薛仁風(fēng),豐明,黃宇寧,Matthew Blair,Walter Messier,葛維德
對普通菜豆鐮孢菌枯萎病抗性和抗旱性的影響
薛仁風(fēng)1,豐明1,黃宇寧1,Matthew Blair2,Walter Messier3*,葛維德1*
1遼寧省農(nóng)業(yè)科學(xué)院作物研究所,中國沈陽 110161;2田納西州立大學(xué)農(nóng)業(yè)與環(huán)境科學(xué)系,美國田納西州納什維爾 37209;3進(jìn)化基因組學(xué)公司,美國路易斯安那州拉斐特 80501
【目的】分析普通菜豆的序列及表達(dá)模式特征,并研究其抗枯萎病和抗旱功能,為普通菜豆鐮孢菌枯萎病抗病和抗旱信號調(diào)控網(wǎng)絡(luò)解析及分子育種奠定基礎(chǔ)?!痉椒ā繉﹂_放讀碼框(open reading frame,ORF)進(jìn)行生物信息學(xué)分析,預(yù)測該基因編碼蛋白質(zhì)的理化性質(zhì)、二級結(jié)構(gòu)、信號肽序列,在NCBI中通過Blastp檢索高同源性蛋白序列進(jìn)行序列比對并構(gòu)建系統(tǒng)發(fā)育進(jìn)化樹;利用qRT-PCR技術(shù)分析組織表達(dá)特異性及響應(yīng)枯萎病原菌、干旱脅迫的表達(dá)模式;構(gòu)建過表達(dá)載體,轉(zhuǎn)化發(fā)根農(nóng)桿菌K599菌株,誘導(dǎo)普通菜豆產(chǎn)生轉(zhuǎn)基因不定根系,同時構(gòu)建沉默載體,其體外轉(zhuǎn)錄產(chǎn)物接種普通菜豆,干擾的表達(dá),通過接種鐮孢菌枯萎病原菌和干旱處理,觀察對照、過表達(dá)和基因沉默菜豆植株的表型,進(jìn)行抗病性和抗旱性鑒定,并測定過氧化氫(H2O2)含量、丙二醛(MDA)含量、超氧化物歧化酶(SOD)和過氧化物酶(POD)活性等生理生化指標(biāo)。【結(jié)果】的cDNA序列長471 bp,編碼156個氨基酸組成的蛋白質(zhì)。結(jié)構(gòu)預(yù)測其含有10個strand結(jié)構(gòu),基因編碼產(chǎn)物預(yù)測分子質(zhì)量為38.89 kD,理論為5.21。屬于Dirigent超家族成員,包含10個氨基酸的信號肽序列,屬于外分泌蛋白。PvEG261與豇豆DIR22蛋白親緣關(guān)系最近,達(dá)到91.61%。qRT-PCR結(jié)果顯示,接種枯萎病原菌和干旱脅迫后,該基因的在菜豆根組織中表達(dá)量明顯上升,而且該基因具有明顯的組織表達(dá)特異性,在根中的表達(dá)量最高。接種病原菌和干旱脅迫后,與對照相比,過表達(dá)植株的抗病性和抗旱性水平明顯提高,植株枯萎病發(fā)病程度及缺水造成的萎蔫程度均顯著降低,根中H2O2含量、POD活性、SOD活性均顯著高于對照植株,而MDA含量顯著低于對照植株,而基因沉默植株發(fā)病程度及萎蔫程度均顯著升高,根中H2O2含量、POD活性、SOD活性均顯著低于對照植株,MDA含量則顯著高于對照植株。【結(jié)論】響應(yīng)枯萎病原菌侵染和干旱脅迫,并且正向調(diào)控普通菜豆鐮孢菌枯萎病抗性和抗旱性水平。
普通菜豆;;鐮孢菌枯萎??;干旱脅迫;響應(yīng)機(jī)制
【研究意義】普通菜豆(L.)產(chǎn)量約占全球食用豆類總產(chǎn)量的50%,僅次于大豆和花生,是世界上種植面積最大的食用豆類[1-3]。真菌性土傳病害是造成普通菜豆嚴(yán)重減產(chǎn)的重要原因,其中以尖鐮孢菌菜豆專化型(f.sp.,F(xiàn)op)引起的普通菜豆鐮孢菌枯萎?。‵usarium wilt)最為嚴(yán)重[4]。因此,發(fā)掘并利用普通菜豆優(yōu)異抗病基因資源,能夠為普通菜豆抗枯萎病新品種培育奠定基礎(chǔ),對于理解普通菜豆枯萎病的抗病分子機(jī)制,提升中國普通菜豆抗病育種水平有重要意義。【前人研究進(jìn)展】Dirigent超家族基因是植物重要的抗病響應(yīng)基因,植物寄主通過激活包括Dirigent基因在內(nèi)的多種基因應(yīng)對生物和非生物挑戰(zhàn),在增強(qiáng)不同農(nóng)作物的抗逆性中發(fā)揮潛在作用[5]。Dirigent蛋白參與介導(dǎo)植物中單木酚植物酚的自由基偶聯(lián),從而產(chǎn)生木脂素和木質(zhì)素[6-11],研究表明,木脂素和木質(zhì)素均屬于植物抵御害蟲和微生物的重要化合物,參與寄主防御系統(tǒng)相關(guān)反應(yīng)[12-15]。Dirigent基因在許多植物中都存在多個基因家族成員,包括地衣、蕨類、裸子植物和被子植物[5,16-17]。許多Dirigent基因可被不同類型的非生物和生物脅迫因素誘導(dǎo),包括損傷[16]、干旱、低溫、脫落酸(abscisic acid,ABA)[17]、H2O2、NaCl、聚乙二醇[18]、真菌侵染[19-20]和昆蟲取食[5]等。BURLAT等[6]研究表明Dirigent蛋白被免疫定位在形成層和細(xì)胞壁區(qū)域。在挪威云杉樹皮和形成層接種樹皮甲蟲共生真菌病原體幾周后,接種部位周圍的細(xì)胞被部分或完全木質(zhì)化[21-22]。木質(zhì)化能夠增加寄主細(xì)胞壁強(qiáng)度,從而阻止真菌病原體的傳播,該過程可能是通過誘導(dǎo)Dirigent基因活性引起的[5]。WANG等[23]研究表明,在油菜籽中Dirigent基因組成型表達(dá)條件下,寄主表現(xiàn)出對多種病原真菌抗性的顯著增加。此外,旋蒴苣苔Dirigent基因可以響應(yīng)多種非生物脅迫,包括干旱、CaCl2、ABA、H2O2和乙二醇雙四乙酸(ethylene glycol tetraacetic acid,EGTA),并在非生物脅迫響應(yīng)機(jī)制中發(fā)揮重要作用[17]?!颈狙芯壳腥朦c】普通菜豆是世界上重要的食用豆類糧食作物,但生產(chǎn)中真菌性土傳病害和干旱脅迫嚴(yán)重危害普通菜豆的產(chǎn)量和品質(zhì)。Dirigent基因是響應(yīng)植物生物和非生物脅迫的重要基因,然而,目前關(guān)于普通菜豆Dirigent基因的研究成果依然不多,其表達(dá)特征和生物學(xué)功能更是少有報道?!緮M解決的關(guān)鍵問題】本研究通過分析的序列、組織特異性表達(dá)特征及其在枯萎病原菌侵染、干旱脅迫下的表達(dá)模式,并采用過量表達(dá)和基因沉默技術(shù)驗證其生物學(xué)功能,明確其在枯萎病抗性和抗旱中的作用,為普通菜豆抗病與抗旱機(jī)制解析及分子育種奠定基礎(chǔ)。
的cDNA序列由美國進(jìn)化基因組學(xué)公司W(wǎng)alter Messier教授提供[24]。供試普通菜豆(L.)品種BRB130、普通菜豆鐮孢菌枯萎病原菌FOP-DM01菌株(f.sp.isolate FOP-DM01)由遼寧省農(nóng)業(yè)科學(xué)院保存,病原菌的接種參考XUE等[25]方法;植物過表達(dá)載體p35SGFPGUS+、基因沉默表達(dá)載體pG7R2V和pGHopR1均由美國田納西州立大學(xué)農(nóng)業(yè)與環(huán)境科學(xué)系Matthew Blair教授惠贈;發(fā)根農(nóng)桿菌()K599菌株感受態(tài)細(xì)胞購自上海唯地生物技術(shù)有限公司,限制性內(nèi)切酶、T4-DNA連接酶均購自NEB公司;體外轉(zhuǎn)錄試劑盒(RiboMAXTMLarge Scale RNA Production Systems Kit)購自Promega公司;RNA提取試劑盒、DNA聚合酶、反轉(zhuǎn)錄試劑盒、熒光定量PCR試劑盒購自天根生化科技(北京)有限公司;T載體克隆試劑盒購自寶生物工程(大連)有限公司;PCR引物均由生工生物工程(上海)股份有限公司合成(表1)。
利用ProtParam(https://web.expasy.org/protparam/)在線分析編碼蛋白質(zhì)的理化性質(zhì),利用SignalP軟件在線預(yù)測信號肽序列,利用PSIPRED(http://bioinf.cs.ucl.ac.uk/psipred/)在線預(yù)測蛋白質(zhì)二級結(jié)構(gòu),利用Blastp在線分析軟件(http://blast.ncbi.nlm.nih.gov/Blast.cgi)尋找的同源序列,并分析序列保守結(jié)構(gòu)域。利用MEGA7.0(http://www.megasoftware.net/)構(gòu)建同源進(jìn)化樹。
在未經(jīng)處理的野生型普通菜豆根、莖、葉、花、莢等不同器官中取樣,檢測的組織表達(dá)特異性;將10日齡普通菜豆幼苗接種FOP-DM01菌株后0、24、48、72、96和120 h于根部取樣,以未接種病原菌的普通菜豆根組織作為對照;將10日齡的普通菜豆幼苗浸入含有16.1% PEG6000中處理0、0.5、1、3、6和12 h后于根部取樣,以清水處理為對照,提取總RNA,反轉(zhuǎn)錄獲得cDNA,用于檢測的表達(dá)量。通過qTOWER 2.2實時定量PCR儀(Analytikjena,Germany)分析的相對表達(dá)量。試驗數(shù)據(jù)采用2?ΔΔCT法分析,確定基因的相對表達(dá)量,每個取樣點設(shè)3個重復(fù)。定量PCR引物EG261-F/R根據(jù)的cDNA序列設(shè)計,以普通菜豆的作為內(nèi)參,設(shè)計引物ACT-F/R[26]。
通過設(shè)計引物OE-F/OE-R,在上游和下游分別引入Ⅰ和Ⅰ內(nèi)切酶位點。用Ⅰ和Ⅰ雙酶切的cDNA,然后與經(jīng)過相同雙酶切的p35SGFPGUS+載體連接,構(gòu)建的過表達(dá)載體,命名為p35S-。
通過病毒誘導(dǎo)基因沉默(virus induced gene silencing,VIGS)技術(shù)構(gòu)建的沉默體系,利用引物GS-F/GS-R擴(kuò)增的ORF中412 bp片段,并在上游和下游引入HⅠ和Ⅰ酶切位點,將擴(kuò)增片段導(dǎo)入pG7R2V載體,命名為pG7R2V-412。將pG7R2V質(zhì)粒經(jīng)過Ⅰ酶切、連接后,用作空載體對照,命名為pG7R2V-CK。
表1 本試驗所用引物
下劃線序列代表限制性內(nèi)切酶位點
The underlined sequence represents the restriction endonuclease site
參考ESTRADA-NAVARRETE等[27]方法進(jìn)行轉(zhuǎn)基因不定根的誘導(dǎo)。將p35S-載體轉(zhuǎn)化發(fā)根農(nóng)桿菌K599菌株感受態(tài)細(xì)胞,接種普通菜豆7日齡幼苗作為處理,以轉(zhuǎn)化p35SGFPGUS+載體和無載體轉(zhuǎn)化的K599菌株誘導(dǎo)產(chǎn)生不定根的菜豆植株作為對照。不定根的誘導(dǎo)在90%濕度條件下進(jìn)行,當(dāng)不定根長至3—4 cm時將植株移栽至新盆中,使其穩(wěn)定生長,28℃光照16 h/25℃黑暗8 h條件下培養(yǎng)3周。
參考Díaz-Camino等[28]方法構(gòu)建基因沉默植株。將pG7R2V-412載體與pGHopR1載體的體外轉(zhuǎn)錄產(chǎn)物等量混合后接種普通菜豆植株首片三出復(fù)葉作為處理,以pG7R2V-CK載體與pGHopR1載體體外轉(zhuǎn)錄產(chǎn)物混合物接種的菜豆植株和野生型植株作為對照。培養(yǎng)條件為28℃光照16 h/25℃黑暗8 h。
參考XUE等[25]和CHEN等[26]方法對過表達(dá)和沉默表達(dá)的菜豆植株進(jìn)行抗病性和抗旱性鑒定,每個對照或處理調(diào)查株數(shù)均為9。普通菜豆植株均培養(yǎng)于28℃光照16 h/25℃黑暗8 h條件下溫室,觀察植株生長狀態(tài)。
測定過表達(dá)和基因沉默的菜豆植株根組織及相關(guān)生理生化指標(biāo)。參考SAGISAKA[29]方法測定H2O2含量,參考ZHANG等[30]方法測定丙二醛(malondialdehyde,MDA)含量和超氧化物歧化酶(superoxide dismutase,SOD)活性,參考DO等[31]方法測定過氧化物酶(peroxidase,POD)活性。一個酶活性單位定義為每分鐘將1 μmol底物轉(zhuǎn)化為產(chǎn)物的酶量。
采用SPSS 19.0和Excel 2007進(jìn)行數(shù)據(jù)統(tǒng)計分析。
編碼的蛋白質(zhì)含有10個strand結(jié)構(gòu),其他為coil結(jié)構(gòu)。PvEG261預(yù)測分子質(zhì)量為38.89 kD,理論為5.21。PvEG261屬于Dirigent超家族成員(圖1-A)。蛋白質(zhì)結(jié)構(gòu)預(yù)測結(jié)果表明,該蛋白質(zhì)包含10個氨基酸的信號肽序列,屬于外分泌蛋白。PvEG261的氨基酸序列與豇豆(XP_027906892.1)、紅小豆(XP_017441835.1)、綠豆(XP_014492698.1)等多種作物的Dirigent基因所編碼的氨基酸序列具有很高的同源性。系統(tǒng)進(jìn)化樹分析結(jié)果表明,PvEG261與豇豆的DIR22蛋白親緣關(guān)系最近,蛋白序列相似性達(dá)到91.61%(圖1-B和圖1-C)。
采用qRT-PCR技術(shù)分析在普通菜豆各個組織中的相對表達(dá)量。結(jié)果表明,在普通菜豆各個組織中均有不同程度表達(dá),其中在根中的表達(dá)豐度最高,莖中次之,在葉中表達(dá)豐度最低(圖2-A)。接種普通菜豆鐮孢菌枯萎病原菌FOP-DM01菌株后,在普通菜豆品種BRB130根中的表達(dá)水平顯著高于接種前(圖2-B),接種病原菌72 h后,基因表達(dá)量顯著提升,在96和120 h達(dá)到最高,分別為接種前表達(dá)水平的4.5和3.8倍。當(dāng)用PEG6000處理菜豆植株時,根中表達(dá)水平受到強(qiáng)烈誘導(dǎo),表達(dá)量在處理6 h后達(dá)到最大值,約為處理0 h表達(dá)水平的6.2倍(圖2-C)。
利用EG261-F/EG261-R引物組合對過表達(dá)和基因沉默菜豆植株進(jìn)行qRT-PCR檢測,結(jié)果表明,過表達(dá)菜豆植株不定根中目標(biāo)基因的表達(dá)量顯著高于空載體轉(zhuǎn)化和非轉(zhuǎn)化不定根(圖3-A);沉默植株根中目標(biāo)基因的表達(dá)量顯著低于接種空載體病毒菜豆植株和野生型植株根組織(圖3-B)。
接種枯萎病病原菌2周后,過表達(dá)菜豆植株發(fā)病級數(shù)顯著低于空載體轉(zhuǎn)化和非轉(zhuǎn)化不定根植株(圖4-A)。接種病原菌2周后,2組對照植株發(fā)病級數(shù)分別達(dá)到8.6和8.8,而過表達(dá)不定根的菜豆植株發(fā)病級數(shù)僅為6.1(圖4-B);接種病原菌后,沉默菜豆植株發(fā)病級數(shù)顯著高于接種空載體病毒菜豆植株和野生型植株(圖4-C)。接種病原菌2周后,2組對照植株發(fā)病級數(shù)僅為分別達(dá)到4.8和4.1,而沉默的菜豆植株發(fā)病級數(shù)高達(dá)8.9(圖4-D)。以上結(jié)果表明,在調(diào)控普通菜豆枯萎病抗病反應(yīng)中發(fā)揮重要作用。
通過2周的干旱處理,發(fā)現(xiàn)對照組植株葉片嚴(yán)重萎蔫失水下垂,而過表達(dá)不定根的菜豆植株生長狀態(tài)明顯要好于對照(圖5-A),過表達(dá)不定根長度顯著高于對照植株,達(dá)到19.6 cm(圖5-B)。此外,干旱脅迫處理后,過表達(dá)菜豆植株的不定根系更加發(fā)達(dá),根系鮮重達(dá)到5.7 g,比較非轉(zhuǎn)化、空載體對照均顯著提高(圖5-C);而沉默植株經(jīng)過2周干旱處理后,整株嚴(yán)重枯萎(圖5-D),沉默植株根長度僅為12.7 cm,顯著低于對照植株(圖5-E),此外基因沉默植株根系鮮重也僅為2.7 g,也均明顯低于野生型、空載體2組對照(圖5-F)。以上結(jié)果表明,對普通菜豆植株的抗旱性起到正向調(diào)控作用。
A:PvEG261蛋白序列分析;B:PvEG261蛋白和其他植物中的Dirigent蛋白序列比對。綠色代表相似性達(dá)50%以上;粉色代表相似性達(dá)75%以上;黑色代表相似性達(dá)100%;C:PvEG261蛋白和其他植物中的Dirigent蛋白的同源進(jìn)化樹分析。CaDIR22:咖啡,XP_027102329.1;LaDIR22:羽扇豆,XP_019462472.1;MpDIR3:刺毛黧豆,RDX73385.1;ApDIR22:相思子,XP_027337739.1;GmDIR22:大豆,XP_006576480.1;GsDIR:野生大豆,KHN26491.1;VaDIR22:紅豆,XP_017441835.1;VrDIR22:綠豆,XP_014492698.1;VuDIR22:豇豆,XP_027906892.1
在病原菌侵染和干旱脅迫條件下,過表達(dá)植株根組織H2O2含量、POD活性、SOD活性均顯著高于對照植株(圖6-A—圖6-C),而MDA含量顯著低于對照植株(圖6-D)?;虺聊仓旮M織H2O2含量、POD活性、SOD活性均顯著低于對照植株(圖6-E—圖6-G),而MDA含量顯著高于對照植株(圖6-H)。以上結(jié)果表明,對普通菜豆枯萎病抗病性和抗旱性的提升具有促進(jìn)作用。
A:PvEG261過表達(dá)植株的qRT-PCR檢測;B:PvEG261沉默植株的qRT-PCR檢測
普通菜豆(L.)是世界范圍內(nèi)重要的食用豆類作物之一,而食用豆類,尤其在發(fā)展中國家是人類攝取蛋白質(zhì)(約22%),維生素(葉酸)和礦物質(zhì)(鈣、銅、鐵、鎂、錳、鋅)的重要來源[32]。在生產(chǎn)效率低下和種植經(jīng)驗匱乏的國家和地區(qū),普通菜豆在生產(chǎn)中更容易受到病蟲害及干旱、土地貧瘠等
生物或非生物脅迫的影響。
植物Dirigent蛋白首先在連翹中被分離并鑒定出來[33],其主要參與木脂素和木質(zhì)素合成中的相關(guān)酶促反應(yīng),并且在水生植物逐漸適應(yīng)陸生環(huán)境過程中逐漸進(jìn)化[34]。木質(zhì)素或木脂素類物質(zhì)積累量的提高,都可以增強(qiáng)植物的抗性,許多研究表明Dirigent基因參與植物的防御系統(tǒng),增強(qiáng)植物的抗逆性[35-36]。本研究中PvEG261蛋白序列具有其他植物Dirigent蛋白序列的保守結(jié)構(gòu)域,而且通過構(gòu)建系統(tǒng)進(jìn)化樹,發(fā)現(xiàn)PvEG261與豇豆、綠豆、小豆的Dirigent蛋白親緣關(guān)系都很近,說明該基因應(yīng)該編碼普通菜豆Dirigent蛋白。PvEG261蛋白N端具有明顯的信號肽序列,屬于分泌蛋白,而且在根組織中該基因表達(dá)量最高,這些結(jié)果均與前人研究結(jié)果一致[37-39]。
A:PvEG261過表達(dá)植株2周后病情特征;B:PvEG261過表達(dá)植株病級分析;C:PvEG261沉默植株2周后病情特征;D:PvEG261沉默植株病級分析。NT:非轉(zhuǎn)化植株;EV:空載體轉(zhuǎn)化植株;OE:PvEG261轉(zhuǎn)基因不定根植株;GS:PvEG261沉默植株。下同
Dirigent蛋白是一類植物病原應(yīng)答誘導(dǎo)蛋白,許多農(nóng)作物受病原菌侵染時,Dirigent基因都被快速誘導(dǎo)表達(dá),這些研究表明Dirigent蛋白基因在植物病害防御過程中具有非常重要作用[35-39]。前人研究表明,三七()中克隆到的7個DIR基因(—)都響應(yīng)茄腐鐮刀菌()的侵染,基因表達(dá)量均顯著上調(diào),并且過表達(dá)的轉(zhuǎn)基因煙草木質(zhì)素和木脂素生物合成相關(guān)基因的表達(dá)量顯著升高,從而提高了木質(zhì)素、木脂素的積累量并增強(qiáng)煙草對茄腐鐮刀菌的抗性[37]。白菜()在尖孢鐮刀菌()侵染后,表達(dá)量顯著提升,接種24 h后,基因表達(dá)量比未侵染植株提升約5倍[40]。本研究發(fā)現(xiàn)普通菜豆受鐮孢菌枯萎病原菌侵染后,根中的表達(dá)水平同樣顯著升高,過表達(dá)的轉(zhuǎn)基因菜豆植株對枯萎病原菌的抗性明顯增強(qiáng),而的沉默植株對枯萎病原菌的抗性卻顯著降低,這說明該基因在普通菜豆防御系統(tǒng)中發(fā)揮著重要作用。
植物Dirigent基因在響應(yīng)非生物脅迫方面同樣發(fā)揮了重要作用。在PEG6000誘導(dǎo)條件下,菜豆根中表達(dá)水平也受到強(qiáng)烈誘導(dǎo),表達(dá)量快速提升,這與甘蔗()經(jīng)PEG處理后,的表達(dá)水平變化規(guī)律一致,同時在大腸桿菌()中過表達(dá)也可以顯著提高大腸桿菌對PEG的耐受力[41]。因此,Dirigent基因作為植物木質(zhì)素合成中的重要調(diào)控基因,在響應(yīng)干旱脅迫方面發(fā)揮重要作用。本研究中,在干旱脅迫條件下,過表達(dá)的轉(zhuǎn)基因植株不定根長度和鮮重顯著高于對照,而基因沉默植株根長度和鮮重顯著低于對照,這說明對調(diào)控普通菜豆的抗旱性具有重要作用。
A:PvEG261過表達(dá)植株干旱脅迫2周后表型特征;B:PvEG261過表達(dá)植株根長度分析;C:PvEG261過表達(dá)植株根鮮重分析;D:PvEG261沉默植株干旱脅迫2周后表型特征;E:PvEG261沉默植株根長度分析;F:PvEG261沉默植株根鮮重分析
當(dāng)植物遭受逆境脅迫時,H2O2等活性氧(reactive oxygen species,ROS)分子迅速積累,協(xié)助植物抵御病原菌的侵染,它不僅可以直接殺死病原菌,還參與細(xì)胞壁的木質(zhì)化等過程,同時它還可以作為第二信使調(diào)控相關(guān)基因的表達(dá),提高植物的抗逆性[42]。然而,大量積累的ROS也一定程度破壞了植物細(xì)胞內(nèi)環(huán)境的穩(wěn)態(tài)及各種代謝活動的正常進(jìn)行,同時伴隨ROS的積累,大量MDA的合成也給植物細(xì)胞造成了損傷[43]。因此,植物細(xì)胞通過增加相關(guān)抗氧化防護(hù)酶(POD和SOD等)活性來清除逆境脅迫下細(xì)胞內(nèi)積累的大量的ROS,以降低ROS對細(xì)胞的破壞[44]。本研究中,在病原菌侵染和干旱脅迫條件下,過表達(dá)菜豆植株根組織H2O2含量、POD活性、SOD活性顯著高于對照,MDA含量顯著低于對照,而基因沉默植株根組織H2O2含量、POD活性、SOD活性顯著低于對照,MDA含量顯著高于對照。結(jié)果說明,能夠誘導(dǎo)合成大量ROS,提高菜豆植株的抗病性和抗旱性,并通過調(diào)節(jié)POD和SOD等抗氧化酶活性,降低了ROS對細(xì)胞造成的破壞,降低MDA水平,減輕了病原菌侵染和干旱脅迫對菜豆植株造成的傷害。
Dirigent基因家族在植物應(yīng)答多種生物與非生物脅迫的防御反應(yīng),次生代謝和纖維素的生物合成中都發(fā)揮著重要的作用[6,16,45]。然而,關(guān)于普通菜豆中Dirigent蛋白及其生物學(xué)功能,特別是對鐮孢菌枯萎病抗性和抗旱性的影響仍然報道較少。本研究結(jié)果表明,普通菜豆的Dirigent基因在菜豆抗枯萎病和抗旱相關(guān)反應(yīng)過程中發(fā)揮了重要的作用,伴隨著逆境響應(yīng)因子的表達(dá),正向調(diào)控寄主枯萎病抗病性和抗旱性水平,但關(guān)于參與普通菜豆鐮孢菌枯萎病抗性和抗旱性的分子機(jī)制今后還需要進(jìn)一步深入研究。
A:PvEG261過表達(dá)植株H2O2含量分析;B:PvEG261過表達(dá)植株SOD活性分析;C:PvEG261過表達(dá)植株P(guān)OD活性分析;D:PvEG261過表達(dá)植株MDA含量分析;E:PvEG261沉默植株H2O2含量分析;F:PvEG261沉默植株SOD活性分析;G:PvEG261沉默植株P(guān)OD活性分析;H:PvEG261沉默植株MDA含量分析
屬于典型的普通菜豆Dirigent基因家族成員,其編碼蛋白屬于外分泌蛋白,在根中表達(dá)量最高,具有明顯的組織表達(dá)特異性;該基因響應(yīng)枯萎病原菌、干旱的誘導(dǎo),表達(dá)量顯著提升,并且正向調(diào)控普通菜豆鐮孢菌枯萎病抗性和抗旱性水平。
[1] 張赤紅, 曹永生, 宗緒曉, 王志剛, 王述民.普通菜豆種質(zhì)資源形態(tài)多樣性鑒定與分類研究.中國農(nóng)業(yè)科學(xué), 2005, 38(1): 27-32.
ZHANG C H, CAO Y S, ZONG X X, WANG Z G, WANG S M.Morphological diversity and classification of common bean (L.) germplasm resource in China.Scientia Agricultura Sinica, 2005, 38(1): 27-32.(in Chinese)
[2] Perez-VegaE, PaedaA, RodrIguez-SuArezC, CampaA, GiraldezR, FerreiraJ J.Mapping of QTLs for morpho- agronomic and seed quality traits in a RIL population of common bean (L.).Theoretical and Applied Genetics, 2010, 120: 1367-1380.
[3] Schmutz J, McClean P E, Mamidi S, Wu G A, Cannon S B, Grimwood J, Jenkins J, Shu S q, Song Q j, Chavarro C, Torres-TorresM, Geffroyv, Moghaddam S M, Gaod y, Abernathyb, Barryk, Blair m, Brick m a, Chovatiam, Gepts p, GoodsteinD M, Gonzalesm, Hellstenu, Hyten D L, Jiag F, Kelly J D, Kudrna D, LeeR, Richard M M S, Miklas P N, OsornoJ M, Rodrigues J, ThareauV, UrreaC A, Wang m, Yu Y, ZhangM, Wing R A, Cregan P B, Rokhsar D S, JacksonS A.A reference genome for common bean and genome-wide analysis of dual domestications.Nature Genetics, 2014, 46: 707-713.
[4] HARTER L L.A Fusarium disease of beans.(Abstr.).Phytopathology, 1929, 19: 82.
[5] Ralph S, Park J Y, Bohlmann J, Mansfield S D.Dirigent proteins in conifer defense: gene discovery, phylogeny and differential wound- and insect-induced expression of a family of DIR and DIR-like genes in spruce (spp.), Plant Molecular Biology, 2006, 60: 21-40.
[6] Burlat V, Kwon M, Devin L B, Lewis N G.Dirigent proteins and dirigent sites in lignifying tissues.Phytochemistry, 2001, 57: 883-897.
[7] Davin L B, Wang H B, Crowell A L, Bedgar D L, Martin D M, Sarkanen S, Lewis N G.Stereoselective biomolecular phenoxy radical coupling by an auxiliary (Dirigent) protein without an active center.Science, 1997, 275: 362-366.
[8] Liu J, Stipanovic R D, Bell A A, Puckhaber L S, Magill C W.Stereoselective coupling of hemigossypol to form (+)-gossypol in moco cotton is mediated by a dirigent protein.Phytochemistry, 2008, 69: 3038-3042.
[9] Pickel B, Constantin M A, Pfannstiel J, Conrad J, Beifuss U, Schaller A.An enantiocomplementary dirigent protein for the enantioselective laccase-catalyzed oxidative coupling of phenols.Angewandte Chemie-International Edition, 2010, 49: 202-204.
[10] Dalisay D S, Kim K W, Lee C, Yang H, Rübel O, Bowen B P, DavinL B, LewisN G.Dirigent protein-mediated lignan and cyanogenic glucoside formation in flax seed: integrated omics and MALDI mass spectrometry imaging.Journal of Natural Products, 2015, 78: 1231-1242.
[11] Effenberger I, Zhang B, Li L, Wang Q, Liu Y, Klaiber I, Pfannstiel J, Wang Q M, Schaller A.Dirigent proteins from cotton (sp.) for the atropselective synthesis of gossypol.Angewandte Chemie-International Edition, 2015, 54: 14660-14663.
[12] Lewis N G, Davin L B.Evolution of lignin and neolignan biochemical pathways//Nes W D, (Ed.).Isopentenoids and other natural products evolution, function.Washington DC: ACS Symposium Series, 1994, 562: 202-246.
[13] Lewis N G, Davin L B.Lignans: biosynthesis and function// Barton D H R, Nakanishi K, Meth-Cohn O, (Eds.).Comprehensive Natural Products Chemistry.London: Elsevier, 1999: 639-712.
[14] Boudet A M.Lignins and lignification selected issues.Plant Physiology and Biochemistry, 2000, 38: 81-96.
[15] Zhou J, Lee C, Zhong R, Ye Z H.MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in.The Plant Cell, 2009, 21: 248-266.
[16] Ralph S G, Jancsik S, Bohlmann J.Dirigent proteins in conifer defense II: extended gene discovery, phylogeny, and constitutive and stress-induced gene expression in spruce (spp).Phytochemistry, 2007, 68: 1975-1991.
[17] Wu R H, Wang L L, Wang Z, Shang H H, Liu X, Zhu Y, Qi D D, DENG X.Cloning and expression analysis of a dirigent protein gene from the resurrection plant.Progress in Natural Science, 2009, 19: 347-352.
[18] Moura J C M S, Bonine C, Viana J, Dornelas M C, Mazzafera P.Abiotic and biotic stresses and changes in the lignin content and composition in plants.Journal of Integrative Plant Biology, 2010, 52: 360-376.
[19] Zhu L, Zhang X, Tu L, Zeng F, Nie Y, Guo X.Isolation and characterization of two novel dirigent-like genes highly induced in cotton (and) after infection by.Journal of Plant Pathology, 2007, 89: 41-45.
[20] Reboledo G, Del Campo R, Alvarez A, Montesano M, Mara H, Ponce de León I.Physcomitrella patens activates defense responses against the pathogen.International Journal of Molecular Sciences, 2015, 16: 22280-22298.
[21] Franceschi V R, Krokene P, Krekling T, Christiansen E.Phloem parenchyma cells are involved in local and distant defense responses to fungal inoculation or barkbeetle attack in Norway spruce ().American Journal of Botany, 2000, 87: 314-326.
[22] Nagy N E, Franceschi V R, Solheim H, Krekling T, Christiansen E.Wound-induced traumatic resin duct development in stems of Norway spruce (): anatomy and cytochemical traits.American Journal of Botany, 2000, 87: 302-313.
[23] Wang Y, Fristensky B.Transgenic canola lines expressing pea defense gene DRR206 have resistance to aggressive blackleg isolates and to.Molecular Breeding, 2001, 8: 263-271.
[24] Messier W.Dirigent geneand its orthologs and paralogs and their uses for pathogen resistance in plants, US, US 9834783B2, 2017.
[25] XUE R F, WU X B, WANG Y J, ZHUANG Y, CHEN J, WU J, GE W D, WANG L F, WANG S M, BLAIR M WHairy root transgene expression analysis of a secretory peroxidase()from common bean infected by Fusarium wilt.Plant Science, 2017, 260: 1-7.
[26] Chen J B, Wang S M, Jing R L, Mao x g.Cloning thegene from common bean () and its expression patterns under abiotic stresses.Journal of Plant Physiology, 2009, 166(1): 12-19.
[27] Estrada-Navarrete G, Alvarado-Affantranger X, Olivares J E, Guillén G, Díaz-Camino C, Campos F, Quinto C, Gresshoff P M, Sanchez F.Fast, efficient and reproducible genetic transformation ofspp.by.Nature Protocols, 2007, 2(7): 1819-1824.
[28] Díaz-Camino C, Annamalai P, Sanchez F, Kachroo A, Ghabrial S A.An effective virus-based gene silencing method for functional genomics studies in common bean.Plant Methods, 2011, 7(1): 16.
[29] Sagisaka S.The occurrence of peroxide in a perennial plant,.Plant Physiology, 1976, 57: 308-309.
[30] Zhang H, Gao X, Zhi Y, Li X, Zhang Q, Niu J, Wang J, Zhai H, Zhao N, Li J, Liu Q, He S.A non-tandem CCCH-type zinc finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato.New Phytologist, 2019, 223: 1918-1936.
[31] Do H M, Hong J K, Jung H W, Kim S H, Ham J H, Hwang B K.Expression of peroxidaselike genes, H2O2production, and peroxidase activity during the hypersensitive response topv.in.Molecular Plant Microbe Interaction, 2003, 16: 196-205.
[32] Broughton W J, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J.Bean (spp.)-model food legumes.Plant Soil, 2003, 252: 55-128.
[33] Davin L B, Wang H B, Crowell A L, Bedgar D L, Martin D M, Sarkanen S, Lewis N G.Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center.Science, 1997, 275: 362-366.
[34] Kim M K, Jeon J H, Fujita M, Davin L B, Lewis N G.The western red cedar () 8-8’ DIRIGENT family displays diverse expression patterns and conserved monolignol coupling specificity.Plant Molecular Biology, 2002, 49: 199-214.
[35] Li N, Zhao M, Liu T, Dong L, Cheng Q, Wu J, Wang L, Chen X, Zhang C, Lu W, Xu P, Zhang S.A novel soybean dirigent genecontributes to promotion of lignan biosynthesis and enhances resistance to.Frontier in Plant Science, 2017, 8: 1185.
[36] Ma Q H, Liu Y C.TaDIR13, a dirigent protein from wheat, promotes lignan biosynthesis and enhances pathogen resistance.Plant Molecular Biology Reporter, 2015, 33(1): 143-152.
[37] 關(guān)瑞攀.Dirigent基因參與三七——茄腐鐮刀菌互作的分子機(jī)理研究[D].昆明: 昆明理工大學(xué), 2018.
GUAN R P.Molecular mechanism of dirigent genes involved in the interaction of[D].Kunming: Kunming University of Science and Technology, 2018.(in Chinese)
[38] 張洪偉, 李繼剛, 鄭建坡, 曲占良.馬鈴薯晚疫病抗性相關(guān)基因的克隆與表達(dá).華北農(nóng)學(xué)報, 2012(2): 23-29.
ZHANG H W, LI J G, ZHENG J P, QU Z L.Cloning and expression of a potato dirigent-like gene () responsive to infection by.Acta Agriculturae Boreali-Sinica, 2012(2): 23-29.(in Chinese)
[39] 郭寶生, 師恭曜, 王凱輝, 劉素恩,趙存鵬, 王兆曉, 耿軍義, 華金平.黃萎病菌侵染下陸地棉D(zhuǎn)irigent-like蛋白基因表達(dá)差異分析.中國農(nóng)業(yè)科學(xué), 2014, 47(22): 4349-4359.
GUO B S, SHI G Y, WANG K H, LIU S E, ZHAO C P, WANG Z X, GENG J Y, HUA J P.Expression differences of dirigent-Like protein genes in upland cotton responsed to infection by.Scientia Agricultura Sinica, 2014, 47(22): 4349-4359.(in Chinese)
[40] Thamil Arasan S K, Park J I, Ahmed N U, Jung H J, Hur Y, Kang K K, Lim Y P, Nou I S.Characterization and expression analysis of dirigent family genes related to stresses in.Plant Physiology and Biochemstry, 2013, 67: 144-153.
[41] Guo J L, Xu L P, Fang J P, Su Y C, FU H Y, QUE Y X, XU J S.A novel dirigent protein gene with highly stem-specific expression from sugarcane, response to drought, salt and oxidative stresses.Plant Cell Reports, 2012, 31(10): 1801-1812.
[42] Liu G, Sheng X, Greenshields D L, Ogieglo A, Kaminskyj S, Selvaraj G, Wei Y.Profiling of wheat class III peroxidase genes derived from powdery mildew-attacked epidermis reveals distinct sequence-associated expression patterns.Molecular Plant Microbe Interaction, 2005, 18(7): 730-741.
[43] Majid M, Akbar M, Tomoaki H, Maki K.Drought stress alters water relations and expression of pip-type aquaporin genes inplants.Plant & Cell Physiology, 2008(5): 801-813.
[44] 崔苗苗, 馬琳, 張錦錦, 王筱, 龐永珍, 王學(xué)敏.紫花苜蓿的表達(dá)特性及耐鹽性效應(yīng).中國農(nóng)業(yè)科學(xué), 2020, 53(18): 27-41.
CUI M M, MA L, ZHANG J J, WANG X, PANG Y Z, WANG X M.Gene expression and salt-tolerance analysis ofgene from Alfalfa.Scientia Agricultura Sinica, 2020, 53(18): 27-41.(in Chinese)
[45] Davin L B, Lewis N G.Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis.Plant Physiology, 2000, 123: 453-462.
Effects ofgene on the Fusarium wilt and drought-resistance in common bean
XUE RenFeng1, FENG Ming1, HUANG YuNing1, Matthew Blair2, Walter Messier3*, GE WeiDe1*
1Crop research institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China;2Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville 37209, TN USA;3Evolutionary Genomics, Inc., Lafayette 80501, LA USA
【Objective】By analyzing the sequence and expression pattern characteristics offrom common beans, and studying its resistance to Fusarium wilt and drought, the foundation was laid for the signal regulation network analysis of Fusarium wilt and drought-resistance and molecular breeding in common beans.【Method】 Bioinformatics analysis was performed on the open reading frame (ORF) ofto predict the physical and chemical properties, secondary structure, signal peptide sequence of the protein encoded by the, and search for highly homologous protein sequence in NCBI database through Blastp tool online for sequence alignment and phylogenetic tree construction; the tissue expression specificity ofand the expression pattern in response to Fusarium wilt pathogen and drought stress were analyzed by qRT-PCR;overexpression vector was constructed and transformed intoK599 to induce the generation of hairy transgenic roots in common beans.Meanwhile, thesilencing vector was constructed, and the transcription productwas inoculated on the seedlings of common bean to interfere withexpression.Through inoculation with the pathogen and drought treatment, the phenotypes of control,overexpressed and silenced plants were observed, disease and drought-resistance were both identified, and hydrogen peroxide (H2O2) content, malondialdehyde (MDA) content, superoxide dismutase (SOD) and peroxidase (POD) activity as physiological and biochemical indicators were all assayed.【Result】 The cDNA sequence ofwas 471 bp, which encodes a protein composed of 156 amino acids.The structure prediction indicated that it contained 10 strand structures, the predicted molecular mass of the encoding product was 38.89 kD, and the theoreticalwas 5.21.belonged to the members of dirigent gene superfamily, it contained a signal peptide sequence of 10 amino acids, and belonged to a secreted protein.The relationship between PvEG261 and cowpea DIR22 protein is the closest, which reached 91.61%.The results of qRT-PCR showed that the expression in the root tissues increased significantly after inoculation with Fusarium wilt pathogen and drought treatment, and the gene has obvious tissue expression specificity, with the highest expression level in the roots.After inoculation with pathogen and drought treatment, the disease and drought-resistance of the overexpressed plants were significantly improved in comparison with the control, the plant disease scores and the wilting degree caused by water shortage were significantly reduced, and the H2O2content, POD and SOD activity in the roots were all significantly higher than the control plant, while the MDA content was dramatically lower than the control plant.The disease and wilting degree of the gene silenced plants were significantly increased.The H2O2content, POD and SOD activity in the roots were significantly lower than the control plant, and the MDA content was significantly higher than the control plants.【Conclusion】responded to Fusarium wilt pathogen infection and drought stress, and positively regulated the Fusarium wilt and drought-resistance in common beans.
common bean;; fusarium wilt; drought stress; response mechanism
2021-04-06;
2021-05-27
國家自然科學(xué)基金(31972962)、財政部和農(nóng)業(yè)農(nóng)村部國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系-食用豆(CARS-08)
薛仁風(fēng),E-mail:xuerf82@163.com。通信作者Walter Messier,E-mail:wmessier@evolgen.com。通信作者葛維德,E-mail:snowweide@163.com
(責(zé)任編輯 李莉)