• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Observation of the exceptional point in superconducting qubit with dissipation controlled by parametric modulation?

    2021-10-28 07:03:24ZhanWang王戰(zhàn)ZhongchengXiang相忠誠TongLiu劉桐XiaohuiSong宋小會(huì)PengtaoSong宋鵬濤XueyiGuo郭學(xué)儀LuhongSu蘇鷺紅HeZhang張賀YanjingDu杜燕京andDongningZheng鄭東寧
    Chinese Physics B 2021年10期
    關(guān)鍵詞:東寧燕京

    Zhan Wang(王戰(zhàn)) Zhongcheng Xiang(相忠誠) Tong Liu(劉桐) Xiaohui Song(宋小會(huì))Pengtao Song(宋鵬濤) Xueyi Guo(郭學(xué)儀) Luhong Su(蘇鷺紅)He Zhang(張賀) Yanjing Du(杜燕京) and Dongning Zheng(鄭東寧)

    1Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3Songshan Lake Materials Laboratory,Dongguan 523808,China

    4China University of Geosciences,Beijing 100083,China

    Keywords: exceptional point,parity-time-reversal(PT)symmetry,longitudinal field modulation

    1. Introduction

    In recent years, non-Hermitian systems with PT symmetry have attracted widespread attention because of their intriguing properties and potential applications in sensitive detection.[1]The PT symmetry can be realized by considering a coupled bipartite system with balanced gain and loss of energy or particles from the environment.[2]By varying the relative magnitude of the gain,loss and coupling strength,the system can show an unconventional transition between a PT symmetric phase and a PT broken phase at a so-called exceptional point (EP). At the EP, the eigenvalues of the non-Hermitian Hamiltonian, which describes the system, coalesce together and the corresponding eigenvectors also coincide at this point.Also,the breaking of the PT symmetry causes the eigenvalues of the non-Hermitian Hamiltonian to change from real to complex. The presence of the EP can lead to many peculiar physical phenomena, such as unidirectional invisibility,[3]nonreciprocal light propagation,[4–7]loss-induced suppression and revival of lasing.[8–10]More importantly, it is suggested that near the EP the system is more sensitive to external perturbations and this could give rise to enhanced sensing.[11,12]

    EPs have been experimentally observed in different kinds of systems. Initially, it was mostly reported in semiclassical systems with balanced gain and loss, such as optical cavities,[11–14]microwave resonators[6,15–17]and mechanical oscillators.[18–20]More recently, work performed on quantum systems, such as cold atoms,[21–23]nitrogenvacancy centers,[24,25]superconducting circuits[26,27]and trapped ions[28,29]were reported. For the pure lossy quantum system,it has been shown that the lossy Hamiltonian could be mapped to a PT symmetric Hamiltonian and display passive PT symmetry breaking.[21,32]

    In superconducting circuits, a single transmon qubit embedded in a 3D waveguide cavity is used to demonstrate the PT symmetry broken transition and the presence of EP.[26]The lowest three energy levels|g〉,|e〉, and|f〉of the qubit are involved. The first excited state|e〉and the second excited state|f〉are used to form the bipartite quantum system of investigation while the ground state|g〉is regarded as the environment. The key to the demonstration of the PT symmetry broken transition is a large and adjustable dissipation channel for a large decay rate of|e〉to|g〉. It is realized by inserting an impedance matching element(IME)between the cavity and the outside readout circuit. However,this method requires an additional element that may affect the performance of the entire qubit device.In this work,we demonstrate the observation of the PT symmetric broken phase transition and the EP on a frequency tunable superconducting Xmon qubit by parametric modulation of the qubit frequency that results in a controllable interaction between the qubit and a lossy readout resonator.This interaction transfers the qubit excitation to the resonator and, thus, creates a lossy channel controlling the decay rate of|e〉to|g〉. This approach of decay rate controlling with parametric modulation has been proposed in Ref.[30]and has been used for fast reset of superconducting qubits. It is simple and requires no additional hardware or modifications to the device components. It can be implemented easily on multi-qubit devices for the exploration of rich physics in non-Hermitian systems with PT symmetry.

    2. Principle of the experiment

    2.1. PT symmetry broken transition in a single dissipative qubit

    As shown in Ref.[26],a two-level non-Hermitian system with applied resonance driving and a loss term to the environment may be described by an effective Hamiltonian(ˉh=1)

    where|e〉and|g〉denote the first and second excited states of the quantum system,respectively,andγeis the occupationnumber loss rate.This Hamiltonian may be rewritten asHeff=HPT?iγeI/4, whereHPT=Jσx ?iγeσz/4 is a PT-symmetric Hamiltonian,andIis the identity matrix,σx(z)is the Pauli matrix,Jσx=J(|f〉〈e|+|e〉〈f|) when we just consider the|e〉state and the|f〉state. The complex eigenvalues ofHeffhave different imaginary components atJ<γe/4,and the system is in the PT broken phase. At a stronger coupling,past the EP atJ0=γe/4, the imaginary components for the two dissipative eigenmodes coincide, and the system is in the PT symmetric(unbroken) phase. To implementHeff, we require the respective energy decay ratesγe ?γf.

    2.2. Qubit decay rate control

    We consider a generic system with a two-level atom(with transition frequencyωq) coupled to a resonator (with frequencyωr). If the effective coupling isgeff, the Hamiltonian(ˉh=1)of this coupled system in the Jaynes–Cummings model is

    wherea,a+,σ?,σ+are lowering and raising operators of the resonator and the qubit, respectively, andσzis the Pauli matrix. Considering the dissipation, the dynamics can be described by the following Lindblad master equation:

    The above formula shows thatγecan be tuned by varyinggeand the frequency detuning ?ω. Obviously, theγeshows maximum when ?ω=0.

    2.3. Longitudinal field modulation

    For a single Xmon,we realize qubit frequency parametric modulation by applying a longitudinal field modulation(LFM)with frequencyωzand amplitudehz. In the laboratory coordinate system,the Hamiltonian(ˉh=1)of the qubit system with LFM and transverse resonance driving is

    whereJnis thenth-Bessel functions of the first kind. It shows,with the LFM applied on the qubit,sidebands appear atωq?nωz(n=0,±1,±2,...). Another feature of the Hamiltonian is that the Rabi oscillation term may disappear whenJn(α)=0.In Fig.1,we show the measured qubit energy spectrum with and without LFM. The measurements are taken atωq/2π~4.92 GHz andωz/2π=0,20 MHz.

    Fig.1. Measured qubit energy spectrum(a)without and(b)with LFM.The qubit is biased at 4.92 GHz. The modulation frequency is ωz/2π =20 MHz.

    3. Experimental setup

    In the experiment, we realize a non-Hermitian system with PT symmetry on a frequency tunable superconducting Xmon qubit. Figure 1(a) shows an optical photograph of the device. The qubit is formed by a DC-SQUID (the enlarged region in the graph)shunted by a cross-shaped capacitor. The Xmon qubit can be regarded as an anharmonic oscillator exhibiting a series of unequally spaced energy levels that can be individually addressed with microwave pulses via theXYcontrol line. A magnetic flux applied to the SQUID loop through theZcontrol line can tune the energy level spacing. The qubit is capacitively coupled to a readoutλ/4 resonator that is also coupled to a microwave transmission line. When the fundamental mode frequency of the resonator is substantially larger than the qubit transition frequency between the lowest two levels,the dispersive interaction between the qubit and the resonator results in a state-dependent shift in the resonator frequency.Thus,in this dispersive readout scheme,the qubit state information can be obtained by measuring the transmission or reflection coefficients of the transmission line.

    Following the scheme of Ref. [26], we use the first two excited states of|e〉and|f〉to form a two-level system and regard the ground state|g〉as the environment. By applying a coherent resonate drive(Rabi drive)of variable amplitude,the coupling between|e〉and|f〉can be realized. To observe the PT symmetry broken transition and the EP, we need to introduce controllable losses of the system energy to the environment in such a way that the decay rate of the state|e〉(γe)is much larger than that of the state|f〉(γf). This can be realized by parametric modulation of qubit frequency using LFM as discussed in Subsection 2.3. In other words, when the frequency of one sideband is in resonance with the readout resonator, the decay through the lossy readout resonator is maximized. By varying the LFM frequency and amplitude,the decay can be adjusted. Meanwhile, we vary the driving amplitudeΩx,which means changing the coupling strengthJ,so that the PT symmetry broken transition can be observed.The schematic of this process and the corresponding pulse and waveform sequence are shown in Figs.2(b)and 2(c).

    Fig. 2. (a) Optical graph of a frequency tunable superconducting Xmon qubit. (b)Experiment schematic diagram for the observation of the PT symmetry broken transition and the EP.In the diagram,γe,γf,κr represents the decay rate of the states|e〉,|f〉and the resonator,respectively. The geff and?ω are the effective coupling strength and detuning between the resonator and the qubit after applying longitudinal field modulation(LFM).Ωx is the amplitude of Rabi driving while ωx is the frequency. ωr and ωq are the frequencies of the resonator and the qubit (energy level between the state |g〉and|e〉),respectively. (c)Pulse and waveform sequence of the experiments.

    To ensure that the experimental conditions meet the theoretical requirements,characterization work needs to be carried out at first. Initial state preparation and readout are carried out at an idle frequency point, corresponding toωge/2π=5.69378 GHz andωfe/2π=5.4411 GHz. The anharmonicity is about 252.67 MHz. The readout resonator frequency is about 6.6178 GHz and it differs from theωge/2πby 924 MHz.The readout resonator frequency shift 2χgeis about 0.55 MHz when the qubit is excited from|g〉to|e〉while the shift 2χe fis about 0.4 MHz for|e〉to|f〉excitation. The coupling strength between the qubit and the readout resonator may be calculated from the shift value and is found to be~48.7 MHz. With the AC stark effect measurements,the decay rate of photons in the readout resonatorκris~6 MHz.

    Fig.3. (a)Transmission data measured when the qubit is in|g〉,|e〉and|f〉states,respectively. (b)Transmission data taken at a fixed frequency marked by the dashed line in(a).

    In addition to the above parameters, the decay rates of the excited statesγeandγf(representing decaying from the|e〉and|f〉states to environment) are of significance in the study of the non-Hermitian system. To characterizeγeandγf,we need to firstly readout and distinguish the different states.According to the dispersive readout theory,we know that different qubit states correspond to different frequency shifts of the readout resonator frequency. In this way, we can distinguish the three states of interest|g〉,|e〉and|f〉. The data are shown in Fig.3. We use oneπpulse or two sequentialπpulses to prepare the qubit into|e〉and|f〉states,respectively.The transmission data measured on the readout transmission line are shown in Fig. 3(a). Clearly, the resonant frequency shows a state-dependent shift(Note,the frequencies displayed on the horizontal axis are the values after down conversation.The actual value should be added 6.61 GHz,the local oscillation frequency). In Fig. 3(b), we show the transmission data measured at a fixed frequency(as marked by the black dashed line) in theI–Qpolar plane. The frequency is chosen so that the distinction of the three states is clear.

    Fig. 4. Relaxation data measured for the three states |e〉, |g〉 and |f〉.The solid curves are fitting to Eq.(9).

    4. Experimental control of qubit decay rate

    According to Section 2, changing the coupling strength and detuning frequency between the qubit and resonator by LFM leads to the changing of the qubit decay rate.This means that we can control the qubit decay rate by changing the amplitude and frequency of LFM.In our experiments,the bandwidth of theZcontrol line is limited to 0–500 MHz while the readout resonator frequency is 924 MHz greater than the quibt transition frequency when biased at the idle point. Thus, we may apply a LFM with modulation frequency around 462 MHz to achieve a largeγe. This corresponds ton=2 in Eq. (8). We prepare the qubit to the|e〉state before applying LFM for 1μs and finally measure the probability of state|e〉,Pe.We vary the LFM amplitude and frequency progressively to find the dependence of the decay rate on the LFM frequency and amplitude.The data are shown in Fig.5 and the strip-like region with very lowPe,and hence largeγe,is clearly identified.

    When LFM is applied at the sweet point of the qubit,there is a DC bias component acting on the qubit, resulting in the amplitude and frequency dependence of the lowPeregion shown in Fig.5. If LFM is applied away from the sweet point,the lowPeregion should be less frequency dependent.

    Fig.5. The Pe data corresponding to different LFM hz and ωz.

    Fig.6. Color map of Pe versus t for various values of hz.

    To show more clearly thatγechanges with LFM, we fix a modulation frequencyωz=470 MHz/2πand measure theγefor each modulation amplitudehz. The result is shown in Fig.6,and it is clear to see thatγechanges withhz.

    After showing that theγechanges withhz,we should also verify thatγfdoes not change withhz. As discussed in Section 3,we prepare the qubit to the state|f〉,and wait for some time,finally measure the probability of|g〉,|e〉,|f〉states,respectively. During the waiting time, the longitudinal field is applied through theZcontrol line. According to Eq. (9), we can getγeandγfby fitting the probability data of|g〉,|e〉,and|f〉states. Data shown in Fig.7 confirm that the change ofγfis small when LFM is applied. The red solid line is the fitting curve using Eq. (5). Note that thex-axis variable in Fig. 7 is?ω,the detuning of the qubitn=2 sideband frequency to the readout resonator. In our experiments, the qubit is biased at the sweet point, thus the change of LFM amplitudehzwould also result in a change in ?ω. However,if the change ofhzis small,the relation between the two is approximately linear.

    Fig.7. The experiment results of γe and γf obtained by fitting the original relaxation data,similar to those shown in Fig.4.

    5. Quantified EP by oscillation frequency

    To observe PT symmetry broken transition, we choose a working point at whichγeis much larger thanγf.Similar to the procedure described in Ref.[26],we applyπg(shù)eandπefpulses to prepare the qubit to state|f〉and then apply a coherent microwave driving in resonance with the|e〉and|f〉transition frequency and with amplitudeJthrough theXYcontrol line.In the same time, a LFM is also applied to the qubit via theZcontrol line so thatγeis about 2.06 MHz andγfis about 0.08 MHz. Finally,after a period of timet,we switch off the driving field and LFM,and measure the occupation probability of state|f〉Pftogether with the probability of the state|g〉and|e〉. The schematic diagram of the whole process is shown in Fig.2(c). As discussed in Subsection 2.1,whenJ>γe/4,the system is in the PT symmetric phase andPfwould oscillate at a frequency

    At the EP,J=γe/4,the oscillation disappears.

    Because we consider only the system formed with|e〉and|f〉,we use the normalized probabilityPnf=Pf/(Pf+Pe)dynamics of the system. The results are displayed in Fig. 8. In Fig. 9(a), more detailed data are shown and the time dependence ofPnffor two differentJvalues (as marked by dashed lines in Fig. 9(a)) is given in Fig. 9(b). The solid lines are the fitting curves using a cosine function with exponentially decayed amplitude. Clearly, whenJis large, we observe the oscillatory behavior ofPnfand the oscillation disappears whenJis reduced below a certain value.

    Fig.8. Color map of Pnf versus t for various values of J.

    Fig.9. (a)More detailed of Pnf evolution data measured under the same condition as in Fig.8. (b)The Pnf versus time and the fitting plot for two values of J(J=106,green dot;J=0.44,blue dot).

    In Fig. 10, the oscillation frequencyΩ0obtained by fitting is exhibited as a function of coupling strengthJ. The point at whichΩ0becomes zero is the EP. Further reducingJ, the system is in the PT broken phase. The solid red line is the fit to Eq. (10). The data show that, at the EP,J0is about 0.46 rad/μs, being consistent with the value 0.51 rad/μs obtained fromγe/4.

    Fig.10. Variation of oscillation frequency Ω0 with coupling strength J.

    6. Quantified EP through all parameter regions

    It has been pointed out that to accurately determine the location of EPs in experiments by measuring the asymptotic behavior of the energy around the EP without special prior knowledge is difficult.[29]Indeed, the evolution ofPfunderHeffgives an exponential decay that makes the determination ofΩ0become increasingly difficult when approaching the EP.To solve this problem, an alternative scheme of determining EP using all parameter regions has been proposed.[29]Here we also use this scheme in our experiments of superconducting qubits.

    Fig. 11. Determination of EP from the measurement of PJ (blue) and PΓ (red).

    The specific operation and measurement procedures are as follows. (i) Prepare the initial state to|f〉and let the system evolve for a period of timet. Then we measure the probability of state|e, 〉PJ(t). (ii) Repeat the procedure for the initial state(|f〉+|e〉)/2 and measure the probability of state(|f〉?|e〉)/2,PΓ(t). (iii) We repeat (i) and (ii) for different values of the coupling strengthJand lett=1/J. The data are displayed in Fig.11. The solid curves are fitting to the theoretical expression given in Ref.[29]which suggests that the cross point ofPJandPΓis the EP.At this point, we haveJ0~0.5,being also consistent with the value obtained in Fig.10.

    This method does not need to fit the oscillation frequency to determine the EP. However, it utilizes information of all three states and hence requires better readout calibration of the three states and the fidelity of the operation.

    7. Dependence of EP position on the decay rate

    According to Subsection 2.1, the position of the EP should vary with the decay rateγe. We make measurements for four different values ofγeand determine the corresponding EPs.The position of EPJ0is shown in Fig.12.The agreement between experiment points andγe/4 is reasonable.

    Fig.12. Dependence of EP position J0 on the decay rate γe.

    8. Conclusion

    We utilize a previously reported dissipation control technique for frequency tunable superconducting transmon qubits[30]to investigate the PT symmetric phase transition of non-Hermitian quantum system and determine the corresponding EP.The non-Hermitian quantum system is formed with the first and the second excited states of the qubit. We show that the dissipation rate of the first excited state of the transmon qubit could be tuned by parametric modulation of the qubit frequency. The parametric modulation effectively changes the coupling strength between the qubit and its lossy readout resonator.By varying the coupling between the two excited states of the qubit,the PT phase transition is observed. Two methods are used to determine the EP and the results are in agreement with that calculated by the theory.

    Our study demonstrates a possible new approach for further investigation of the remarkable phenomena of non-Hermitian systems in the vicinity of the EP.Furthermore, the approach can be implemented on multi-qubit devices to investigate the properties of many-body non-Hermitian systems and to explore the high-order EPs.

    猜你喜歡
    東寧燕京
    憶燕京門下
    少林與太極(2023年4期)2023-07-14 07:47:54
    Hardware for multi-superconducting qubit control and readout*
    Fasudil prevents liver fibrosis via activating natural killer cells and suppressing hepatic stellate cells
    寧波市海曙東寧工具有限公司
    An Analysis of the Difficulties and Learning Methods of English Grammar in Senior High Schools
    Tunable coupling between Xmon qubit and coplanar waveguide resonator?
    “燕京八絕”之首的景泰藍(lán)色彩研究
    流行色(2018年10期)2018-03-23 03:36:26
    燕京理工學(xué)院·環(huán)境藝術(shù)設(shè)計(jì)專業(yè)
    斂汗止血的五倍子
    我們的作品
    日本-黄色视频高清免费观看| 国产乱来视频区| 黄色怎么调成土黄色| 亚洲精品国产色婷婷电影| 亚洲欧洲国产日韩| 黄片无遮挡物在线观看| 国产有黄有色有爽视频| 女人久久www免费人成看片| 欧美黄色片欧美黄色片| 美女午夜性视频免费| 久久久久久久亚洲中文字幕| www.自偷自拍.com| 涩涩av久久男人的天堂| 少妇人妻精品综合一区二区| 一本久久精品| 亚洲婷婷狠狠爱综合网| 日韩成人av中文字幕在线观看| 成人漫画全彩无遮挡| 亚洲综合色惰| 只有这里有精品99| 成人黄色视频免费在线看| 99国产综合亚洲精品| 在线天堂中文资源库| 免费在线观看完整版高清| 国产精品不卡视频一区二区| 精品亚洲成a人片在线观看| 精品亚洲成国产av| av线在线观看网站| 久久精品国产亚洲av天美| 777久久人妻少妇嫩草av网站| 在线 av 中文字幕| 最近手机中文字幕大全| 日本av手机在线免费观看| 久久久久人妻精品一区果冻| 国产男人的电影天堂91| 桃花免费在线播放| 国产极品粉嫩免费观看在线| 汤姆久久久久久久影院中文字幕| 久久99一区二区三区| 国产白丝娇喘喷水9色精品| 日本黄色日本黄色录像| 亚洲久久久国产精品| 亚洲第一青青草原| 国产爽快片一区二区三区| 日日摸夜夜添夜夜爱| 人人澡人人妻人| 啦啦啦在线免费观看视频4| 好男人视频免费观看在线| 久久韩国三级中文字幕| 日日摸夜夜添夜夜爱| 国产免费视频播放在线视频| 一区二区三区四区激情视频| 亚洲成人手机| 人人澡人人妻人| 久久久久久久久免费视频了| 亚洲精品久久午夜乱码| 国产综合精华液| 综合色丁香网| 精品一区二区三区四区五区乱码 | 99久久中文字幕三级久久日本| 99热国产这里只有精品6| 国产麻豆69| 久久久久视频综合| 在线观看三级黄色| 可以免费在线观看a视频的电影网站 | 涩涩av久久男人的天堂| 亚洲av在线观看美女高潮| 国产在线一区二区三区精| 国产亚洲精品第一综合不卡| 久久狼人影院| 一区二区日韩欧美中文字幕| 丁香六月天网| 一区福利在线观看| 美女中出高潮动态图| 免费看不卡的av| 亚洲精品美女久久av网站| 大香蕉久久网| 黄色配什么色好看| 精品人妻熟女毛片av久久网站| 欧美+日韩+精品| 国产免费现黄频在线看| 伦理电影大哥的女人| 天堂中文最新版在线下载| 欧美精品人与动牲交sv欧美| 麻豆av在线久日| 日产精品乱码卡一卡2卡三| av在线观看视频网站免费| 免费播放大片免费观看视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| av免费在线看不卡| √禁漫天堂资源中文www| 日韩av免费高清视频| 两个人看的免费小视频| 免费观看性生交大片5| 久久久久久久精品精品| 久久97久久精品| 国产精品久久久久久av不卡| 色视频在线一区二区三区| 国语对白做爰xxxⅹ性视频网站| 色婷婷久久久亚洲欧美| 国产黄色视频一区二区在线观看| 亚洲精品第二区| 九色亚洲精品在线播放| 老汉色∧v一级毛片| 国产亚洲av片在线观看秒播厂| 丁香六月天网| 欧美成人午夜免费资源| 国产色婷婷99| 亚洲成av片中文字幕在线观看 | 国产 一区精品| 一区二区av电影网| 成人国语在线视频| 日韩av免费高清视频| 天美传媒精品一区二区| 热re99久久国产66热| 亚洲精品国产av成人精品| 国产精品熟女久久久久浪| 国产老妇伦熟女老妇高清| 一二三四在线观看免费中文在| 欧美亚洲日本最大视频资源| 精品99又大又爽又粗少妇毛片| 九九爱精品视频在线观看| 美女午夜性视频免费| 欧美变态另类bdsm刘玥| 十八禁网站网址无遮挡| 国产av码专区亚洲av| 久久精品国产亚洲av高清一级| 麻豆av在线久日| 街头女战士在线观看网站| 日韩精品有码人妻一区| 一级毛片 在线播放| 亚洲综合精品二区| 天美传媒精品一区二区| 午夜福利影视在线免费观看| 丝袜脚勾引网站| 黄网站色视频无遮挡免费观看| 中文字幕制服av| 一级爰片在线观看| 亚洲男人天堂网一区| 亚洲av日韩在线播放| 亚洲精品视频女| 色吧在线观看| 国产精品一区二区在线不卡| 少妇猛男粗大的猛烈进出视频| 中文乱码字字幕精品一区二区三区| 天堂俺去俺来也www色官网| 日韩制服丝袜自拍偷拍| 国产午夜精品一二区理论片| 看十八女毛片水多多多| 男女免费视频国产| 亚洲精品自拍成人| 亚洲欧洲国产日韩| 国产精品免费大片| 久久精品久久精品一区二区三区| 国产片内射在线| 国产1区2区3区精品| 国产精品99久久99久久久不卡 | 亚洲欧美中文字幕日韩二区| 性色av一级| videos熟女内射| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 天天躁夜夜躁狠狠久久av| 日本午夜av视频| 久久精品久久久久久噜噜老黄| 亚洲国产欧美在线一区| 伦理电影免费视频| 日日摸夜夜添夜夜爱| 9热在线视频观看99| 麻豆精品久久久久久蜜桃| 日日啪夜夜爽| 尾随美女入室| 久久久国产精品麻豆| 亚洲精品aⅴ在线观看| 久久精品国产自在天天线| 欧美少妇被猛烈插入视频| 国产成人a∨麻豆精品| av女优亚洲男人天堂| 天天躁夜夜躁狠狠躁躁| 亚洲精品久久成人aⅴ小说| 国产白丝娇喘喷水9色精品| 婷婷色麻豆天堂久久| 国产麻豆69| av一本久久久久| 一区二区三区四区激情视频| 曰老女人黄片| 丝袜在线中文字幕| 亚洲少妇的诱惑av| 熟女av电影| 国产成人精品久久二区二区91 | 成人亚洲欧美一区二区av| 亚洲av中文av极速乱| 桃花免费在线播放| 中国国产av一级| 午夜福利影视在线免费观看| 天堂俺去俺来也www色官网| 亚洲国产毛片av蜜桃av| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 大香蕉久久成人网| 熟女少妇亚洲综合色aaa.| 久久人人爽av亚洲精品天堂| 性色avwww在线观看| 中文字幕亚洲精品专区| 精品人妻在线不人妻| 香蕉丝袜av| 国产精品成人在线| 日韩av免费高清视频| 天天躁日日躁夜夜躁夜夜| 国产日韩欧美视频二区| 亚洲伊人色综图| 十八禁网站网址无遮挡| 欧美精品一区二区大全| 免费观看a级毛片全部| 国产成人精品婷婷| 久久国产亚洲av麻豆专区| 在线 av 中文字幕| 亚洲精品国产av蜜桃| 巨乳人妻的诱惑在线观看| 亚洲,欧美精品.| 国产成人精品在线电影| 69精品国产乱码久久久| √禁漫天堂资源中文www| 夜夜骑夜夜射夜夜干| 超碰97精品在线观看| 国产色婷婷99| 亚洲经典国产精华液单| 亚洲av国产av综合av卡| 爱豆传媒免费全集在线观看| 久久99热这里只频精品6学生| 五月天丁香电影| 亚洲伊人色综图| 国产精品麻豆人妻色哟哟久久| 精品人妻熟女毛片av久久网站| a级毛片在线看网站| 亚洲av.av天堂| 丰满迷人的少妇在线观看| 亚洲精品日本国产第一区| 国产在线一区二区三区精| 欧美+日韩+精品| 久久国产精品大桥未久av| 久久99精品国语久久久| 国产精品欧美亚洲77777| 精品国产一区二区久久| 日韩av免费高清视频| 卡戴珊不雅视频在线播放| 在线观看www视频免费| 丝袜喷水一区| av有码第一页| 午夜福利在线观看免费完整高清在| 婷婷色麻豆天堂久久| 国产男女内射视频| 最近手机中文字幕大全| 伊人久久国产一区二区| 精品人妻熟女毛片av久久网站| av网站免费在线观看视频| 中文字幕色久视频| 黄色怎么调成土黄色| 97精品久久久久久久久久精品| 在线观看人妻少妇| 精品人妻熟女毛片av久久网站| 日韩av在线免费看完整版不卡| 99久久中文字幕三级久久日本| 91精品伊人久久大香线蕉| 欧美亚洲日本最大视频资源| 亚洲国产看品久久| 中文字幕人妻丝袜制服| 国产国语露脸激情在线看| 两个人看的免费小视频| 最近手机中文字幕大全| 欧美 日韩 精品 国产| 蜜桃在线观看..| 91午夜精品亚洲一区二区三区| 亚洲欧洲日产国产| 91精品国产国语对白视频| 国产乱来视频区| 丝袜喷水一区| 亚洲精品美女久久久久99蜜臀 | 一级a爱视频在线免费观看| 韩国精品一区二区三区| 黄色一级大片看看| 精品国产乱码久久久久久小说| 免费久久久久久久精品成人欧美视频| 久久97久久精品| 国产精品蜜桃在线观看| 免费大片黄手机在线观看| 久久精品亚洲av国产电影网| 日本vs欧美在线观看视频| 99久久综合免费| 中文字幕亚洲精品专区| 精品少妇黑人巨大在线播放| 免费观看a级毛片全部| 国产成人av激情在线播放| 日韩中文字幕欧美一区二区 | 爱豆传媒免费全集在线观看| 日日摸夜夜添夜夜爱| 精品亚洲乱码少妇综合久久| 九草在线视频观看| 91aial.com中文字幕在线观看| 人人澡人人妻人| 国产精品国产三级国产专区5o| 免费看不卡的av| 欧美人与性动交α欧美精品济南到 | 91国产中文字幕| 久久人人爽av亚洲精品天堂| 久久久久久人人人人人| 十八禁网站网址无遮挡| 午夜av观看不卡| 91在线精品国自产拍蜜月| 国产乱人偷精品视频| 夫妻性生交免费视频一级片| 又大又黄又爽视频免费| 91精品伊人久久大香线蕉| 久久人人97超碰香蕉20202| 日本黄色日本黄色录像| 亚洲欧洲国产日韩| 亚洲国产欧美网| av在线app专区| 美女脱内裤让男人舔精品视频| 18禁裸乳无遮挡动漫免费视频| 热99国产精品久久久久久7| 在线观看免费视频网站a站| 男女边摸边吃奶| 色视频在线一区二区三区| 如何舔出高潮| 久久国产精品大桥未久av| 中文字幕色久视频| 不卡av一区二区三区| 巨乳人妻的诱惑在线观看| 母亲3免费完整高清在线观看 | 美女福利国产在线| 久久久久久久国产电影| 人人妻人人澡人人爽人人夜夜| 一级毛片 在线播放| 成年人午夜在线观看视频| 赤兔流量卡办理| freevideosex欧美| 最近中文字幕高清免费大全6| 国产成人欧美| 大香蕉久久网| 中文字幕人妻熟女乱码| 热re99久久国产66热| 在线观看一区二区三区激情| 亚洲国产精品一区二区三区在线| 色哟哟·www| 欧美精品亚洲一区二区| 宅男免费午夜| 日韩中字成人| av电影中文网址| 久久久精品免费免费高清| 丝袜人妻中文字幕| 国产成人免费无遮挡视频| 伊人久久国产一区二区| 国产福利在线免费观看视频| 有码 亚洲区| 狂野欧美激情性bbbbbb| 国产伦理片在线播放av一区| 26uuu在线亚洲综合色| 美国免费a级毛片| 美女午夜性视频免费| 一区二区三区精品91| 免费观看性生交大片5| tube8黄色片| 亚洲av国产av综合av卡| 看免费av毛片| 晚上一个人看的免费电影| 日韩视频在线欧美| 日韩av不卡免费在线播放| 深夜精品福利| 亚洲av成人精品一二三区| 2021少妇久久久久久久久久久| 一区二区日韩欧美中文字幕| 街头女战士在线观看网站| 久久精品久久精品一区二区三区| av线在线观看网站| 亚洲经典国产精华液单| 日韩不卡一区二区三区视频在线| 不卡av一区二区三区| 两个人免费观看高清视频| 国产 一区精品| 天天躁日日躁夜夜躁夜夜| 国产精品香港三级国产av潘金莲 | 一二三四在线观看免费中文在| 少妇被粗大的猛进出69影院| 99香蕉大伊视频| 久久国内精品自在自线图片| 宅男免费午夜| 国产成人av激情在线播放| 黄色一级大片看看| 一本色道久久久久久精品综合| 卡戴珊不雅视频在线播放| 日本欧美视频一区| 欧美精品一区二区免费开放| 久久午夜福利片| 另类亚洲欧美激情| 最新中文字幕久久久久| 老司机影院成人| 国产伦理片在线播放av一区| 99热网站在线观看| 侵犯人妻中文字幕一二三四区| 国产白丝娇喘喷水9色精品| 一级片'在线观看视频| 韩国av在线不卡| 大陆偷拍与自拍| 亚洲精品国产色婷婷电影| 亚洲伊人色综图| 汤姆久久久久久久影院中文字幕| 久久青草综合色| 欧美97在线视频| 看非洲黑人一级黄片| 久久久久国产精品人妻一区二区| 女人久久www免费人成看片| 久久久国产一区二区| 久久久久久久国产电影| av网站免费在线观看视频| 最近中文字幕高清免费大全6| 精品国产一区二区三区四区第35| 日本色播在线视频| a 毛片基地| 久久女婷五月综合色啪小说| 国产视频首页在线观看| 女人高潮潮喷娇喘18禁视频| av在线观看视频网站免费| 婷婷色综合www| 久久精品国产亚洲av涩爱| 777米奇影视久久| 欧美成人精品欧美一级黄| 你懂的网址亚洲精品在线观看| 综合色丁香网| 天天影视国产精品| 免费观看a级毛片全部| 美国免费a级毛片| 免费在线观看完整版高清| 亚洲av福利一区| 另类精品久久| 亚洲欧美一区二区三区黑人 | 亚洲一区中文字幕在线| 久久久久精品人妻al黑| 国产精品亚洲av一区麻豆 | 麻豆精品久久久久久蜜桃| 90打野战视频偷拍视频| 欧美日韩亚洲国产一区二区在线观看 | 校园人妻丝袜中文字幕| 午夜福利视频在线观看免费| 免费高清在线观看视频在线观看| 午夜福利影视在线免费观看| 国产探花极品一区二区| 国产精品免费大片| 男女午夜视频在线观看| av在线观看视频网站免费| 国语对白做爰xxxⅹ性视频网站| 人人妻人人爽人人添夜夜欢视频| 亚洲av男天堂| 国产成人aa在线观看| 肉色欧美久久久久久久蜜桃| 中国国产av一级| 日韩精品免费视频一区二区三区| 久久久久精品久久久久真实原创| 精品少妇一区二区三区视频日本电影 | 欧美日韩视频高清一区二区三区二| 国产色婷婷99| 视频区图区小说| 青春草国产在线视频| 色网站视频免费| 啦啦啦视频在线资源免费观看| 赤兔流量卡办理| 日本猛色少妇xxxxx猛交久久| 韩国精品一区二区三区| 91aial.com中文字幕在线观看| 黄色一级大片看看| 亚洲一区二区三区欧美精品| 欧美人与性动交α欧美软件| 精品人妻熟女毛片av久久网站| 欧美少妇被猛烈插入视频| 国产日韩欧美亚洲二区| 欧美日韩视频精品一区| 狂野欧美激情性bbbbbb| 美女脱内裤让男人舔精品视频| 91精品伊人久久大香线蕉| 伦精品一区二区三区| 熟女少妇亚洲综合色aaa.| videos熟女内射| 少妇被粗大猛烈的视频| 亚洲欧美日韩另类电影网站| 亚洲av日韩在线播放| 99久久综合免费| 精品人妻熟女毛片av久久网站| 国产人伦9x9x在线观看 | 国产成人91sexporn| 亚洲国产欧美日韩在线播放| 2022亚洲国产成人精品| 97人妻天天添夜夜摸| 久久精品国产亚洲av高清一级| 免费观看性生交大片5| 亚洲人成网站在线观看播放| 国产精品人妻久久久影院| 精品人妻一区二区三区麻豆| 日本wwww免费看| 香蕉精品网在线| 欧美亚洲 丝袜 人妻 在线| 亚洲欧美中文字幕日韩二区| 大陆偷拍与自拍| 99九九在线精品视频| 精品酒店卫生间| 人人妻人人添人人爽欧美一区卜| 1024香蕉在线观看| www.精华液| 国产xxxxx性猛交| 在线观看三级黄色| 免费黄频网站在线观看国产| 亚洲国产av影院在线观看| 国产精品久久久久久精品古装| freevideosex欧美| 国产成人aa在线观看| 电影成人av| 又黄又粗又硬又大视频| 最近中文字幕2019免费版| av在线播放精品| 欧美人与善性xxx| 成人18禁高潮啪啪吃奶动态图| 亚洲精品一二三| 男女国产视频网站| 亚洲三级黄色毛片| 自拍欧美九色日韩亚洲蝌蚪91| 国产一区有黄有色的免费视频| 美女国产视频在线观看| 国产爽快片一区二区三区| 美女主播在线视频| 国产成人欧美| 午夜av观看不卡| 亚洲精品中文字幕在线视频| 波多野结衣一区麻豆| 妹子高潮喷水视频| 欧美日韩视频精品一区| 如何舔出高潮| 观看av在线不卡| 999久久久国产精品视频| 国产欧美日韩综合在线一区二区| 三上悠亚av全集在线观看| 婷婷色综合大香蕉| 久久久久久久国产电影| 日韩伦理黄色片| 纯流量卡能插随身wifi吗| 国产极品粉嫩免费观看在线| 日韩制服丝袜自拍偷拍| 一区二区av电影网| 国产爽快片一区二区三区| 亚洲欧美成人综合另类久久久| 九九爱精品视频在线观看| 免费播放大片免费观看视频在线观看| 狠狠精品人妻久久久久久综合| 欧美日韩精品成人综合77777| 成人二区视频| 久久精品国产自在天天线| 免费黄网站久久成人精品| 99热国产这里只有精品6| 晚上一个人看的免费电影| 婷婷色综合大香蕉| 精品99又大又爽又粗少妇毛片| 视频区图区小说| 高清在线视频一区二区三区| 桃花免费在线播放| 一级爰片在线观看| 日韩av免费高清视频| 两个人免费观看高清视频| 精品一区在线观看国产| 久久av网站| 91在线精品国自产拍蜜月| 国产精品.久久久| videossex国产| 国产男女超爽视频在线观看| 精品少妇内射三级| 一级毛片黄色毛片免费观看视频| 热99国产精品久久久久久7| 国产女主播在线喷水免费视频网站| 五月天丁香电影| a级毛片在线看网站| 日韩中文字幕欧美一区二区 | 久热久热在线精品观看| 国产一区二区三区av在线| 久久久久久久大尺度免费视频| 精品国产一区二区久久| 国产日韩欧美亚洲二区| 大码成人一级视频| 一区福利在线观看| √禁漫天堂资源中文www| 少妇被粗大的猛进出69影院| 久久热在线av| 国产一区二区激情短视频 | 啦啦啦啦在线视频资源| av免费观看日本| 久久精品国产a三级三级三级| 亚洲一级一片aⅴ在线观看| 天天影视国产精品| 一级毛片电影观看| 久久精品国产亚洲av涩爱| 高清不卡的av网站| 精品国产露脸久久av麻豆| 亚洲一区中文字幕在线| 国产黄色免费在线视频| 黄色 视频免费看| 亚洲av.av天堂| h视频一区二区三区| av天堂久久9| 人妻一区二区av| 久久国产亚洲av麻豆专区| 欧美最新免费一区二区三区| 一本大道久久a久久精品| 伊人亚洲综合成人网| 日韩一区二区三区影片| 五月伊人婷婷丁香| 男女午夜视频在线观看| 亚洲内射少妇av| 高清视频免费观看一区二区| 亚洲色图综合在线观看| 熟女电影av网| 最近的中文字幕免费完整|