• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    FEM investigation of surface acoustic waves propagating in SiO2/IDT/AlN/Diamond multilayered structure

    2021-11-08 03:06:32ZHANGZuweiLIXiaofeiYUANYupengYANGJing

    ZHANG Zuwei, LI Xiaofei, YUAN Yupeng, YANG Jing

    (Chongqing Acoustic-Optic-Electric Corporation, China Electronic Technology Group Corporation, Chongqing 400060, P.R.China)

    Abstract: In this paper, the finite element method(FEM)simulation based on COMSOL software is applied to investigate the SAWs propagating in the SiO2/IDT/AlN/Diamond multilayered structure.The dispersion properties are researched, the conversion of SAW to PSAW is visually presented, and the influences of the Al electrode thickness and SiO2 buffer layer thickness to the SAWs are investigated.At last, a series of SAW resonators based on the SiO2/IDT/AlN/Diamond multilayered structure are fabricated by micromachining, and their frequency responses are detected.The experimental results are found to be mainly consistent with the simulated ones.And the 1st mode SAW in the SiO2/IDT/AlN/Diamond multilayered structure is believed to have the great potential in the further SAW device applications.

    Keywords:surface acoustic wave(SAW); FEM simulation; multilayered structure

    1 Introduction

    Resent years, diamond has attracted great interests because of its highest surface acoustic wave(SAW)velocity among all materials.If a piezoelectric layer, such as Zinc Oxide(ZnO)or Aluminum Nitride(AlN), is prepared on top of the diamond substrate, the multilayered structure is supposed to be the most promising material for the GHz range high frequency SAW devices, which is urgently demanded by the fast growing of information and communication media.AlN films have the highest acoustic wave velocity among all piezoelectric materials, fairly good electromechanical coupling coefficients and temperature stability, excellent mechanical and chemical qualities.So it is seems to be the most attractive candidate for diamond-based high frequency SAW devices[1-3].

    However the propagation properties of the SAW in multilayered structures are quite different with that in the monolithic ones.The velocity dispersion and electromechanical coupling coefficient(K2)dispersion must be considered, because of their effects on the inter-digital transducers(IDTs)response.Many efforts have been done to describe the dispersion behaviors of SAWs in the multilayered structures[4-10], such as theoretical studies, finite element modeling(FEM)simulations, or experimental investigations.But most of the research results are formulas and curves, few of them present the visual particle vibrations of different SAW modes at surfaces, geometries and interface.

    In this paper, a FEM approach is presented to investigate the SAW dispersion behaviors in multilayered structure.The commercial FEM software COMSOL is used to simulate the first three SAW modes propagating in the AlN films on diamond substrates.The velocity dispersion curves andK2dispersion curves are calculated based on the simulation results.The complex particle vibrations of different wave modes are presented to visually show the conversion of SAW to pseudo SAW(PSAW)in the conditions of varied AlN film thickness.Moreover, the influences of the Aluminum(Al)electrode thickness and Silicon Dioxide(SiO2)buffer layer thickness to the propagation properties of the SAWs are investigated.In order to prove the simulated results, some SAW resonators based on the 1stmode of the multilayered structure are fabricated and their frequency responses are detected.The test results show well coherence with the simulated ones.

    2 Modeling

    Considering the periodicity of the IDTs of the SAW devices, the propagation property in one periodic unit can represent that in the whole substrate.The simplified 2D FEM model of the SiO2/IDT/AlN/Diamond multilayered structure is established by COMSOL, as seen in Fig.1.The SiO2layer is included because it is usually used as the protection and temperature compensative layer.According to the most commonly used fabrication process,(002)AlN film with c-axis perpendicular to the substrate is selected.The top boundary is set as free, the bottom boundary is set as settled, the left and the right boundaries are set as periodic, and all the inner boundaries are set as continuous.The electric excitation is applied on the Al electrodes.The geometry characters are listed in Tab.1 and the material characters are listed in Tab.2.

    Tab.2 Material characters of the FEM model

    Fig.1 Simplified 2D FEM model of multilayered structure

    Tab.1 Geometry characters of the FEM model

    3 Calculations

    By using the FEM simulations(modal and harmonic analysis), the frequency response curve of the IDT admittance can be obtained, as shown in Fig.2.The acoustic wave eigenmodes propagating in the multilayered structure can be found out from the admittance curve.The acoustic wave velocity of each eigenmode may be calculated from the poles and zeros of the obtained admittance curve around the resonance frequency.The poles of the admittance are associated with modes for shorted boundary conditions and the zeros with modes for free-circuit boundary conditions on the surface.The electro-mechanical coupling coefficientK2is obtained as:

    Fig.2 IDT admittance curve of the surface acoustic waves in the multilayered structure

    K2=2(vo-vm)/vo,

    (1)

    wherevois the velocity for free-circuit boundary conditions andvmis the velocity for shorted boundary conditions[6-7].

    3.1 Phase velocity dispersion curves of the first three modes

    Fig.3 shows the phase velocity(v)dispersion curves of the first three modes in the SiO2/IDT/AlN/Diamond multilayered structure when the thickness of Al electrode layerh1is set to be 0.025λ, the thickness of SiO2layerh2is set to zero, and the thickness of AlN layerhis set to range from 0.025λto 1λ.The curves are plotted as functions of the film thickness ratio(h/λ).The phase velocity of each mode decreases with the increase of the film thickness ratio.

    Fig.3 Phase velocity dispersion curves of the first three modes

    For the 0thmode, when the thickness ratio is 0.025, the phase velocity is about 9 916 m/s, approaching to the SAW velocity in diamond(vSAW-Diamond≈10 934 m/s)[4].The phase velocity decreases to 5 816 m/s when the thickness ratio increases to 1, approaching to the SAW velocity in AlN(vSAW-AlN≈5 438 m/s)[4].The 0thmode is considered to be Rayleigh wave in the whole thickness ratio range.Its phase velocity is always smaller than the bulk shear wave in the diamond substrate(vS≈12 323 m/s), so no energy leaks into the substrate[3-4].Fig.4a and Fig.4b illustrate the simulated visual particle vibrations of the 0thmode in the conditions ofh/λ=1 andh/λ=0.025 respectively.The intensively elliptical vibrations around the surface which are associated with Rayleigh waves are seen.The vibration shapes hardly change in both the conditions and no strain distribution deep in the substrate is found.This means the 0thmode keeps being Rayleigh wave and no energy leakage exists.The vibration amplitude in the conditions ofh/λ=1 is much larger than that in the conditions ofh/λ=0.025, because the thicker piezoelectric layer can output larger stress and strain.

    Fig.4 Particle vibrations of the 0th mode in the conditions of h/λ=1 and h/λ=0.025

    For the 1stmode and the 2ndmode, when the thickness ratio is close to zero, the phase velocities are about 17 120 m/s and 17 028 m/s respectively, approaching to the bulk longitudinal wave velocity in diamond(vL≈18 500 m/s)[4].It is considered that the 1stmode and the 2ndmode are SAWs when the phase velocity is smaller thanvS.But they transform into the PSAWs with the decrease of the thickness ratio and the increase of velocity.To prove this, Fig.5a and Fig.5b illustrate the visual particle vibrations of the 1stmode in the conditions ofh/λ=0.8 andh/λ=0.05, Fig.6a and Fig.6b illustrate the visual particle vibrations of the 2ndmode in the conditions ofh/λ=0.8 andh/λ=0.2.Obviously, in the conditions ofh/λ=0.8 andv

    Fig.5 Particle vibrations of the 1th mode in the conditions of h/λ=0.8 and h/λ=0.05

    Fig.6 Particle vibrations of the 2th mode in the conditions of h/λ=0.8 and h/λ=0.2

    3.2 K2 dispersion curves for the first three modes

    TheK2dispersion curves of the first three modes in the SiO2/IDT/AlN/Diamond multilayered structure are shown in Fig.7, when the thickness of Al electrode layerh1is set to be 0.025λ, the thickness of SiO2layerh2is set to zero, and the thickness of AlN layerhis set to range from 0.025λto 1λ.For the 0thmode, when the film thickness ratio increases, theK2increases and shows the first relative maximum value(0.12%)ath/λ=0.15.When the film thickness ratio increases from 0.4 to 1, theK2increases to 0.17%.The 0thmode is considered to be the Rayleigh wave and show very lowK2values in the wholeh/λrange.It is because Rayleigh wave coupling coefficient maximum is exhibited along c-axis[11], but the c-axis of(002)AlN film presented in the model is perpendicular to the substrate.

    Fig.7 K2 dispersion curves of the first three modes

    For the 1stmode, theK2keeps in a high level(higher than 1.07%)in theh/λrange from 0.35 to 0.75, and the maximum value of 1.32% is obtained ath/λ=0.45.For the 2ndmode, when the film thickness ratio increases, theK2shows the first relative maximum value(0.12%)ath/λ=0.1 and the second relative maximum value(0.79%)ath/λ=0.7.As a result, the 1stmode is considered to be most usable because of its maximumK2value and broad bandwidth for highK2values.Thus the influences of the Al electrode layer and SiO2layer to the 1stmode will be investigated in the following parts.

    3.3 The 1st mode propagating in the structure with different SiO2 layer thicknesses

    For the 1stmode, when the thickness of Al electrode layerh1is set to be 0.025λ, a series of phase velocities dispersion curves andK2dispersion curves with different SiO2layer thicknessh2are obtained, as shown in Fig.8a and Fig.8b respectively.It can be seen from Fig.8a thath2hardly affects the phase velocities in theh/λrange from 0.7 to 1, but the phase velocity variation increases with the decrease of theh/λ.When theh/λis close to zero, the velocity of the mode with SiO2layer thickness of 0.1λdecreases to about 11 000 m/s and is much smaller than that with SiO2layer thickness of 0λ.It is because the bulk longitudinal wave velocityvLis slowed down by the SiO2layer.It can be seen from Fig.8b that the maximumK2values slightly increases and shifts to higherh/λwith the increase of the SiO2layer thickness at theh/λrange from 0.4 to 0.8, and the bandwidth for highK2values remarkably narrowed.The relative maximum values at theh/λrange from 0.05 to 0.15, where indicates the PSAW region, is obtained.The relative maximum values increase from zero to 0.23% as the SiO2layer thickness increasing from zero to 0.1λ.So, except for the protection and the temperature compensation, it is believed that the SiO2layer shows few beneficial influences on the usage of the 1stmode in the presented multilayered structure.

    Fig.8 Phase velocities dispersion curves and K2 dispersion curves with different SiO2 layer thickness

    3.4 The 1st mode propagating in the structure with different Al electrode layer thicknesses

    For the 1stmode, when the thickness of SiO2electrode layerh2is set to be zero, a series of phase velocities dispersion curves andK2dispersion curves with different Al electrode layer thicknessh1are obtained, as shown in Fig.9a and Fig.9b respectively.It can be seen from Fig.9a thath2hardly affects the phase velocities in theh/λrange from 0.3 to 1, but the phase velocity variation increases with the decrease of theh/λ.When theh/λis close to zero, the velocity of the mode with Al layer thickness of 0.1λdecreases to about 11 500 m/s and is much smaller than that with Al layer thickness of 0.025λ.It is because the bulk longitudinal wave velocityvLis slowed down by the Al layer.It can be seen from Fig.9b that the maximumK2value increases from 1.32% to 1.91% with the increase of the Al layer thickness at theh/λrange from 0.4 to 0.8, where indicates the SAW region, and the bandwidth for highK2values hardly narrowed.In the PSAW region, at theh/λrange from 0.05 to 0.15, the Al layer show few influence on theK2curves.So it is considered that advisably increasing the Al layer thickness can considerably increase theK2values.

    Fig.9 Phase velocities dispersion curves and K2 dispersion curves with different Al electrode layer thickness

    As a result, the 1stmode of the SiO2/IDT/AlN/Diamond multilayered structure with the Al electrode layer of 0.1λ, SiO2layer of 0λand the film thickness ratio of 0.6 is believed to have great potential for the SAW device application.Its phase velocity andK2are calculated as 9 420 m/s and 1.91% respectively.To prove the results discussed, some SAW resonators based on the 1stmode are fabricated and detected in the following parts.

    4 Experiments

    In order to prove the results discussed above, some SAWresonators based on the 1stmode of the SiO2/IDT/AlN/Diamond multilayered structure are fabricated and their frequency responses are detected.Three types of SAW resonators with different IDTs periods andh/λare selected, as shown in Tab.3.Their electro-mechanical coupling coefficients at these wavelengths are relatively high for the 1stmode according to the simulation.

    Tab.3 Main structure parameters of the designed SAW resonators

    A commercial polycrystalline diamond wafer, with the thickness of 400 μm and the surface roughness of 2 nm, is applied as the substrate.The AlN films are prepared by radio frequency(RF)magnetron sputtering, the Al electrodes are prepared by vacuum evaporation depositing, and the SiO2films are prepared by plasma-enhanced chemical vapor depositing(PECVD).The crystallization of the AlN film is investigated by an X-ray diffractometer(XRD, D/max 2500PC).The frequency responses of the SAW resonators are detected by a vector network analyzer(HP 8510).

    5 Results and discussions

    Fig.10 shows the X-ray rocking curve of the RF sputtered AlN film.The peak at about 18.5°of the rocking curve corresponds to the diffraction from the(002)plane of AlN which indicates a perfect perpendicularity of the c-axis to the substrate.The fairly small full width height maximum(FWHM)of 1.995°indicates the high quality of crystallization and piezoelectricity.

    Fig.10 Rocking curve of the AlN film

    There are three types of SAW devices are fabricated, which micrographs are shown in Fig 11.Their S21 curves are detected by the vector network analyzer and their impedance curves can be obtained by the transformation of the S21 curves.The resonant frequencyfoand the anti-resonant frequencyfmof each mode can be picked out from the impedance curves.The velocity can be calculated byvo=λ×foand theK2can be calculated byK2=2(fo-fm)/fo.Fig.12 and Fig.13 illustrate the compare of phase velocity andK2between the fabricated devices and the simulated results.It can be seen that their variation trends are consistent with the simulation results.But the detected velocities are larger than the simulation results and the detectedK2are smaller than the simulation results.

    Fig.11 Micrographs of the fabricated SAW devices on the wafer and the IDTs

    Fig.12 Compare of the velocities between the simulated results and detected ones

    Fig.13 Compare of the K2 between the simulated results and detected ones

    In order to understand the reason for this case, the deice 1# is selected as an example and is annealed in air at 400 ℃ for 2 hours.The frequency responses of the device 1# before and after annealing are shown in Fig.14a and Fig.14b respectively.It is clear that the annealing causes the center frequency downward shift from 3.553 GHz to 3.407 GHz and the peak value shifts from-30.0 dB to-26.3 dB.The velocity shifts from 9 948 m/s to 9 539 m/s, becoming closer to the simulated result(9 394 m/s).Therefore, it is believed that because of the residual stresses produced in the fabrication process of the films the detected velocities are higher that the simulation ones.The thermal annealing relieves the residual stresses by creating defects and dislocations, which result in the reduction of the acoustic velocities[8-9,12].Because of the high velocity of SAW in the Diamond substrate and the AlN thin film, the frequencies of the fabricated SAW resonators reach to about 3.5 GHz, which is much higher than the traditional SAW resonators.But the rough surface of the AlN film causes the degeneration of the insertion loss performance.If some high surface quality piezoelectric film materials, like single crystal lithium niobate film prepared by smart-cut, are used instead of AlN film, the SAW devices based on diamond multilayered structure will performance much lower insertion loss and can be applied in 5G communication.

    Fig.14 Frequency responses of device 1# before and after annealing

    6 Conclusions

    In this paper, the FEM simulations are applied to analysis the SAW propagation in the SiO2/IDT/AlN/Diamond multilayered structure.The velocity dispersion curves andK2dispersion curves are calculated based on the simulation results.The complex particle vibrations of different wave modes are presented and visually show the translation of the SAWs to the pseudo SAWs(PSAWs)in the various conditions of AlN film thickness.The influences of the Al electrode thickness and SiO2layer thickness to the propagation properties of the SAWs are investigated.In order to prove the simulated results, some SAW resonators based on the 1stmode of the multilayered structure are fabricated and their frequency responses are detected.The experimental results are mainly consistent with the theoretical ones except the little larger detected velocities induced by the residual stresses produced in the fabrication process of the films.After the thermal annealing, the detected velocities are reduced and the smaller error between the experimental and simulated results is obtained.Therefore, the 1stmode in the SiO2/AlN/Diamond multilayered structure is believed to have great potential in further SAW devices.

    久久精品亚洲精品国产色婷小说| 变态另类成人亚洲欧美熟女| 香蕉久久夜色| 好看av亚洲va欧美ⅴa在| 每晚都被弄得嗷嗷叫到高潮| 国产黄a三级三级三级人| 亚洲精品粉嫩美女一区| 青草久久国产| 后天国语完整版免费观看| 99精品久久久久人妻精品| 免费在线观看成人毛片| 91在线观看av| 又紧又爽又黄一区二区| 欧美午夜高清在线| 嫁个100分男人电影在线观看| 精品久久久久久成人av| 欧美精品亚洲一区二区| 日本免费一区二区三区高清不卡| 十八禁网站免费在线| 这个男人来自地球电影免费观看| 欧美大码av| 欧美精品亚洲一区二区| 宅男免费午夜| www.www免费av| 精品久久久久久成人av| 侵犯人妻中文字幕一二三四区| 天天躁狠狠躁夜夜躁狠狠躁| 国产黄a三级三级三级人| 天天添夜夜摸| 免费在线观看成人毛片| 熟妇人妻久久中文字幕3abv| 久久精品人妻少妇| 999久久久精品免费观看国产| 国产三级在线视频| 少妇被粗大的猛进出69影院| 亚洲中文字幕一区二区三区有码在线看 | 香蕉国产在线看| 夜夜爽天天搞| 在线播放国产精品三级| 亚洲av成人一区二区三| 亚洲va日本ⅴa欧美va伊人久久| 亚洲一区中文字幕在线| 国产视频一区二区在线看| 精品国产亚洲在线| 日韩欧美 国产精品| 欧美三级亚洲精品| 午夜两性在线视频| 身体一侧抽搐| 亚洲全国av大片| 国产三级在线视频| 男女下面进入的视频免费午夜 | 亚洲一码二码三码区别大吗| 视频在线观看一区二区三区| 麻豆av在线久日| 欧美日韩一级在线毛片| 可以免费在线观看a视频的电影网站| 亚洲国产日韩欧美精品在线观看 | 午夜激情福利司机影院| 成人精品一区二区免费| 午夜福利18| 成在线人永久免费视频| 国产单亲对白刺激| 亚洲avbb在线观看| 丰满的人妻完整版| 亚洲第一青青草原| 精品国产乱码久久久久久男人| 最近最新免费中文字幕在线| 热99re8久久精品国产| 亚洲男人的天堂狠狠| 在线国产一区二区在线| 一边摸一边做爽爽视频免费| 97碰自拍视频| 国产成年人精品一区二区| 亚洲九九香蕉| 高清毛片免费观看视频网站| 午夜福利成人在线免费观看| netflix在线观看网站| 麻豆久久精品国产亚洲av| 91成人精品电影| 男女床上黄色一级片免费看| 一个人观看的视频www高清免费观看 | 男人舔女人下体高潮全视频| 国产在线观看jvid| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲va日本ⅴa欧美va伊人久久| 久久青草综合色| 久久久久精品国产欧美久久久| 亚洲欧洲精品一区二区精品久久久| 精品第一国产精品| 国产99久久九九免费精品| 我的亚洲天堂| 免费一级毛片在线播放高清视频| 可以在线观看毛片的网站| 99国产精品99久久久久| 国产激情偷乱视频一区二区| 亚洲av成人一区二区三| 婷婷亚洲欧美| 欧美在线黄色| 最近最新免费中文字幕在线| 久久午夜综合久久蜜桃| 欧美亚洲日本最大视频资源| 午夜福利免费观看在线| 久久久国产成人精品二区| netflix在线观看网站| 国产高清视频在线播放一区| 久久精品影院6| 精品欧美国产一区二区三| 免费观看精品视频网站| 精品人妻1区二区| 精品国产乱码久久久久久男人| 国产成人欧美在线观看| 久久国产精品影院| av欧美777| 老鸭窝网址在线观看| www.精华液| 精品少妇一区二区三区视频日本电影| 啦啦啦 在线观看视频| 亚洲成人久久爱视频| 精品国产国语对白av| 婷婷精品国产亚洲av在线| 久久人妻福利社区极品人妻图片| 亚洲欧美激情综合另类| 欧美乱码精品一区二区三区| 国产精品香港三级国产av潘金莲| 69av精品久久久久久| 可以免费在线观看a视频的电影网站| 少妇熟女aⅴ在线视频| 亚洲自拍偷在线| 欧美黑人欧美精品刺激| 国产精品精品国产色婷婷| 满18在线观看网站| 久久久精品欧美日韩精品| 日本a在线网址| 欧美zozozo另类| 欧美黄色片欧美黄色片| 国产黄a三级三级三级人| 麻豆av在线久日| 夜夜夜夜夜久久久久| 中文在线观看免费www的网站 | 91九色精品人成在线观看| 亚洲三区欧美一区| www.www免费av| 校园春色视频在线观看| 999精品在线视频| 国产黄a三级三级三级人| 免费在线观看亚洲国产| 一级黄色大片毛片| 亚洲av日韩精品久久久久久密| 欧美日韩一级在线毛片| 国产精品乱码一区二三区的特点| 精品乱码久久久久久99久播| 国内精品久久久久久久电影| 欧美绝顶高潮抽搐喷水| 男人舔女人下体高潮全视频| 欧美日韩一级在线毛片| 亚洲午夜精品一区,二区,三区| 久久亚洲精品不卡| 亚洲人成电影免费在线| 欧美不卡视频在线免费观看 | 视频在线观看一区二区三区| 久久久国产成人精品二区| 99国产精品99久久久久| 一级黄色大片毛片| 国产精品免费视频内射| 欧美亚洲日本最大视频资源| 97人妻精品一区二区三区麻豆 | 久久久久国内视频| 国产亚洲欧美98| 成人18禁高潮啪啪吃奶动态图| netflix在线观看网站| 亚洲五月色婷婷综合| 久久精品aⅴ一区二区三区四区| 免费看美女性在线毛片视频| 狂野欧美激情性xxxx| 亚洲国产日韩欧美精品在线观看 | 在线视频色国产色| 天堂动漫精品| 一级片免费观看大全| 99久久国产精品久久久| 成人18禁高潮啪啪吃奶动态图| 成人永久免费在线观看视频| 久久婷婷成人综合色麻豆| 国内揄拍国产精品人妻在线 | 在线av久久热| 欧美一级a爱片免费观看看 | 日本黄色视频三级网站网址| 亚洲成av片中文字幕在线观看| 一进一出抽搐动态| 人人妻人人看人人澡| av天堂在线播放| 69av精品久久久久久| 免费在线观看日本一区| 国产三级在线视频| 免费看十八禁软件| 观看免费一级毛片| 欧美日本亚洲视频在线播放| 又大又爽又粗| 可以在线观看毛片的网站| 国产一区在线观看成人免费| 中文字幕人妻熟女乱码| 亚洲国产精品合色在线| 99精品欧美一区二区三区四区| 免费在线观看亚洲国产| 亚洲熟女毛片儿| 露出奶头的视频| 国产久久久一区二区三区| 悠悠久久av| 日本免费a在线| 高清在线国产一区| 亚洲国产毛片av蜜桃av| 国产熟女午夜一区二区三区| 一本大道久久a久久精品| 少妇被粗大的猛进出69影院| 老司机午夜福利在线观看视频| 日本成人三级电影网站| 听说在线观看完整版免费高清| svipshipincom国产片| 老汉色∧v一级毛片| 亚洲七黄色美女视频| 两个人看的免费小视频| 国产野战对白在线观看| 久久久久九九精品影院| 不卡av一区二区三区| 他把我摸到了高潮在线观看| 两人在一起打扑克的视频| 精品福利观看| 亚洲狠狠婷婷综合久久图片| 黑人欧美特级aaaaaa片| 亚洲熟女毛片儿| 欧美黑人精品巨大| 久久久国产精品麻豆| 搡老妇女老女人老熟妇| 欧美激情高清一区二区三区| 99久久精品国产亚洲精品| 亚洲av成人一区二区三| 亚洲国产欧美日韩在线播放| 亚洲激情在线av| 亚洲黑人精品在线| 中出人妻视频一区二区| 国产亚洲精品一区二区www| 波多野结衣高清无吗| 日韩欧美三级三区| 搡老妇女老女人老熟妇| 久99久视频精品免费| 日韩大尺度精品在线看网址| 老司机在亚洲福利影院| 久久国产精品男人的天堂亚洲| 精品国产乱码久久久久久男人| 女人被狂操c到高潮| 搡老熟女国产l中国老女人| 嫩草影视91久久| 极品教师在线免费播放| 人妻丰满熟妇av一区二区三区| 成人三级黄色视频| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜激情av网站| 久久久久久国产a免费观看| 久久伊人香网站| 欧美日本亚洲视频在线播放| 欧美日韩福利视频一区二区| 日本黄色视频三级网站网址| 久久久久久久精品吃奶| 欧美日本视频| 国产一卡二卡三卡精品| 午夜福利成人在线免费观看| 久久欧美精品欧美久久欧美| 欧美乱妇无乱码| 一本大道久久a久久精品| 久久中文看片网| 欧美黄色淫秽网站| 精品国产亚洲在线| 欧美黑人巨大hd| 亚洲精品av麻豆狂野| 国产精品香港三级国产av潘金莲| 国产亚洲欧美98| 日韩欧美在线二视频| 老熟妇乱子伦视频在线观看| 波多野结衣av一区二区av| 在线免费观看的www视频| 国产一区二区在线av高清观看| 国产欧美日韩一区二区精品| 黄色丝袜av网址大全| 亚洲最大成人中文| 午夜免费成人在线视频| 亚洲av电影在线进入| 黄色片一级片一级黄色片| 精品国产乱子伦一区二区三区| 夜夜看夜夜爽夜夜摸| 1024香蕉在线观看| 精品久久久久久久末码| 日本在线视频免费播放| 熟女电影av网| 1024香蕉在线观看| 俺也久久电影网| 欧美久久黑人一区二区| 亚洲中文字幕日韩| 亚洲七黄色美女视频| 一级毛片精品| 亚洲第一青青草原| 法律面前人人平等表现在哪些方面| 亚洲 国产 在线| 久久天躁狠狠躁夜夜2o2o| 搡老熟女国产l中国老女人| АⅤ资源中文在线天堂| 精品久久久久久久久久免费视频| av欧美777| 免费看日本二区| 999久久久国产精品视频| 亚洲精品久久国产高清桃花| 又紧又爽又黄一区二区| 51午夜福利影视在线观看| 精品国产乱子伦一区二区三区| 不卡一级毛片| 午夜免费激情av| 老熟妇乱子伦视频在线观看| 满18在线观看网站| 欧美激情久久久久久爽电影| 搡老妇女老女人老熟妇| 又黄又粗又硬又大视频| 搡老妇女老女人老熟妇| 熟妇人妻久久中文字幕3abv| 国产私拍福利视频在线观看| 无人区码免费观看不卡| 国产精品二区激情视频| 亚洲中文av在线| 免费在线观看黄色视频的| 国产熟女xx| 精品不卡国产一区二区三区| 国产免费av片在线观看野外av| 黄片大片在线免费观看| 午夜久久久在线观看| 亚洲国产高清在线一区二区三 | 男女之事视频高清在线观看| 中文字幕最新亚洲高清| 亚洲 国产 在线| 免费观看人在逋| 久久久久精品国产欧美久久久| 悠悠久久av| 亚洲性夜色夜夜综合| 精品日产1卡2卡| 侵犯人妻中文字幕一二三四区| 深夜精品福利| bbb黄色大片| 精品国产国语对白av| 欧美在线黄色| 一区二区三区精品91| 看片在线看免费视频| 黄片小视频在线播放| 法律面前人人平等表现在哪些方面| 精品国产一区二区三区四区第35| 99久久精品国产亚洲精品| 精品不卡国产一区二区三区| 露出奶头的视频| 中文字幕最新亚洲高清| 亚洲色图av天堂| 美女午夜性视频免费| 少妇裸体淫交视频免费看高清 | 无遮挡黄片免费观看| 国产又色又爽无遮挡免费看| 亚洲国产欧美一区二区综合| 麻豆国产av国片精品| xxx96com| 韩国av一区二区三区四区| 天天一区二区日本电影三级| 国产免费av片在线观看野外av| 亚洲一卡2卡3卡4卡5卡精品中文| 韩国av一区二区三区四区| 日韩成人在线观看一区二区三区| cao死你这个sao货| 国产成人av激情在线播放| 韩国精品一区二区三区| 欧美在线一区亚洲| 制服人妻中文乱码| 日本五十路高清| 99久久无色码亚洲精品果冻| 黑人欧美特级aaaaaa片| 99国产极品粉嫩在线观看| 18美女黄网站色大片免费观看| 日日摸夜夜添夜夜添小说| 97人妻精品一区二区三区麻豆 | 91老司机精品| 精品人妻1区二区| 国产精品 国内视频| 一本综合久久免费| 性色av乱码一区二区三区2| 99久久99久久久精品蜜桃| 淫秽高清视频在线观看| 看片在线看免费视频| 亚洲精品国产精品久久久不卡| 亚洲在线自拍视频| 亚洲精品国产精品久久久不卡| 日韩大尺度精品在线看网址| 国产精品九九99| 男男h啪啪无遮挡| 亚洲av日韩精品久久久久久密| 国产激情偷乱视频一区二区| 精品久久久久久久毛片微露脸| 欧美最黄视频在线播放免费| 国产一区二区三区在线臀色熟女| 精品卡一卡二卡四卡免费| 国产精品爽爽va在线观看网站 | 亚洲男人天堂网一区| √禁漫天堂资源中文www| 国产主播在线观看一区二区| 最近最新中文字幕大全电影3 | 欧美一级毛片孕妇| 国内揄拍国产精品人妻在线 | 成人三级黄色视频| 色av中文字幕| 国产精品久久久人人做人人爽| 午夜久久久在线观看| 国产主播在线观看一区二区| 国产亚洲精品综合一区在线观看 | 看免费av毛片| 我的亚洲天堂| 国产免费av片在线观看野外av| 欧美激情 高清一区二区三区| 性欧美人与动物交配| 99国产精品99久久久久| 亚洲精品色激情综合| 国产v大片淫在线免费观看| 在线观看www视频免费| 人成视频在线观看免费观看| 国产精品亚洲美女久久久| АⅤ资源中文在线天堂| 精品久久久久久久久久免费视频| 日韩精品免费视频一区二区三区| 精品午夜福利视频在线观看一区| 亚洲美女黄片视频| 亚洲免费av在线视频| 久久精品人妻少妇| 女警被强在线播放| 一区二区三区高清视频在线| tocl精华| 在线观看www视频免费| 国产精华一区二区三区| 亚洲成人免费电影在线观看| 高清毛片免费观看视频网站| 中文亚洲av片在线观看爽| 成人午夜高清在线视频 | 满18在线观看网站| 欧美精品啪啪一区二区三区| av视频在线观看入口| 欧美绝顶高潮抽搐喷水| 精品免费久久久久久久清纯| 欧美国产精品va在线观看不卡| 久久人妻福利社区极品人妻图片| 日日夜夜操网爽| 91av网站免费观看| 久久久国产精品麻豆| 亚洲精品美女久久av网站| 国产91精品成人一区二区三区| 久久婷婷人人爽人人干人人爱| 中文字幕人成人乱码亚洲影| 伊人久久大香线蕉亚洲五| 欧美+亚洲+日韩+国产| 亚洲专区中文字幕在线| 一边摸一边做爽爽视频免费| 午夜日韩欧美国产| 亚洲午夜精品一区,二区,三区| 嫁个100分男人电影在线观看| 久久 成人 亚洲| 欧美黑人精品巨大| 一级片免费观看大全| 亚洲天堂国产精品一区在线| 妹子高潮喷水视频| 国产91精品成人一区二区三区| 精品熟女少妇八av免费久了| 久久久久久久久中文| 国产高清激情床上av| av福利片在线| 99国产精品一区二区三区| 黄片小视频在线播放| 精品熟女少妇八av免费久了| 不卡一级毛片| av福利片在线| 亚洲真实伦在线观看| 国产av又大| 少妇粗大呻吟视频| 久久久精品国产亚洲av高清涩受| 日本五十路高清| 在线av久久热| 欧美黑人精品巨大| 天堂影院成人在线观看| 亚洲男人天堂网一区| 精品国内亚洲2022精品成人| 亚洲狠狠婷婷综合久久图片| 欧美性长视频在线观看| 免费观看人在逋| 国产精品亚洲美女久久久| 国产成人精品久久二区二区91| 欧美不卡视频在线免费观看 | 精品欧美国产一区二区三| 身体一侧抽搐| aaaaa片日本免费| 美女大奶头视频| 欧洲精品卡2卡3卡4卡5卡区| 中文字幕人妻丝袜一区二区| 精品第一国产精品| 长腿黑丝高跟| 国产亚洲精品综合一区在线观看 | xxxwww97欧美| 国产真人三级小视频在线观看| 亚洲欧洲精品一区二区精品久久久| 99精品欧美一区二区三区四区| 国产激情偷乱视频一区二区| 国产精品自产拍在线观看55亚洲| 99国产精品一区二区三区| 久久亚洲真实| 夜夜看夜夜爽夜夜摸| 一级作爱视频免费观看| 最好的美女福利视频网| 美女扒开内裤让男人捅视频| 91麻豆精品激情在线观看国产| 99精品在免费线老司机午夜| 极品教师在线免费播放| 一本大道久久a久久精品| 精品免费久久久久久久清纯| 黑人巨大精品欧美一区二区mp4| 可以在线观看的亚洲视频| 亚洲精品一区av在线观看| 亚洲第一欧美日韩一区二区三区| 久久亚洲精品不卡| 欧美一级a爱片免费观看看 | 老司机午夜十八禁免费视频| 亚洲国产看品久久| 亚洲天堂国产精品一区在线| 淫秽高清视频在线观看| 欧美不卡视频在线免费观看 | 怎么达到女性高潮| 叶爱在线成人免费视频播放| 激情在线观看视频在线高清| 久久精品成人免费网站| 国产成人欧美| 国产视频内射| 久久精品国产亚洲av香蕉五月| 国产精品一区二区免费欧美| 亚洲狠狠婷婷综合久久图片| 精品福利观看| 一本一本综合久久| 国产精品久久久久久亚洲av鲁大| 亚洲国产精品久久男人天堂| 哪里可以看免费的av片| 中文字幕精品免费在线观看视频| 日本 欧美在线| 老汉色∧v一级毛片| 亚洲成国产人片在线观看| 色综合亚洲欧美另类图片| 一级毛片高清免费大全| 国内毛片毛片毛片毛片毛片| 国产精品一区二区精品视频观看| 午夜精品在线福利| 欧美日本亚洲视频在线播放| 制服人妻中文乱码| 琪琪午夜伦伦电影理论片6080| 免费在线观看视频国产中文字幕亚洲| 国产精品 国内视频| 日韩欧美 国产精品| 成熟少妇高潮喷水视频| 波多野结衣高清作品| 国产伦在线观看视频一区| 最近最新免费中文字幕在线| 欧美亚洲日本最大视频资源| 欧美中文日本在线观看视频| 久久精品aⅴ一区二区三区四区| 免费观看精品视频网站| 丝袜美腿诱惑在线| 女同久久另类99精品国产91| 久99久视频精品免费| 美女午夜性视频免费| 久久精品国产99精品国产亚洲性色| 少妇被粗大的猛进出69影院| 可以在线观看毛片的网站| 国产亚洲精品久久久久5区| 亚洲电影在线观看av| 亚洲人成伊人成综合网2020| 国产精品香港三级国产av潘金莲| 欧美一级a爱片免费观看看 | 精品欧美一区二区三区在线| 91麻豆精品激情在线观看国产| 亚洲国产欧美网| 亚洲黑人精品在线| 身体一侧抽搐| www国产在线视频色| 日韩精品免费视频一区二区三区| 色尼玛亚洲综合影院| 男女午夜视频在线观看| 老司机午夜十八禁免费视频| 国产精品免费视频内射| 国产高清视频在线播放一区| 男女视频在线观看网站免费 | 两个人看的免费小视频| 国产精品日韩av在线免费观看| 在线观看舔阴道视频| 亚洲aⅴ乱码一区二区在线播放 | 午夜免费成人在线视频| 欧洲精品卡2卡3卡4卡5卡区| 国产av不卡久久| 91九色精品人成在线观看| 国产精品 国内视频| 久久久久久九九精品二区国产 | 国产精品一区二区免费欧美| 成在线人永久免费视频| 亚洲av五月六月丁香网| 一级作爱视频免费观看| 18禁黄网站禁片免费观看直播| 观看免费一级毛片| 国产精品爽爽va在线观看网站 | 日本五十路高清| 国产精品 欧美亚洲| 久久精品国产清高在天天线| 日日摸夜夜添夜夜添小说| 少妇裸体淫交视频免费看高清 | 黑人欧美特级aaaaaa片| 亚洲人成77777在线视频|