肉色欧美久久久久久久蜜桃| 国产日韩一区二区三区精品不卡| 日韩欧美一区视频在线观看| 91麻豆av在线| 一个人免费看片子| 国产成人免费观看mmmm| 伊人久久大香线蕉亚洲五| 一区二区三区精品91| 9热在线视频观看99| 俄罗斯特黄特色一大片| 精品国产乱子伦一区二区三区| 国产一卡二卡三卡精品| 大码成人一级视频| 乱人伦中国视频| 视频在线观看一区二区三区| 一级a爱视频在线免费观看| 一夜夜www| xxxhd国产人妻xxx| 欧美黑人欧美精品刺激| 久久影院123| 欧美变态另类bdsm刘玥| 两人在一起打扑克的视频| 老熟妇仑乱视频hdxx| 18在线观看网站| 欧美 日韩 精品 国产| 99热网站在线观看| 久久精品国产亚洲av香蕉五月 | 黄色a级毛片大全视频| 成年人免费黄色播放视频| 咕卡用的链子| 天堂动漫精品| 久久国产精品人妻蜜桃| 久久久欧美国产精品| av又黄又爽大尺度在线免费看| videos熟女内射| 日本撒尿小便嘘嘘汇集6| 女人被躁到高潮嗷嗷叫费观| 免费人妻精品一区二区三区视频| 变态另类成人亚洲欧美熟女 | 波多野结衣一区麻豆| 757午夜福利合集在线观看| 国产伦理片在线播放av一区| 日韩一卡2卡3卡4卡2021年| 一本大道久久a久久精品| 亚洲,欧美精品.| 99久久精品国产亚洲精品| 欧美日韩精品网址| 99在线人妻在线中文字幕 | 三级毛片av免费| 午夜激情av网站| 19禁男女啪啪无遮挡网站| 成年女人毛片免费观看观看9 | 大码成人一级视频| 久久久精品区二区三区| 欧美激情 高清一区二区三区| 亚洲精品av麻豆狂野| 久久精品国产a三级三级三级| 欧美成狂野欧美在线观看| 日本黄色视频三级网站网址 | 两人在一起打扑克的视频| 十八禁高潮呻吟视频| 日本vs欧美在线观看视频| 纯流量卡能插随身wifi吗| 在线观看免费日韩欧美大片| 黑人巨大精品欧美一区二区蜜桃| 国产精品美女特级片免费视频播放器 | 岛国毛片在线播放| 99精品在免费线老司机午夜| 亚洲第一青青草原| 丰满迷人的少妇在线观看| 人妻一区二区av| 精品国内亚洲2022精品成人 | 欧美+亚洲+日韩+国产| 久久精品91无色码中文字幕| 色综合婷婷激情| www.999成人在线观看| 人妻久久中文字幕网| 男人舔女人的私密视频| 亚洲av国产av综合av卡| 男男h啪啪无遮挡| 国产男靠女视频免费网站| 欧美精品一区二区免费开放| 欧美国产精品va在线观看不卡| 1024香蕉在线观看| 一本—道久久a久久精品蜜桃钙片| 欧美成人午夜精品| 极品教师在线免费播放| 国产一区二区 视频在线| 精品亚洲成国产av| 十八禁人妻一区二区| 一本综合久久免费| 在线天堂中文资源库| 精品久久蜜臀av无| 日韩中文字幕欧美一区二区| 黑丝袜美女国产一区| 法律面前人人平等表现在哪些方面| 韩国精品一区二区三区| 桃红色精品国产亚洲av| 热99国产精品久久久久久7| 精品人妻熟女毛片av久久网站| 中文字幕色久视频| 国产精品久久久av美女十八| 亚洲欧美日韩高清在线视频 | 99热网站在线观看| 国产在线观看jvid| 久久99热这里只频精品6学生| 成年人免费黄色播放视频| 亚洲中文日韩欧美视频| 国产午夜精品久久久久久| 大片免费播放器 马上看| 黄频高清免费视频| av免费在线观看网站| 欧美成狂野欧美在线观看| 欧美精品亚洲一区二区| 日韩大码丰满熟妇| 国产视频一区二区在线看| 久久午夜亚洲精品久久| 亚洲伊人色综图| 十分钟在线观看高清视频www| 欧美黄色片欧美黄色片| 午夜免费鲁丝| 久久精品人人爽人人爽视色| 丝袜美足系列| 99riav亚洲国产免费| 黄色 视频免费看| 久久这里只有精品19| 精品亚洲乱码少妇综合久久| 亚洲人成伊人成综合网2020| 国产精品麻豆人妻色哟哟久久| 国产极品粉嫩免费观看在线| 国产免费av片在线观看野外av| 亚洲情色 制服丝袜| 欧美日本中文国产一区发布| 欧美日韩精品网址| 国产色视频综合| 成人av一区二区三区在线看| 欧美另类亚洲清纯唯美| 宅男免费午夜| 国产99久久九九免费精品| av网站免费在线观看视频| 国产日韩欧美视频二区| 男女免费视频国产| 男人舔女人的私密视频| 成人国语在线视频| 美女午夜性视频免费| 黑人欧美特级aaaaaa片| 人妻 亚洲 视频| 人人澡人人妻人| 老司机影院毛片| 下体分泌物呈黄色| 久久九九热精品免费| 久久久精品区二区三区| 国产成人av教育| 久久天堂一区二区三区四区| 国产精品电影一区二区三区 | 夜夜爽天天搞| 久久久精品区二区三区| 久久免费观看电影| 久久久国产欧美日韩av| 一级毛片电影观看| 大陆偷拍与自拍| 一级a爱视频在线免费观看| 后天国语完整版免费观看| www.自偷自拍.com| 亚洲精品国产色婷婷电影| 国产欧美亚洲国产| 亚洲国产欧美网| 欧美成狂野欧美在线观看| 乱人伦中国视频| 中文字幕色久视频| 一二三四社区在线视频社区8| 中文字幕高清在线视频| 天天添夜夜摸| 黄色 视频免费看| 十分钟在线观看高清视频www| 丝瓜视频免费看黄片| 国产aⅴ精品一区二区三区波| 日本黄色日本黄色录像| 香蕉久久夜色| 麻豆av在线久日| 老汉色∧v一级毛片| 久久精品国产99精品国产亚洲性色 | 高潮久久久久久久久久久不卡| 十八禁网站网址无遮挡| 欧美日韩av久久| 麻豆av在线久日| 12—13女人毛片做爰片一| 久久久精品94久久精品|