• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of thickness on current-induced magnetization switching in L10-FePt single layer?

    2021-10-28 07:02:06ShiQiZheng鄭詩琪KangKangMeng孟康康ZhenGuoFu付振國JiKunChen陳吉堃JunMiao苗君XiaoGuangXu徐曉光andYongJiang姜勇
    Chinese Physics B 2021年10期
    關鍵詞:振國

    Shi-Qi Zheng(鄭詩琪) Kang-Kang Meng(孟康康) Zhen-Guo Fu(付振國) Ji-Kun Chen(陳吉堃)Jun Miao(苗君) Xiao-Guang Xu(徐曉光) and Yong Jiang(姜勇)

    1School of Materials Science and Engineering,University of Science and Technology Beijing,Beijing 100083,China

    2Institute of Applied Physics and Computational Mathematics,Beijing 100083,China

    Keywords: spin–orbit coupling,magnetic anisotropy,spin transport effects

    1. Introduction

    In order to read or write the information in advanced technologies such as magnetic random access memories(MRAMs), it is necessary to achieve a fast magnetization reversal. In a conventional MRAM, the magnetization is switched by the magnetic fields created by currents in nearby conductors, which are known as Oersted fields. However,nowadays, many research laboratories are dedicated to investigating current-driven magnetic dynamics since it is more effective to switch magnetization by spin-torques rather than magnetic field. In ferromagnetic materials or heterostructures,the electronic carriers can transfer their angular momentum to the lattice through spin current, leading to spin-torques, and the transfer rate is equal to the rate of change of angular momentum in the lattice. In the past few years, the current induced magnetization switching in magnetic materials and heterostructures with strong spin–orbit coupling(SOC)presented a new way to read and write information by the spin–orbit torque (SOTs). It can provide efficient technique to switch magnetization in many classes of materials, including ferromagnets (FM),[1–4]antiferromagnets,[5,6]ferrimagnets,[7]magnetic insulators,[8]and magnetic multilayers.[9]In these material systems,even an initially unpolarized current can produce an exert torque,if it becomes spin polarized via spin Hall effect(SHE)or Rashba–Edelstein effect.[10–16]When an electric current passes through a material that contains spin–orbit scatterers,there can be a spin accumulation at the surface.The spin–orbit scatters originate from intrinsic or interfacial SOC,which is known as the SHE or the Rashba–Edelstein effect respectively.[17–25]

    Currently, the researches of SOT focus mainly on FM/HM bilayer (or multilayer) structures.[26,27]However, it largely restricts the selection of materials for the practical application. To cope with these issues,studies about SOT in single FM layers have attracted more and more attention.[28,29]For practical applications, the bulk perpendicular magnetic anisotropy (PMA)L10-FePt has been widely used as a permanent magnet in many kinds of instruments where its exceptional corrosion resistance, ductility, machinability and good high-temperature performance justify the high cost.[30–32]On the other hand,an efficient magnetization switching is highly desirable for the further advancing of modern information technologies. Recently,we have investigated the self-induced SOT in theL10-FePt single layer with the same thickness(3 nm) but with different disordering. We have found that nearly full magnetization switching happens only in more disordered films,and the magnetization switching ratio becomes smaller with increasingL10ordering.[33]However,Tanget al.have also found self-induced SOT in theL10-FePt single layer,but they have ascribed it to the composition gradient along the normal direction of the film.[34]Therefore,the mechanisms for magnetization switching are far from fully studied.

    In this work, we further investigate the SOT of theL10-FePt single layer with different thickness and growth temperatures. We find that the magnetization switching ratio inL10-FePt film with high chemical ordering becomes smaller with thickness increasing from 8 nm to 16 nm. It is noted that compared with 3-nm-thickL10-FePt film, 8-nm-thickL10-FePt film can switch much magnetization with the increase of chemical ordering. When the FePt film is thick enough,the SOT in FePt is closely related to theL10-ordered structure,which indicates a bulk nature.Therefore,the disordering plays an important role in the magnetization switching only for the ultra-thin FePt films, while the structural gradient may play an important role for thicker films. However, both of the two mechanisms cannot fully explain the process of magnetization switching and the spin current generation.Although many factors influence SOT, here in this work we emphasize only the bulk nature of strong SOC inL10-FePt through density functional theory calculations, which should generate large spin current due to SHE.

    2. Materials and methods

    TheL10-ordered FePt films with different thickness were epitaxially grown on MgO (001) substrates by high vacuum magnetron sputtering,in which the Fe and Pt atoms were sputtered simultaneously by co-sputtering from Fe and Pt elemental targets at an elevated temperature. After deposition, the samples were annealed by 2 hin situat the same temperature to promote the formation of theL10phase of FePt alloy, and then the films are cooled down to room temperaturein situ. In order to prepare FePt films with different chemical ordering,the growth temperatureTgis adjusted in a range from 350°C to 450°C for different samples in our study.

    3. Results and discussion

    The different thickness ofL10-FePt films withTg=450°C are confirmed by x-ray reflectivity (XRR) as shown in Fig. 1(a). And the roughness values of films are all less than 0.31 nm from the results of XRR. Figure 1(b) shows the structure characterization of these four samples through xray diffraction (XRD)measurements. As shown in Fig.1(b),with the thicknesses increasing,the fct(001)and the fct(002)peak in the spectrum of FePt film become more obvious. The chemical orderingScan be calculated from the intensities of(001) peak and (002) peak.[33,35]The values for these four samples with different thicknesses are all higher than 0.75,indicating the high chemical ordering. Figure 1(c) shows the magnetic hysteresis loops for 16-nm-thickL10-FePt film atTg= 450°C, measured by VSM, which shows an evident bulk PMA.The saturated magnetizationMSand the coercivity fieldsHCof theL10-FePt films with different thicknesses atTg=450°C are shown in Fig.1(d). TheMSkeeps around 1000 emu/cc–1050 emu/cc with varying thickness, and theHCdecreases with the thickness increasing,which may stem from the weaker pinning effect due to lower defect density for thicker FePt.[34]

    Fig. 1. (a) Curves of x-ray reflectivity of L10-FePt films grown at 450 °C with different thicknesses. (b) XRD patterns of L10-FePt films grown at 450 °C with different thicknesses. (c)In-plane and out-of-plane magnetic hysteresis loop of 16-nm-thick L10-FePt film grown at 450 °C.(d)MS and HC versus thickness of the L10-FePt films grown at 450 °C.

    After depositions, the films are prepared into Hall bar devices for electrical measurement by using electron beam lithography and Ar ion milling. The scan electron microscopy(SEM) image of the Hall bar of 20 μm×120 μm along with the definition of the coordinate system used in our study is shown in Fig.2(a).The current-induced magnetization switching behaviors inL10-FePt films with different thicknesses are measured by using a non-zero in-plane field along theXdirection. The current-induced switching loops are compared with the loops of magnetic field dependence of anomalous Hall resistance at room temperature, and the results are shown in Figs. 2(b)–2(d). Compared with the Hall resistance, only a partial magnetization can be found to be switched in theL10-FePt films.

    We summarize the variation trend of magnetization switching ratio with thickness as shown in Fig.2(e).It is found that smaller part of magnetization can be switched with thickness increasing,except for the ultra-thinL10-FePt film(3 nm).In our previous study, the SOT in ultra-thinL10-FePt films was investigated,[33]in which we found that nearly full magnetization switching happens only in more disordered films,and the magnetization switching ratio becomes smaller with the increase ofL10ordering.[33]Here,with thickness increasing, the structural gradient as discussed by Tanget al. can play a more important role,where the current-induced magnetization switching efficiency and the quantified effective magnetic fields increase with the augment of film thickness and chemical ordering in FePt.[34]Therefore, the switching ratio is higher in 8-nm-thick film than in 3-nm-thick film. However,with further increasing thickness,the switching ratio decreases as shown in Fig.2(e),which is opposite to the results in Ref. [34]. It indicates that more factors should be taken into consideration for SOT of singleL10-FePt film. Here,the possible mechanisms result from the difference in different interfacial strain and grain sizes of FePt films with varying thickness. The reduced grain size in relatively thin film can lead to lower energy barrier for domain nucleation,thereby enhancing the switching ratio.

    Fig.3. (a)X-ray diffraction of 8-nm-thick L10-FePt films grown at 380 °C and 450 °C,(b)variation of magnetization switching ratio with growth temperature for 8-nm-thick FePt film.

    Here, we compare the mechanisms of disordering in our previous work[33]with the structural gradient in Ref. [34].Therefore, we focus on the SOT in 8-nm-thick FePt films with different growth temperatures. We compare the XRD pattern of 8-nm-thick FePt films atTg=380°C with that atTg=450°C as shown in Fig. 3(a) to calculate the chemical orderingS. The values of chemical orderingSforTg=380°C andTg=450°C are 0.45 and 0.83 respectively. The variation trend of magnetization switching ratio for the 3-nm-thick FePt film[33]is opposite to that for the 8-nm-thick sample. On the other hand,the overall changes of the values of magnetization switching ratio with different values ofTgin 8-nm-thickL10FePt are not so great as that in 3-nm-thick film. It is believed that more magnetization can be switched in the 8-nm-thickL10FePt film with the increase of chemical ordering. Therefore,when the FePt film is thick enough,the structural gradient can play an important role and the SOT increases with the augment of film thickness and chemical ordering in FePt. On the contrary, the disordering plays an important role in the magnetization switching only for the ultra-thin FePt films.

    In order to further study the strength of SOT efficiency,the harmonic Hall voltages of 8-nm-thickL10FePt films with different values ofTgare measured with applying AC current of 5 mA in an in-plane magnetic field, and the first and the second voltage signals are detected by using two lock-in amplifiers at the same time. The results of 8-nm-thickL10-FePt films withTg=380°C andTg=400°C against in-plane magnetic fieldHxare shown in Fig. 4, in which the signals are measured withMz>0 andMz<0. The second voltage signals against in-plane magnetic fieldsHyfor 8-nm-thickL10-FePt films are too weak to be detected. The damping-like effective fieldHDand field-like effective fieldHFcan be calculated from the following equation:[36–38]

    whereξis the ratio of planar Hall effect resistance to anomalous Hall effect resistance,and the planar Hall effect resistance can be gained by the method from Refs. [38,39]. The values ofξfor 8-nm-thickL10-FePt film withTg=380°C and withTg=400°C are 0.067 and 0.065, respectively. The±signs refer to the magnetization pointing±z. TheHL(T)can be calculated from the following equation:

    After the calculations,HDandHFfor 8-nm-thickL10-FePt films withTg= 380°C are 0.43 Oe and 0.06 Oe respectively.HDandHFfor 8-nm-thickL10FePt films withTg=400°C are 0.67 Oe and 0.09 Oe respectively. As the growth temperature increases,bothHDandHFfor 8-nm-thickL10-FePt film increase. However,their effective fields of this magnitude are too small to fully explain the magnetization switching ofL10-FePt. The results from the method of deriving the effective spin torque fields in the previous studies cannot fully explain the spin current generation and selfinduced SOT inL10-FePt single layer.[33,34]Therefore, many factors can influence the SOT inL10-FePt single layer, and the two mechanisms cannot fully explain the real magnetization switching or spin current generation.[33,34]Here,we emphasize the bulk nature of strong SOC inL10-FePt through density functional theory calculations,which should generate large spin current due to SHE even the process of magnetization switching will also be influenced by complicated factors such as disorder,interfacial strain and structural gradient.

    Fig.4. Plots of first Vω and second V2ω harmonic Hall voltages against small in-plane external field Hx in FePt films with Tg =380 °C[(a), (b)]and 400 °C[(c)–(d)]. The black and red signals are measured with out-of-plane magnetization component Mz>0 and Mz<0,respectively.

    Our density functional theory calculations are performed by employing the Viennaab initiosimulation package (VASP)[40]through using the projected augmented wave(PAW) method.[41]The generalized gradient approximation(GGA) of Perdew–Burke–Ernzerhof (PBE) parametrization for the exchange-correlation functional[42,43]is adopted. The cutoff energy of 450 eV is used for plane wave expansions of electron wave functions. During structure optimizations, all atoms are fully relaxed until the Hellmann–Feynman forces on them along each direction are less than 0.01 eV/°A. The iron 3d64s2and platinum 5d96s1electrons are treated as valence electrons. The 30×30×30 Monkhorst–Pack[44]k-point meshes are employed for integration over the Brillouin zones of primitive cell. We focus on FePt in the chemically orderedL10phase(space groupP4/mmm). The calculated lattice constants of FePt area=b=3.86 °A andc=3.77 °A,respectively,which are in good agreement with the experimental values of 3.94 °A and 3.76 °A.In our calculations,the assumption is made that the ground state of FePt is ferromagnetic phase, and the magnetization is contributed from Fe atom. The calculated magnetization is 3.268μB/Fe, which is consistent with the experimental result. The electronic band structures of ferromagnetic FePt along the high-symmetry direction of the Brillouin zone are calculated. Figure 5(a)shows the obtained band structures with the SOC neglected, while figure 5(b)represents the band structures including SOC based on the parameter in VASP.The Fermi energyEFis set to be zero,and indicated by a gray line. As shown in Fig.5,the Fermi surface of FePt is mainly formed by Fe 3d states. Comparing Fig.5(a)with Fig.5(b),it is not difficult to find that under the effect of SOC,the degeneracy of the energy band near the high symmetry pointsZ,M,R,andXare all remarkably reduced,and the energy band splits obviously.For example,atMpoint,the spin orbit splitting is about 0.17 eV. It can be seen from Fig. 5(b)that multiple energy bands cross the Fermi surface, and the Fermi surface of 3D Brillouin zone is very complex.However,owing to the SOC,3dz2,3dxz,and 3dyzorbitals make the most significant contributions near the Fermi surface. AtRpoint,the 3dz2orbit forms a hole pocket; AtXpoint, the 3dyzorbit forms an electron pocket; and the energy bands of 3dxzand 3dz2cross the Fermi surface atRpoint andMpoint, respectively. Therefore,it is clear that the SOC effect is very strong in FePt.

    Fig.5. Band structures of L10-FePt based on density functional theory calculations.

    4. Conclusions

    In summary, we have investigated the thickness dependent SOT inL10-FePt single layers. Comparing with 3-nmthickL10-FePt film, much magnetization can be switched in 8-nm-thickL10-FePt films with the increase of chemical ordering. When the FePt film is thick enough, the SOT in FePt is closely related to theL10-ordered structure,which displays a bulk nature. However, the switching ratio decreases with thickness further increasing,indicating that more factors should be taken into consideration for SOT of singleL10-FePt film. Although the disordering plays an important role in the magnetization switching only for the ultra-thin FePt films and the structural gradient may play an important role for thicker films,the two mechanisms cannot fully explain the process of magnetization switching or the spin current generation. Finally,we highlight the bulk nature of strong SOC inL10-FePt through density functional theory calculations. Therefore, a large spin current can be generated fromL10-FePt film due to SHE.

    Acknowledgment

    We would like to thank Dr.Qi Liu in Southern University of Science and Technology for XRD and XRR characterizations.

    猜你喜歡
    振國
    Magnetic ground state of plutonium dioxide: DFT+U calculations
    Magnetic phase diagram of single-layer CrBr3?
    NOx storage and reduction assisted by non-thermal plasma over Co/Pt/Ba/γ-Al2O3 catalyst using CH4 as reductant
    愛在拉薩
    我和繼父13年
    我和繼父13年
    文苑·感悟(2019年12期)2019-12-23 07:24:46
    我和繼父13 年
    文苑(2019年23期)2019-12-05 06:50:22
    Enhanced spin-dependent thermopower in a double-quantum-dot sandwiched between two-dimensional electron gases?
    我和繼父的13年
    中外文摘(2019年16期)2019-08-29 06:01:30
    我和繼父的13年
    37°女人(2019年6期)2019-06-10 08:48:11
    免费看日本二区| 在线观看舔阴道视频| 日韩精品中文字幕看吧| 免费在线观看日本一区| 搡老妇女老女人老熟妇| 色播亚洲综合网| 嫩草影院入口| 欧美激情在线99| 女人十人毛片免费观看3o分钟| 中亚洲国语对白在线视频| 午夜免费激情av| 一进一出抽搐动态| 两人在一起打扑克的视频| 女的被弄到高潮叫床怎么办 | 精品一区二区三区人妻视频| 此物有八面人人有两片| 国产乱人视频| 国产亚洲精品av在线| 搞女人的毛片| 国产一区二区三区av在线 | 亚洲av.av天堂| 99久久无色码亚洲精品果冻| 亚洲欧美精品综合久久99| 成人永久免费在线观看视频| 18禁黄网站禁片免费观看直播| 欧美性感艳星| 91麻豆av在线| 变态另类成人亚洲欧美熟女| 美女高潮喷水抽搐中文字幕| 乱系列少妇在线播放| 午夜精品一区二区三区免费看| 全区人妻精品视频| 亚洲av成人av| 国产中年淑女户外野战色| 成人欧美大片| 又粗又爽又猛毛片免费看| 国产一区二区在线av高清观看| 嫁个100分男人电影在线观看| 亚洲天堂国产精品一区在线| av.在线天堂| 日韩欧美三级三区| 在线免费十八禁| 亚洲欧美日韩高清在线视频| 日韩人妻高清精品专区| 精品久久久久久久久av| 亚洲欧美激情综合另类| 一个人看视频在线观看www免费| 亚洲美女黄片视频| 亚洲黑人精品在线| 国产高清三级在线| 久久热精品热| 免费看美女性在线毛片视频| 欧美极品一区二区三区四区| 免费av不卡在线播放| 黄色女人牲交| 在现免费观看毛片| 国产精品人妻久久久久久| 99久久久亚洲精品蜜臀av| 亚洲av成人av| 色视频www国产| 国产伦在线观看视频一区| 亚洲成人精品中文字幕电影| 嫩草影院入口| 十八禁国产超污无遮挡网站| 大型黄色视频在线免费观看| 嫩草影院精品99| 国内精品久久久久久久电影| 91狼人影院| 欧美日本亚洲视频在线播放| 男女视频在线观看网站免费| 男女那种视频在线观看| 欧美三级亚洲精品| 色哟哟·www| 狂野欧美白嫩少妇大欣赏| a级一级毛片免费在线观看| 亚洲专区中文字幕在线| 国产高清有码在线观看视频| 最近最新中文字幕大全电影3| 一区二区三区激情视频| 亚洲av日韩精品久久久久久密| 韩国av在线不卡| 国产伦一二天堂av在线观看| 男女下面进入的视频免费午夜| 亚洲aⅴ乱码一区二区在线播放| 99热这里只有精品一区| 国产白丝娇喘喷水9色精品| 我的老师免费观看完整版| av天堂中文字幕网| 国产久久久一区二区三区| 乱码一卡2卡4卡精品| 国产精品99久久久久久久久| 国产免费av片在线观看野外av| a在线观看视频网站| 国产精品一区二区免费欧美| 精品人妻1区二区| 少妇裸体淫交视频免费看高清| 精品午夜福利视频在线观看一区| 一区二区三区激情视频| 极品教师在线免费播放| 日韩欧美在线二视频| 一级黄色大片毛片| a级毛片免费高清观看在线播放| 免费在线观看成人毛片| 精品福利观看| 精品久久久久久久久av| 如何舔出高潮| 黄色日韩在线| 亚洲精品色激情综合| 午夜爱爱视频在线播放| 亚洲国产精品合色在线| 亚州av有码| 熟女人妻精品中文字幕| 欧美日韩瑟瑟在线播放| 美女高潮喷水抽搐中文字幕| 国产日本99.免费观看| 国产免费男女视频| 久久久久久伊人网av| 国产亚洲精品久久久com| 国产激情偷乱视频一区二区| 午夜福利欧美成人| 1024手机看黄色片| 熟妇人妻久久中文字幕3abv| 美女高潮喷水抽搐中文字幕| 美女 人体艺术 gogo| 一个人看视频在线观看www免费| 热99在线观看视频| 简卡轻食公司| 国产毛片a区久久久久| 免费av毛片视频| 国内精品宾馆在线| 不卡视频在线观看欧美| 免费电影在线观看免费观看| 可以在线观看的亚洲视频| 欧美日本视频| 国产精品一及| 国产美女午夜福利| 国产乱人伦免费视频| 美女高潮喷水抽搐中文字幕| 男人狂女人下面高潮的视频| 一区二区三区激情视频| 久久久久久大精品| 精品人妻一区二区三区麻豆 | 在线天堂最新版资源| 天堂√8在线中文| 国内精品久久久久久久电影| 在线观看免费视频日本深夜| 国产精品爽爽va在线观看网站| 老司机福利观看| 亚洲成人免费电影在线观看| 亚洲国产欧美人成| 国产久久久一区二区三区| 麻豆久久精品国产亚洲av| 嫩草影院精品99| 亚洲人成网站在线播| 全区人妻精品视频| 国产精品人妻久久久久久| 无遮挡黄片免费观看| 精品久久久久久久末码| 国内精品久久久久精免费| 国产av在哪里看| 毛片一级片免费看久久久久 | 草草在线视频免费看| 麻豆国产av国片精品| 国产成人一区二区在线| 国产男人的电影天堂91| 亚洲av电影不卡..在线观看| 日韩一本色道免费dvd| 一个人免费在线观看电影| 中文字幕人妻熟人妻熟丝袜美| 欧美一区二区精品小视频在线| 嫩草影院新地址| 乱码一卡2卡4卡精品| 日韩欧美国产一区二区入口| 男插女下体视频免费在线播放| 小蜜桃在线观看免费完整版高清| 色吧在线观看| 人妻久久中文字幕网| 精品一区二区三区视频在线观看免费| 亚洲欧美日韩卡通动漫| 午夜免费男女啪啪视频观看 | 欧美黑人巨大hd| 大又大粗又爽又黄少妇毛片口| 2021天堂中文幕一二区在线观| 最近最新免费中文字幕在线| 亚洲,欧美,日韩| 搡女人真爽免费视频火全软件 | 夜夜夜夜夜久久久久| 18+在线观看网站| 欧美日韩综合久久久久久 | 波多野结衣巨乳人妻| 精品一区二区三区视频在线观看免费| 精华霜和精华液先用哪个| 91久久精品国产一区二区三区| 在现免费观看毛片| 淫妇啪啪啪对白视频| 亚洲电影在线观看av| 少妇丰满av| 乱人视频在线观看| 亚洲成人久久爱视频| 国内精品久久久久精免费| 在线观看免费视频日本深夜| 最新中文字幕久久久久| 美女xxoo啪啪120秒动态图| bbb黄色大片| 天堂网av新在线| 在线a可以看的网站| 色噜噜av男人的天堂激情| 国内毛片毛片毛片毛片毛片| 亚洲成a人片在线一区二区| 日韩国内少妇激情av| www.色视频.com| aaaaa片日本免费| 九九在线视频观看精品| 69av精品久久久久久| 成人一区二区视频在线观看| avwww免费| 国产精品美女特级片免费视频播放器| 老熟妇乱子伦视频在线观看| 一级毛片久久久久久久久女| 国产在线男女| 国产欧美日韩精品亚洲av| 亚洲av不卡在线观看| 两个人的视频大全免费| 一区二区三区免费毛片| 亚洲av中文字字幕乱码综合| 日本五十路高清| 岛国在线免费视频观看| 狠狠狠狠99中文字幕| 淫秽高清视频在线观看| 热99re8久久精品国产| 一个人看视频在线观看www免费| 一区福利在线观看| 国产亚洲欧美98| 亚洲中文字幕一区二区三区有码在线看| 我要搜黄色片| 99精品在免费线老司机午夜| 亚洲一级一片aⅴ在线观看| 欧美3d第一页| 12—13女人毛片做爰片一| 免费人成视频x8x8入口观看| 看黄色毛片网站| 久久久久久伊人网av| 啦啦啦啦在线视频资源| 1000部很黄的大片| 日韩欧美精品免费久久| 又黄又爽又免费观看的视频| 国内毛片毛片毛片毛片毛片| 在线国产一区二区在线| 有码 亚洲区| av黄色大香蕉| www日本黄色视频网| 成人性生交大片免费视频hd| 日本-黄色视频高清免费观看| 女人十人毛片免费观看3o分钟| 波多野结衣巨乳人妻| 色吧在线观看| 久久久久精品国产欧美久久久| 亚洲成人精品中文字幕电影| 国产视频内射| 欧美又色又爽又黄视频| 能在线免费观看的黄片| 亚洲一区二区三区色噜噜| 91在线精品国自产拍蜜月| 啦啦啦韩国在线观看视频| 国产伦精品一区二区三区视频9| 国产亚洲欧美98| 悠悠久久av| 中亚洲国语对白在线视频| 伦精品一区二区三区| 国产黄a三级三级三级人| 午夜久久久久精精品| 欧美日韩精品成人综合77777| 热99re8久久精品国产| 成年女人看的毛片在线观看| 俺也久久电影网| 国产精品一区二区三区四区免费观看 | 国产午夜精品久久久久久一区二区三区 | 免费人成视频x8x8入口观看| 亚洲va日本ⅴa欧美va伊人久久| 国产一区二区激情短视频| 老女人水多毛片| 国产不卡一卡二| 麻豆精品久久久久久蜜桃| 三级国产精品欧美在线观看| 最近最新免费中文字幕在线| 少妇熟女aⅴ在线视频| 91久久精品国产一区二区三区| 精品久久久噜噜| 久久婷婷人人爽人人干人人爱| 欧美丝袜亚洲另类 | 三级毛片av免费| 国产视频一区二区在线看| 亚洲国产欧美人成| 淫秽高清视频在线观看| 美女xxoo啪啪120秒动态图| 久久久久性生活片| 黄色一级大片看看| 一进一出好大好爽视频| 中国美女看黄片| 中文在线观看免费www的网站| 亚洲av免费在线观看| 一边摸一边抽搐一进一小说| 国产免费男女视频| 舔av片在线| 日日夜夜操网爽| 88av欧美| 精品久久久噜噜| 久久精品国产清高在天天线| 成人亚洲精品av一区二区| 亚洲美女黄片视频| 成人鲁丝片一二三区免费| 国产三级中文精品| 韩国av在线不卡| ponron亚洲| 亚洲四区av| 国产乱人伦免费视频| 男女之事视频高清在线观看| 老司机深夜福利视频在线观看| 综合色av麻豆| 日韩在线高清观看一区二区三区 | 99热6这里只有精品| 99久久久亚洲精品蜜臀av| 亚洲最大成人手机在线| 国内精品美女久久久久久| 99riav亚洲国产免费| 精品福利观看| 欧美xxxx黑人xx丫x性爽| 欧美激情久久久久久爽电影| 色播亚洲综合网| 亚洲va日本ⅴa欧美va伊人久久| 极品教师在线免费播放| 免费av观看视频| 欧美一区二区国产精品久久精品| 真人做人爱边吃奶动态| a级毛片a级免费在线| 日韩一区二区视频免费看| 长腿黑丝高跟| 美女被艹到高潮喷水动态| 亚洲av.av天堂| 久久久久精品国产欧美久久久| 午夜a级毛片| 亚洲av电影不卡..在线观看| 国产高清激情床上av| 欧美另类亚洲清纯唯美| 久久亚洲精品不卡| 高清在线国产一区| 免费电影在线观看免费观看| 99热这里只有是精品50| 哪里可以看免费的av片| 日日摸夜夜添夜夜添小说| АⅤ资源中文在线天堂| 日日摸夜夜添夜夜添小说| 少妇的逼好多水| 人妻丰满熟妇av一区二区三区| 日本精品一区二区三区蜜桃| 欧美潮喷喷水| 成人特级av手机在线观看| 99久久精品一区二区三区| 国产一区二区在线av高清观看| 99热精品在线国产| 亚洲精品国产成人久久av| 小蜜桃在线观看免费完整版高清| 黄色视频,在线免费观看| 在线播放无遮挡| 变态另类丝袜制服| 波多野结衣巨乳人妻| 成人特级av手机在线观看| 中文字幕高清在线视频| 黄色视频,在线免费观看| 在线观看舔阴道视频| 俄罗斯特黄特色一大片| 两性午夜刺激爽爽歪歪视频在线观看| 嫩草影院新地址| 亚洲国产精品合色在线| 色精品久久人妻99蜜桃| 免费观看在线日韩| 午夜爱爱视频在线播放| 国产av在哪里看| 麻豆av噜噜一区二区三区| 国产一区二区三区av在线 | 久久久久性生活片| 亚洲精品日韩av片在线观看| 欧美高清性xxxxhd video| 99久久精品热视频| 久久久久久久亚洲中文字幕| 长腿黑丝高跟| 色综合婷婷激情| 综合色av麻豆| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品久久久久久av不卡| 亚洲国产高清在线一区二区三| 久久国内精品自在自线图片| 日本免费一区二区三区高清不卡| 国产日本99.免费观看| 精品久久久久久,| 蜜桃亚洲精品一区二区三区| 九九久久精品国产亚洲av麻豆| 在线播放国产精品三级| 亚洲成人中文字幕在线播放| bbb黄色大片| 熟妇人妻久久中文字幕3abv| 赤兔流量卡办理| 日韩精品有码人妻一区| 乱系列少妇在线播放| 亚洲成人免费电影在线观看| 久久天躁狠狠躁夜夜2o2o| 九九在线视频观看精品| av女优亚洲男人天堂| 日韩人妻高清精品专区| 性欧美人与动物交配| 色噜噜av男人的天堂激情| 久久精品国产鲁丝片午夜精品 | av黄色大香蕉| 哪里可以看免费的av片| 中国美白少妇内射xxxbb| 校园人妻丝袜中文字幕| 黄色日韩在线| 国产欧美日韩一区二区精品| av中文乱码字幕在线| 久久草成人影院| 国产主播在线观看一区二区| 国产成人a区在线观看| 有码 亚洲区| 国产精品人妻久久久久久| 一个人免费在线观看电影| 亚洲av五月六月丁香网| 男插女下体视频免费在线播放| 悠悠久久av| 国内精品久久久久久久电影| 国产一区二区在线观看日韩| 最近最新中文字幕大全电影3| 哪里可以看免费的av片| 91狼人影院| 91久久精品国产一区二区成人| 国产精品亚洲一级av第二区| 精品人妻熟女av久视频| 国产精品无大码| 99热这里只有精品一区| 精品午夜福利在线看| 国产在线男女| 女人十人毛片免费观看3o分钟| 一级黄色大片毛片| 久99久视频精品免费| 村上凉子中文字幕在线| 亚洲图色成人| 九色成人免费人妻av| 久久久久久久久中文| 一个人免费在线观看电影| 婷婷精品国产亚洲av| 国内精品宾馆在线| 最好的美女福利视频网| 亚洲美女搞黄在线观看 | 久久久国产成人免费| 99国产极品粉嫩在线观看| 欧美成人免费av一区二区三区| 久久久成人免费电影| 大又大粗又爽又黄少妇毛片口| 综合色av麻豆| 伦理电影大哥的女人| 午夜免费激情av| 日韩一本色道免费dvd| 成年女人毛片免费观看观看9| 久久久久精品国产欧美久久久| 国产三级中文精品| 校园春色视频在线观看| 国产精品一区二区三区四区久久| 亚洲国产日韩欧美精品在线观看| 免费搜索国产男女视频| 三级国产精品欧美在线观看| 美女高潮的动态| 久久婷婷人人爽人人干人人爱| 亚洲欧美日韩高清在线视频| 免费大片18禁| 国产亚洲精品久久久久久毛片| 国产美女午夜福利| 少妇丰满av| 国产高清三级在线| 黄色视频,在线免费观看| 老熟妇乱子伦视频在线观看| 麻豆国产av国片精品| 日本黄色视频三级网站网址| 一进一出抽搐动态| 午夜a级毛片| 亚洲天堂国产精品一区在线| 久久久久久大精品| h日本视频在线播放| 国产淫片久久久久久久久| 色在线成人网| 国产aⅴ精品一区二区三区波| 国产一区二区亚洲精品在线观看| 欧美激情久久久久久爽电影| 欧美色视频一区免费| 国产av在哪里看| 久久久久久久久久久丰满 | 老女人水多毛片| 欧美性猛交黑人性爽| 国产精品国产高清国产av| 精品欧美国产一区二区三| 最好的美女福利视频网| 一本精品99久久精品77| 噜噜噜噜噜久久久久久91| 白带黄色成豆腐渣| 99精品久久久久人妻精品| 亚洲精品日韩av片在线观看| 淫妇啪啪啪对白视频| 国内毛片毛片毛片毛片毛片| 亚洲中文字幕日韩| 亚洲欧美激情综合另类| 丰满的人妻完整版| 18+在线观看网站| 最近最新免费中文字幕在线| 欧美+亚洲+日韩+国产| 蜜桃久久精品国产亚洲av| 有码 亚洲区| 赤兔流量卡办理| 国产精品精品国产色婷婷| 精品免费久久久久久久清纯| 日日摸夜夜添夜夜添小说| 国产av不卡久久| 久久久精品大字幕| 女生性感内裤真人,穿戴方法视频| 国产 一区 欧美 日韩| 日韩欧美三级三区| 尤物成人国产欧美一区二区三区| 日韩欧美三级三区| 中文字幕人妻熟人妻熟丝袜美| 国产精品久久久久久精品电影| 最近最新中文字幕大全电影3| 十八禁网站免费在线| 日日摸夜夜添夜夜添小说| 久久久久久大精品| 午夜免费男女啪啪视频观看 | www日本黄色视频网| 99热6这里只有精品| 国产av在哪里看| x7x7x7水蜜桃| 人人妻,人人澡人人爽秒播| 99热这里只有是精品在线观看| 国产av在哪里看| 老司机午夜福利在线观看视频| eeuss影院久久| 日本三级黄在线观看| 国产精品免费一区二区三区在线| 精品一区二区三区av网在线观看| 亚洲熟妇熟女久久| 小蜜桃在线观看免费完整版高清| 黄色视频,在线免费观看| 国产探花极品一区二区| 一级毛片久久久久久久久女| 国内精品一区二区在线观看| 欧美在线一区亚洲| .国产精品久久| 99久久精品国产国产毛片| 国产女主播在线喷水免费视频网站 | 22中文网久久字幕| 极品教师在线视频| 精品久久久久久久久av| 亚洲经典国产精华液单| xxxwww97欧美| 日本精品一区二区三区蜜桃| 欧美激情久久久久久爽电影| 一进一出抽搐动态| 亚洲av.av天堂| 国产免费男女视频| 成人性生交大片免费视频hd| 久久精品国产亚洲av香蕉五月| 免费av观看视频| 男人的好看免费观看在线视频| 国产精品无大码| 国产探花在线观看一区二区| 天天躁日日操中文字幕| av中文乱码字幕在线| 久久久久久久亚洲中文字幕| 女人十人毛片免费观看3o分钟| 男女啪啪激烈高潮av片| 老师上课跳d突然被开到最大视频| 在线观看美女被高潮喷水网站| 1000部很黄的大片| 欧美国产日韩亚洲一区| 黄色视频,在线免费观看| 国产极品精品免费视频能看的| 成熟少妇高潮喷水视频| 亚洲精品国产成人久久av| 在线天堂最新版资源| 蜜桃亚洲精品一区二区三区| 亚洲国产欧美人成| 中文亚洲av片在线观看爽| 欧美3d第一页| 精品久久国产蜜桃| 国产老妇女一区| 国产精品久久久久久久久免| 国产精品三级大全| 熟女电影av网| 精品午夜福利视频在线观看一区| 五月玫瑰六月丁香| 在线播放无遮挡| 久久亚洲真实| 白带黄色成豆腐渣| 免费看a级黄色片| 女人被狂操c到高潮| 国内揄拍国产精品人妻在线| 欧美一级a爱片免费观看看| 18禁在线播放成人免费| 白带黄色成豆腐渣| 亚洲四区av| 亚洲真实伦在线观看| 精品99又大又爽又粗少妇毛片 | 麻豆精品久久久久久蜜桃| 久久亚洲精品不卡| 人妻丰满熟妇av一区二区三区| 亚洲性夜色夜夜综合| 精品福利观看| 在线免费十八禁| 久久国产乱子免费精品| 国产 一区 欧美 日韩|