• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generation of a large orbital angular momentum beam via an optical fiber winding around a curved path and its application?

    2021-10-28 07:01:10WeiHanTan譚維翰ChaoYingZhao趙超櫻YiChaoMeng孟義朝andQiZhiGuo郭奇志
    Chinese Physics B 2021年10期
    關(guān)鍵詞:奇志

    Wei-Han Tan(譚維翰) Chao-Ying Zhao(趙超櫻) Yi-Chao Meng(孟義朝) and Qi-Zhi Guo(郭奇志)

    1Department of Physics,Shanghai University,Shanghai 200444,China

    2College of Science,Hangzhou Dianzi University,Hangzhou 310018,China

    3State Key Laboratory of Quantum Optics and Quantum Optics Devices,Institute of Opto-Electronics,Shanxi University,Taiyuan 030006,China

    4Institute of Fiber Optics,Shanghai University,Shanghai 200444,China

    Keywords: fiber optics,orbital angular momentum(OAM),differential Fernet equation,Rayleigh criterion

    1. Introduction

    The generation of the optical beams with orbital angular momentum (OAM) have attracted much attention in optics communication and quantum key distribution. In these applications, we find that the OAM mode can be detected by the discrete “twisting” rate of helical phase. Up to now, the traditional methods of preparing OAM beam include rotating cylindrical lens, helical phase plates, and fiber[1–5]when the wave-front phase is changing and the principal ray is basically unchanged,[6–8]and it is difficult to obtain a large OAM modes. In order to solve the problem,we establish a theoretical framework on the condition that the principal ray is changing and the wave-front phase is basically unchanged.[9,10]The light emitted from the cylindrical spiral wave-guide can carry a high-order OAM modes.[11]In this paper,we achieve a large OAM modes in an optical fiber winding around a curved path of spiral body. We calculate the large OAM modes in the flowing coordinate system(α,β,γ). Applying the large OAM diffraction patterns,we can obtain a 12-bitencodes,and finally provide a high security information transfer system. At the same time, according to analyzing the zero OAM diffraction patterns, we find that our method can improve the spatial resolving power beyond the Rayleigh limiting.

    The organization is as follows: The notation and parameters of the coordinate system,and types of winding around a curved path are presented in Section 2;subsequently,analytical solution is calculated in Section 3;numerical calculation of the OAM via an optical fiber winding around a curved path is given in Section 4;the diffraction patterns calculation and applications are given in Section 5; an experimental scheme for observation of a large OAM beam is proposed in Section 6;finally,the conclusion and discussion are given in Section 7.

    2. The winding-types around the spiral body and the coordinate systems

    The fiber winding around the circular cylinder body results in a spiral form,[9]but it does not mean that the circular cylinder body itself be a spiral form. The circular cones are depicted in Figs. 1(a)–1(c); and Figs. 1(d)–1(f) are the spiral curves of optical fiber around the circular cones.

    In the static coordinate system,the curves as a function ofθcan be expressed by

    wherea(θ)andbθdenote the radius and the axis of the circular cone function,respectively,andf(θ)is the winding function. As shown in Figs. 1(d)–1(f), we call the types of spiral curves, “Exponential”, “Gaussian”, and“Flower”, respectively:

    where the constantsa0,l1>0, andncontrol the characteristic of circular cone;l2≥0 controls the winding-type.l2=0,l2> 0, andl2= ∞denote the homogeneous winding, inhomogeneous winding,and stop-winding,respectively.

    As shown in Figs. 2(a) and 2(b), we adopt two coordinate systems in order to perform the following calculation,the first is static coordinate systemr=rxx+ryy+rzz,where the fixed unit vectors(x,y,z)are perpendicular to each other,and the second is flowing coordinate systemr=ξβ+ηγ+ζα,where the moving unit vectors (β,γ,α) are perpendicular to each other,which along a spiral curve of optical fiber as shown in Figs.1(d)–1(f).

    Fig.1. Circular cones(a)–(c),and the spiral curves of optical fiber around the circular cones(d)–(f).

    Fig.2. Static coordinate system(a)and flowing coordinate system(b).

    3. Analytical solutions for the OAM

    In generally, the curved path can be written by the static coordinate systemr=rxx+ryy+rzz. The path lengthscan be defined by

    The moving unit vectors(α,β,γ)satisfy the Frenet equations

    whereκ(s) andτ(s) are the curvature and the torsion of the curve,respectively.

    In the static coordinate system,when curved path winding around the spiral body,Eq.(1)takes the following form:

    Using Eqs.(6)and(7),we can calculate the moving unit vectors(α,β,γ),and scalarκandτas a function ofθas

    whereusatisfies the boundary condition|u|=0,whenρ ≥ρ0,whereρ0is the optical fiber radius. The solution ofy(ρ)can be written in terms of the Bessel function ofρ/ρ0as

    4. Numerical calculations of the OAM

    Figures 3(a) and 3(b) depict the three dimension spiral path around the “Exponential” curve andLα/? is a function ofθas shown in Figs.3(b1)–3(b3). We can find out:

    (i) Homogeneous winding(see Figs.3(a1)–3(b1))is uniform, but the spiral path amplitude andLα/? gradually decrease to zero at the same time, which can not give a large OAM.

    (ii) In-homogeneous winding (see Figs. 3(a2)–3(b2))gradually decreases to a straight line(see Fig.3(a2)),and theLα/? curve(see Fig.3(b2))drops simultaneously from a high value to a low gradually, which also can not generate a large OAM.

    (iii) The two stages winding(see Figs.3(a3)–3(b3))consists of two parts.The first homogeneous winding begins fromθ=0 to 200,and theLα/? increases from 0 to 148. The second stopping winding begins fromθ=200 to 1000,theLα/? maintains at 148, and the curve of Figs. 3(a3) moves in the direction of the tangent direction gradually approaching to a straight line. More discussions are given in Section 7.

    It is useful for us to obtain a high OAM modes when light beam propagates along a straight line. The continuity of curve atθ=200 will be proved in Appendix C.

    From the above we can not come to the conclusion that the spiral path (see Figs. 3(b1) or 3(b2)) is not a valid path to obtain the large OAM modes. Because there are two kinds of optical fiber winding directions, one is the clockwise direction winding from right to left, and the other is the anticlockwise direction winding from left to right. From the zero OAM increasing to the maximum OAM, we adopt the anti-clockwise direction winding,and after reaching the maximum OAM, we adopt the clockwise direction winding. In the exponential type Eq.(2),the anti-clockwise winding functionfc(θ)=θ/(1+l2|θ|), and the clockwise winding functionfac(θ) =?θ/(1+l2|θ|). The numerical calculations of spiral path according to anti-clockwise direction before the maximum ofLα/? (the winding functionfc(θ)) and afterward according to clockwise direction (the winding functionfac(θ))are depicted in Figs.3(c1)–3(c3),and the corresponding large OAM are shown in Figs.3(d1)–3(d3),respectively.

    Fig.3.The three-dimensional spiral path around the exponential type Lα/? as a function of θ with parameters ka=5,kb=1,(a1),(b1) l1=0.015,l2=0,homogeneous winding;(a2),(b2)l1=0.015,l2=0.01,in-homogeneous winding;(a3),(b3)l1=0.015,θ =0?200,l2=0,homogeneous winding,θ =200–1000,l2=∞,stop-winding. (c1),(c2),(c3)and(d1),(d2),(d3)change the winding direction at the maxima of Lα/?.

    In Figs. 4 and 5, we depict the three dimensional spiral curves withLα/? as a function ofθf(wàn)or the Gaussian and the Flower types,respectively. The winding are homogeneousl2=0.

    This curve tells us that we can obtain a large OAM modes easily.

    One interesting thing is the Flower type OAM withLα/? as a periodic function ofθ, and the maximum and minimum locates nearly at two straight linesLα/?≈±60×θ,±100×θ,±250×θf(wàn)orn=1,3,5, respectively. The input light beam should be along the tangent direction near the positionθ ≈0 of Figs.5(b1)–5(b3). Figures 5(a1)and 5(a2)show clearly the low ends of the optical fiber,which is the position of the input beam.

    The input light beam should be along the tangent direction near the positionθ ≈0 of Figs. 5(b1)–5(b3). Figures 5(a1) and 5(a2) show that the pointθ ≈0 locates at the milder of the optical fiber. It is a suitable input beam position,due toθ ≈0,Lα/?≈0,andd(Lα/?)/dθ=0. If we choose the end of the optical fiber as the input beam,due toθ=?10,andLα/?/=0, we must choose a point near the end and satisfying the conditionLα=0. Refer to Fig. 5, the points ofLα=0 areθ=?9.4,?9.9,?9.95 forn=1,3,5,respectively.

    For the purpose of convenience of experimental realization, we give some explanations. In Figs. 1–3, the parameterkb0=1,yieldsrz=θλ0/2π,andδrz=δθλ0/2π. When the spiral path makes a circuit,δθ=2π, the distance between adjacent spiral coil satisfiesδrz=d=λ0. Hereλ0is the orbital wave length. As shown in Fig.1(b1),we setd=0.1 cm,θ=1000, then the total length of the spiral body equals torz=0.16 m and we havekzrz=θλ0/λ=θd/λ, whereλis the laser wave length. In the flowing coordinate system (see Eq. (15))kzrz=θd/λ →θl=?(ωt ?kζζ). In general, the variableθis essential for theθlin the wave function Eq.(16),except a constant factord/λ.

    Fig.4. The Gaussian type with parameters ka=100, kb=1, l1 =0.0005,l2=0: (a)three-dimensional curve,(b)Lα/? as a function of θ.

    Fig.5. The flower type with parameters ka=25,kb=1,l2=0. (a1)n=1,(a2)n=3,(a3)n=5,three-dimensional curve;(b1)n=1,(b2)n=3,(b3)n=5,Lα/? as a function of θ;(c1)n=1,(c2)n=3,(c3)n=5,the flower type finding zero point curve.

    5. Diffraction pattern calculations and applications

    Before the diffraction pattern calculations, we need demarcate the diffraction modes in free space and the diffraction modes inside the optical fiber.

    The underlying physics meaning will be discussed in Section 7.

    With the purpose of observation of the diffraction patterns calculated in Fig.3(b1),the OAM regionν=0–53 as shown in Table 1.

    The first group containsa1–a12diffraction patterns forθ=0–24 andν=0–30 (see Table 1), and the second group containsb1–b12diffraction patterns forθ=29–34.5 andν=42–53(see Table 1).

    For simplification, the diffraction patterns shown in Figs.7(a)and 7(b)present only part of that listed in Table 1.

    By utilizing the 12-bit(ai,bi,i=1–12)encoded diffraction patterns and the experimental observation of the OAM as a function of time(the temporal variation of diffraction patterns),the optical information transfer may be realized in principle. Combining the total 24 patterns,we have more different 12-bit encodes.

    Table 1. The a1–a12 diffraction patterns for θ =0–24 and ν =0–30, the b1–b12 diffraction patterns for θ =29–34.5 and ν =42–53.

    Fig. 6. (a1)–(a2) The diffraction pattern in free space ν =Lα/?=0;[12](b1)–(b2)inside the optical fiber(see Appendix B)ν=Lα/?=0,s00=2.3;(c1)–(c2)inside the optical fiber s016=49.5.

    Fig.7(b). Part of the b1–b12 diffraction patterns(listed in Table 1)of optical fiber at the end of spiral body in Fig.3(b1).

    Fig.7(a). Part of the a1–a12 diffraction patterns(listed in Table 1)of optical fiber at the end of spiral body in Fig.3(b1).

    6. A thinking experimental scheme for observation of a large OAM temporal pulse

    The diffraction patterns calculated in Figs. 6 and 7 are electric fields inside the optical fiber, which can not be observed directly. In order to observe these patterns, we must let it propagate out of the fiber and transfer a distancezarriving the screen. For this purpose and refer to Ref. [14], we propose a thinking experimental scheme for observation of a large OAM temporal pulse as shown in Fig.8,using the linear polarized laser as the input beam.

    Fig. 8. The optical fiber winding is stopped at θ0 =388, ν =30, z=B=0.07 m,0.7 m.

    The electric field of laser beam is incident from the leftside of circular cone enjoying the formE0(r,θ)=A0e?r2/w2,and after passing through the spiral curve winding the circular cone(see Fig.3(b3),the homogenous windingθ=0–θ0,and the stop windingθ>θ0),the electric field of large OAM spiral optical fiber(SOF)E0sof(r,θ)presents at the end of right-side of circular cone,then transferszdistance in free space to arrive the screen. We can calculate the diffraction patterns with the help of Collins formula[15]

    In real calculation, we takeE0sof(r,θ)=a9,a12in Fig. 7(a).The parameters are listed in Table 2.

    We can observe the following diffraction pattern in Fig.7(a).

    Table 2. The parameters of the electric field of large OAM spiral optical fiber E0sof(r,θ)=a9,a12 in Fig.7(a)with the same ν and z.

    Fig.9. The spiral optical fiber(SOF)modes a9, a12 (see Fig.7)propagate through a distance z=0.07 m,z=0.7 m and arrive at the diffraction screen,where ν denotes the OAM modes.

    For reference, we remove the circular cone from Fig. 8 and let the laser beam incident directly to the diffraction screen with the sameνandz,and the traditional circular hole(CIH)diffraction patterns are also calculated

    According to Ref. [16], the beam spot sizew(z), the radius of optical fiberρ0, the minimum beam spot sizew(0) =w0=ρ0=sν0/k. The diffraction patternsEsof(ρ,r,θ), andEcih(ρ,r,θ) on the screen are calculated as shown in Figs. 9,and 10, respectively. The SOF and CIH diffraction patterns present a quit different intensity distribution on the screen when we take the sameνandz.

    Fig. 10. The circular hole (CIH) modes propagate through a distance z=0.07 m,z=0.7 m and arrive at the diffraction screen,where ν denotes the OAM modes.

    7. Discussion and conclusion

    In this paper, based on the differential Frenet equation and Einstein’s photon momentum assumption, we obtain an analytical solution for the OAM of ray propagating in an optical fiber with winding around a spiral body, then we proceed the numerical calculations of the OAM of the principal light and the diffraction patterns at different pointθcorresponding to different OAM. The diagrams of OAM depicted in Figs.3(b1)–3(b3)demonstrate that the necessary and sufficient conditions for an increase(or decrease)ofδ(Lα/?)/=0,area(θ)>0 and windingδθ/=0. In Figs. 3(b1) and 3(b2),we find out that whena(θ)→0,δ(Lα/?)→0. In Fig.3(b3),the winding stop point atθ=200,Lα/?=148. whenθ>200,δ(Lα/?)=0. In theory,[10]it is proved when curvatureκ(θ)=0, the curve degenerates to a straight line; when torsionτ(θ)=0, the curve is a plane curve; the necessary and sufficient condition of the curve being space curve isκ(θ)/=0,andτ(θ)/=0.The second stopping winding stage of Fig.3(a3)shows the path of fiber is a plane curve,the torsionτ(θ)=0,a simple algebra also givingrγ=rxηx+ryηy+rzηz=0,and using Eq.(13),it is easily to proveLα1/?=Lα2/?=0. This means in the second stage,there is no new contribution to the total OAM.

    The results in Figs.3(c1)–3(c3)and 3(d1)–3(d3)supplement that of Figs. 3(a1)–3(a3) and 3(b1)–3(b3) by changing the winding direction from clockwise to anti-clockwise at the maxima ofLα/?,with the OAM maintaining a high vale,and the circular-cone approaching a straight line, in the limit ofθ →∞.

    The calculated diffraction patterns provide a 12 bit OAMencoded ultrahigh-security information system. From the viewpoint of fundamental research,the OAM of principal ray winding around a spiral curve is a particle picture, while the OAM of LG beam is a wave picture. The connection between the two pictures is the Einstein’s assumption for the photon momentummds/dt=?k. In the theoretical study of spiral curves, it includs “Exponential”, “Gaussian”, and “Flower”types, while in reality, the first and second type are easily to obtain a high OAM up to 103?5, and the third “Flower” type is very interesting, which has a periodic relation between the maximum and minimum of OAM output.

    Appendix A: OAM calculation

    Appendix B: Diffraction pattern integral

    Using the solutionsu, the diffraction pattern can be calculated. Similar to the

    where the acting forcesF1, andF2present the acting forces of the homogeneous winding stage and the stopping winding stage. Eq. (C1) shows that OAMLseems discontinuous due to the termεr×((F1+F2)+(F1?F2)Sgn[θ ?θ0])ω?1,but in the limitε →0, and the acting force of the stopping winding stageF2=0, therefore, we have a continuous solutionL/?=∫θ00r×F1dθ(?ω)?1as a function ofθshown in Fig.3(b3)(θ0=200).

    猜你喜歡
    奇志
    寂寞空庭冷:“共房養(yǎng)老”陡變拼子大戰(zhàn)
    Investigation of convergent Richtmyer–Meshkov instability at tin/xenon interface with pulsed magnetic driven imploding?
    王奇志作品
    詩(shī)潮(2018年7期)2018-07-18 08:46:08
    讀王奇志的畫(huà)
    王奇志花鳥(niǎo)畫(huà)作品欣賞
    再說(shuō)奇志
    王奇志花鳥(niǎo)畫(huà)作品欣賞
    湖湘論壇(2017年2期)2017-03-20 10:08:44
    交叉小徑的花園
    LAND OF RAZOR CLAMS
    茶 戲
    茶葉通訊(2012年2期)2012-03-31 18:48:58
    国产成人啪精品午夜网站| 日日摸夜夜添夜夜添小说| 两个人看的免费小视频| 99精品在免费线老司机午夜| 国产成人精品久久二区二区免费| 黑人操中国人逼视频| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩精品网址| 亚洲中文字幕一区二区三区有码在线看 | 欧美人与性动交α欧美精品济南到| 国产亚洲av嫩草精品影院| 嫁个100分男人电影在线观看| 国产午夜精品久久久久久| 久久久久国内视频| 欧美人与性动交α欧美精品济南到| 亚洲精品国产一区二区精华液| 麻豆一二三区av精品| 黑人操中国人逼视频| 国产精品久久久久久久电影 | 国产av一区在线观看免费| 怎么达到女性高潮| 精品高清国产在线一区| 亚洲va日本ⅴa欧美va伊人久久| 757午夜福利合集在线观看| 亚洲成人久久性| 五月伊人婷婷丁香| 亚洲熟妇熟女久久| 舔av片在线| 国内毛片毛片毛片毛片毛片| 久久99热这里只有精品18| 亚洲熟妇中文字幕五十中出| 日韩欧美免费精品| 99riav亚洲国产免费| 午夜福利在线观看吧| 国产真实乱freesex| 日本撒尿小便嘘嘘汇集6| 校园春色视频在线观看| 亚洲天堂国产精品一区在线| 怎么达到女性高潮| 中文资源天堂在线| 成人国产综合亚洲| 亚洲av成人不卡在线观看播放网| 99久久精品热视频| 欧美日韩亚洲综合一区二区三区_| 黄片大片在线免费观看| 欧美人与性动交α欧美精品济南到| 色av中文字幕| 级片在线观看| 国产99久久九九免费精品| 亚洲人成网站在线播放欧美日韩| 国内精品久久久久久久电影| 中文在线观看免费www的网站 | 国产不卡一卡二| 久久99热这里只有精品18| 亚洲九九香蕉| 午夜精品在线福利| √禁漫天堂资源中文www| 黑人操中国人逼视频| 每晚都被弄得嗷嗷叫到高潮| 少妇被粗大的猛进出69影院| 亚洲狠狠婷婷综合久久图片| 亚洲色图 男人天堂 中文字幕| 可以在线观看的亚洲视频| 国产精品永久免费网站| 特级一级黄色大片| 18禁观看日本| 久久精品国产清高在天天线| 精品国产美女av久久久久小说| 国产精品99久久99久久久不卡| 欧美精品亚洲一区二区| 少妇粗大呻吟视频| 日韩成人在线观看一区二区三区| 国产精品久久久久久精品电影| 午夜亚洲福利在线播放| 两个人视频免费观看高清| 欧美日韩一级在线毛片| 久久热在线av| www日本在线高清视频| 精品电影一区二区在线| 国产私拍福利视频在线观看| 免费观看人在逋| 久久香蕉激情| 成人国语在线视频| 国内精品久久久久精免费| 国产伦在线观看视频一区| 国产亚洲av高清不卡| 国产爱豆传媒在线观看 | 欧美成人性av电影在线观看| 国产精品 国内视频| 麻豆成人午夜福利视频| 丰满人妻熟妇乱又伦精品不卡| 欧美乱色亚洲激情| 黄色成人免费大全| 2021天堂中文幕一二区在线观| av在线播放免费不卡| 国产精品久久久久久精品电影| 国产av不卡久久| 日本一区二区免费在线视频| 一进一出好大好爽视频| 九九热线精品视视频播放| 母亲3免费完整高清在线观看| 久久午夜亚洲精品久久| 午夜久久久久精精品| 国产亚洲精品一区二区www| 色哟哟哟哟哟哟| 国产av一区二区精品久久| 国产精品爽爽va在线观看网站| 69av精品久久久久久| 国产日本99.免费观看| 亚洲精品色激情综合| 一二三四社区在线视频社区8| 90打野战视频偷拍视频| 久久九九热精品免费| e午夜精品久久久久久久| 婷婷丁香在线五月| 一级毛片高清免费大全| 国产精品98久久久久久宅男小说| 精品一区二区三区视频在线观看免费| 日韩成人在线观看一区二区三区| 老汉色av国产亚洲站长工具| 亚洲欧美一区二区三区黑人| 狂野欧美白嫩少妇大欣赏| 欧美国产日韩亚洲一区| 特级一级黄色大片| 动漫黄色视频在线观看| 国产精品香港三级国产av潘金莲| 丝袜美腿诱惑在线| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美大码av| 亚洲国产欧美网| 国产精品免费视频内射| 成人国产一区最新在线观看| 国内揄拍国产精品人妻在线| 亚洲欧美一区二区三区黑人| 女警被强在线播放| 成人18禁高潮啪啪吃奶动态图| 超碰成人久久| 久久精品91蜜桃| 精品电影一区二区在线| 在线观看一区二区三区| 深夜精品福利| a级毛片a级免费在线| 中国美女看黄片| 麻豆成人午夜福利视频| 欧美色视频一区免费| 免费在线观看亚洲国产| 欧美一级毛片孕妇| 50天的宝宝边吃奶边哭怎么回事| 国产黄片美女视频| 久久国产乱子伦精品免费另类| 麻豆国产97在线/欧美 | 亚洲一卡2卡3卡4卡5卡精品中文| 最新美女视频免费是黄的| 国产视频一区二区在线看| 午夜福利在线在线| 精品国产美女av久久久久小说| 欧美成人性av电影在线观看| 成年免费大片在线观看| 亚洲av成人一区二区三| 久久久久久人人人人人| 变态另类丝袜制服| 国产成人av教育| 国产av麻豆久久久久久久| 999久久久国产精品视频| 国产高清激情床上av| 亚洲精品国产精品久久久不卡| 最近最新中文字幕大全免费视频| 一本一本综合久久| 色综合欧美亚洲国产小说| 脱女人内裤的视频| 国产亚洲av高清不卡| av国产免费在线观看| 床上黄色一级片| 人成视频在线观看免费观看| av片东京热男人的天堂| 高清在线国产一区| 亚洲人成网站高清观看| 国产亚洲av高清不卡| 日韩欧美一区二区三区在线观看| 国产精品精品国产色婷婷| 亚洲色图 男人天堂 中文字幕| 精品久久久久久久久久久久久| www日本在线高清视频| 国产三级中文精品| 变态另类丝袜制服| a在线观看视频网站| 伦理电影免费视频| 亚洲专区国产一区二区| 免费在线观看完整版高清| 后天国语完整版免费观看| 精品一区二区三区av网在线观看| 在线a可以看的网站| 搡老岳熟女国产| 亚洲av日韩精品久久久久久密| 日本一区二区免费在线视频| 国产1区2区3区精品| 天天躁夜夜躁狠狠躁躁| 亚洲精品美女久久久久99蜜臀| 成人手机av| 欧美日韩亚洲国产一区二区在线观看| 精品久久久久久久久久免费视频| 又紧又爽又黄一区二区| 日韩 欧美 亚洲 中文字幕| 日韩欧美免费精品| 在线看三级毛片| 脱女人内裤的视频| 亚洲精品在线美女| 国产免费av片在线观看野外av| 精品久久久久久久毛片微露脸| 久久久国产成人免费| 久久久精品大字幕| 免费在线观看影片大全网站| 亚洲18禁久久av| 国产精华一区二区三区| 法律面前人人平等表现在哪些方面| netflix在线观看网站| 亚洲精品在线美女| 国产精品久久久久久精品电影| 狠狠狠狠99中文字幕| e午夜精品久久久久久久| 国产亚洲精品av在线| 精品国产美女av久久久久小说| 国内精品久久久久久久电影| 国产亚洲av高清不卡| 久久中文字幕人妻熟女| 真人做人爱边吃奶动态| 国产精品,欧美在线| 桃色一区二区三区在线观看| 亚洲专区中文字幕在线| www.www免费av| 91九色精品人成在线观看| 18禁国产床啪视频网站| 国产激情久久老熟女| 91字幕亚洲| 久久天躁狠狠躁夜夜2o2o| 欧美日本视频| 麻豆国产97在线/欧美 | 全区人妻精品视频| 国内毛片毛片毛片毛片毛片| 中文字幕av在线有码专区| 亚洲美女视频黄频| 国产69精品久久久久777片 | 国产一区二区激情短视频| 日本在线视频免费播放| 久久久久亚洲av毛片大全| 高清毛片免费观看视频网站| 亚洲av五月六月丁香网| 一个人免费在线观看电影 | 国产99白浆流出| 国产高清有码在线观看视频 | 在线免费观看的www视频| 成年女人毛片免费观看观看9| 黄色 视频免费看| 国产黄色小视频在线观看| 精品国内亚洲2022精品成人| 美女黄网站色视频| 日本在线视频免费播放| av在线播放免费不卡| 精品一区二区三区四区五区乱码| 久久久久久免费高清国产稀缺| 亚洲精品中文字幕一二三四区| 国产av麻豆久久久久久久| 久久亚洲精品不卡| 人妻久久中文字幕网| 大型黄色视频在线免费观看| 久久香蕉激情| 国产99白浆流出| 亚洲国产欧美一区二区综合| 国产午夜精品论理片| 十八禁网站免费在线| 校园春色视频在线观看| 亚洲自拍偷在线| 国产精品美女特级片免费视频播放器 | 特大巨黑吊av在线直播| 成人特级黄色片久久久久久久| 国产高清有码在线观看视频 | 亚洲av成人av| 中文在线观看免费www的网站 | 夜夜躁狠狠躁天天躁| 亚洲美女视频黄频| 亚洲男人的天堂狠狠| 人人妻人人澡欧美一区二区| 精品欧美国产一区二区三| 国产精品免费视频内射| 老鸭窝网址在线观看| 黑人操中国人逼视频| 哪里可以看免费的av片| 日本一本二区三区精品| 99热只有精品国产| 中文在线观看免费www的网站 | 日韩大尺度精品在线看网址| 88av欧美| 久久热在线av| 国产主播在线观看一区二区| 国产v大片淫在线免费观看| 日韩欧美国产一区二区入口| 国产成人aa在线观看| 一区二区三区激情视频| 高清毛片免费观看视频网站| 一边摸一边做爽爽视频免费| 这个男人来自地球电影免费观看| 麻豆成人av在线观看| 黄频高清免费视频| 不卡av一区二区三区| 90打野战视频偷拍视频| 国产成人精品久久二区二区免费| 亚洲av日韩精品久久久久久密| 50天的宝宝边吃奶边哭怎么回事| 五月玫瑰六月丁香| 级片在线观看| 国产精品免费一区二区三区在线| 精品久久久久久久久久久久久| 一a级毛片在线观看| 成年免费大片在线观看| 亚洲乱码一区二区免费版| 真人一进一出gif抽搐免费| 小说图片视频综合网站| 1024视频免费在线观看| 女同久久另类99精品国产91| 69av精品久久久久久| 亚洲专区字幕在线| 精品国产乱码久久久久久男人| 天堂av国产一区二区熟女人妻 | 亚洲男人的天堂狠狠| 国产精品久久久av美女十八| 首页视频小说图片口味搜索| 亚洲国产精品sss在线观看| 欧美色欧美亚洲另类二区| 国产爱豆传媒在线观看 | 午夜影院日韩av| 可以在线观看的亚洲视频| 亚洲中文字幕一区二区三区有码在线看 | 中亚洲国语对白在线视频| 日本熟妇午夜| 久久香蕉国产精品| 欧美国产日韩亚洲一区| 神马国产精品三级电影在线观看 | 特级一级黄色大片| 哪里可以看免费的av片| 亚洲男人的天堂狠狠| 男人舔女人的私密视频| 久久久久久久午夜电影| 在线播放国产精品三级| 亚洲专区中文字幕在线| 桃红色精品国产亚洲av| 9191精品国产免费久久| 亚洲av成人av| www.熟女人妻精品国产| 亚洲精品在线美女| 久久中文字幕人妻熟女| 黑人欧美特级aaaaaa片| 在线看三级毛片| 白带黄色成豆腐渣| 1024香蕉在线观看| 免费在线观看黄色视频的| 欧美乱码精品一区二区三区| 中文字幕人成人乱码亚洲影| 亚洲精华国产精华精| 窝窝影院91人妻| 色在线成人网| 丝袜人妻中文字幕| 看黄色毛片网站| 色老头精品视频在线观看| 欧美绝顶高潮抽搐喷水| 99国产极品粉嫩在线观看| 精品国产乱码久久久久久男人| 法律面前人人平等表现在哪些方面| 一区二区三区高清视频在线| 日韩欧美免费精品| 一本精品99久久精品77| 在线视频色国产色| 可以免费在线观看a视频的电影网站| 亚洲美女黄片视频| 中出人妻视频一区二区| 国产真人三级小视频在线观看| 婷婷丁香在线五月| 草草在线视频免费看| 亚洲avbb在线观看| 国产91精品成人一区二区三区| 亚洲天堂国产精品一区在线| 99热只有精品国产| 亚洲精品av麻豆狂野| av有码第一页| 欧美日本视频| 国产成人精品无人区| 成年版毛片免费区| 男人的好看免费观看在线视频 | 人成视频在线观看免费观看| 麻豆成人av在线观看| 久久久久国内视频| 人妻夜夜爽99麻豆av| 老鸭窝网址在线观看| 啦啦啦观看免费观看视频高清| 美女扒开内裤让男人捅视频| 黑人巨大精品欧美一区二区mp4| 国产黄a三级三级三级人| 中文字幕最新亚洲高清| 嫩草影视91久久| 欧美人与性动交α欧美精品济南到| 又黄又粗又硬又大视频| www日本黄色视频网| 久久久久国内视频| 国产99白浆流出| 一级作爱视频免费观看| 97碰自拍视频| 欧美黄色淫秽网站| 欧美黑人精品巨大| 国产片内射在线| 美女高潮喷水抽搐中文字幕| 黄色毛片三级朝国网站| 露出奶头的视频| 亚洲国产日韩欧美精品在线观看 | 国产又色又爽无遮挡免费看| 亚洲欧洲精品一区二区精品久久久| 在线免费观看的www视频| 久久久久久亚洲精品国产蜜桃av| 又黄又爽又免费观看的视频| 亚洲av日韩精品久久久久久密| 成人18禁高潮啪啪吃奶动态图| ponron亚洲| 欧美性猛交╳xxx乱大交人| 亚洲在线自拍视频| 亚洲真实伦在线观看| 久久亚洲真实| 国产伦在线观看视频一区| 久久精品综合一区二区三区| 啦啦啦观看免费观看视频高清| 婷婷六月久久综合丁香| 亚洲欧美精品综合久久99| 国内精品一区二区在线观看| 国产91精品成人一区二区三区| 淫妇啪啪啪对白视频| 国产三级黄色录像| 欧美乱色亚洲激情| 国产精品久久久久久人妻精品电影| 一级黄色大片毛片| tocl精华| 免费看a级黄色片| 国产v大片淫在线免费观看| 欧美黑人精品巨大| 国产成人av激情在线播放| 国产一区二区激情短视频| 好看av亚洲va欧美ⅴa在| 国产成人精品久久二区二区91| 在线a可以看的网站| 国产精华一区二区三区| 久久欧美精品欧美久久欧美| 成人亚洲精品av一区二区| 久久99热这里只有精品18| 成人18禁高潮啪啪吃奶动态图| 长腿黑丝高跟| 欧美日本视频| 中亚洲国语对白在线视频| 老熟妇乱子伦视频在线观看| 一个人免费在线观看的高清视频| 欧美国产日韩亚洲一区| 亚洲精品一区av在线观看| 国模一区二区三区四区视频 | 高潮久久久久久久久久久不卡| 一进一出好大好爽视频| 99精品在免费线老司机午夜| 香蕉丝袜av| 国内精品一区二区在线观看| 成人手机av| 成人av一区二区三区在线看| 久久久久性生活片| 国产一区二区在线观看日韩 | 中亚洲国语对白在线视频| 不卡一级毛片| xxxwww97欧美| 日韩欧美一区二区三区在线观看| 亚洲精品av麻豆狂野| 日韩欧美免费精品| 国产亚洲av高清不卡| 可以在线观看的亚洲视频| 少妇人妻一区二区三区视频| 丰满人妻熟妇乱又伦精品不卡| 免费高清视频大片| 欧美日韩国产亚洲二区| 国产精品久久视频播放| 国产精品综合久久久久久久免费| 女人被狂操c到高潮| 国产精品久久久人人做人人爽| 精品一区二区三区av网在线观看| 叶爱在线成人免费视频播放| 黑人巨大精品欧美一区二区mp4| 免费在线观看黄色视频的| 一级a爱片免费观看的视频| 最新美女视频免费是黄的| 90打野战视频偷拍视频| 午夜激情av网站| 亚洲欧美日韩高清专用| 久久国产乱子伦精品免费另类| 久久久国产成人精品二区| 亚洲av成人不卡在线观看播放网| 在线观看午夜福利视频| 国内精品一区二区在线观看| av视频在线观看入口| 精品国内亚洲2022精品成人| 国产精品一及| 国产高清videossex| 色综合亚洲欧美另类图片| 高清在线国产一区| 国产av一区二区精品久久| 99热这里只有精品一区 | 亚洲自拍偷在线| 91大片在线观看| 视频区欧美日本亚洲| 成年版毛片免费区| 日本一区二区免费在线视频| 一区福利在线观看| 99久久精品国产亚洲精品| 日韩欧美一区二区三区在线观看| 99国产精品99久久久久| 久久久久久久精品吃奶| 日韩欧美 国产精品| 99久久综合精品五月天人人| 免费高清视频大片| 757午夜福利合集在线观看| 亚洲色图 男人天堂 中文字幕| 久久国产乱子伦精品免费另类| 制服人妻中文乱码| 俄罗斯特黄特色一大片| 日韩中文字幕欧美一区二区| 两人在一起打扑克的视频| 一级a爱片免费观看的视频| 久久久久国产一级毛片高清牌| 夜夜看夜夜爽夜夜摸| av中文乱码字幕在线| 18禁黄网站禁片午夜丰满| 黄色 视频免费看| av福利片在线| 又粗又爽又猛毛片免费看| 精品一区二区三区四区五区乱码| av中文乱码字幕在线| 国产精品亚洲av一区麻豆| 国产一区在线观看成人免费| 欧美另类亚洲清纯唯美| 久久这里只有精品中国| 成人18禁在线播放| 免费电影在线观看免费观看| 欧美乱色亚洲激情| 1024手机看黄色片| 日韩精品免费视频一区二区三区| 免费一级毛片在线播放高清视频| 亚洲精华国产精华精| 神马国产精品三级电影在线观看 | 国产精品亚洲一级av第二区| 在线观看午夜福利视频| 亚洲精品一卡2卡三卡4卡5卡| 精品久久久久久久末码| 国产精品一区二区精品视频观看| 亚洲国产欧美一区二区综合| 国产精品亚洲一级av第二区| 制服诱惑二区| 久久精品人妻少妇| 欧美黄色淫秽网站| 国产不卡一卡二| 窝窝影院91人妻| a级毛片在线看网站| 99国产极品粉嫩在线观看| 最新美女视频免费是黄的| 日本免费a在线| 老司机靠b影院| 蜜桃久久精品国产亚洲av| 午夜福利免费观看在线| 熟女电影av网| 老司机午夜福利在线观看视频| 哪里可以看免费的av片| av免费在线观看网站| 欧美色欧美亚洲另类二区| 在线免费观看的www视频| 超碰成人久久| 久久久国产成人免费| 欧美黑人精品巨大| 亚洲午夜理论影院| 久久九九热精品免费| 一级a爱片免费观看的视频| 丁香六月欧美| 丝袜人妻中文字幕| 国产精品久久久av美女十八| 国产av麻豆久久久久久久| 午夜福利在线观看吧| 国产三级在线视频| 免费在线观看日本一区| 精品久久久久久久末码| 午夜福利18| 精品国产乱子伦一区二区三区| 亚洲国产精品成人综合色| 欧美又色又爽又黄视频| 精品一区二区三区av网在线观看| 亚洲aⅴ乱码一区二区在线播放 | 精品日产1卡2卡| 麻豆国产97在线/欧美 | 亚洲av熟女| 亚洲专区中文字幕在线| 制服人妻中文乱码| av视频在线观看入口| 波多野结衣高清无吗| 亚洲在线自拍视频| 欧美黑人巨大hd| av中文乱码字幕在线| 看免费av毛片| 麻豆av在线久日| 国产在线观看jvid| 看黄色毛片网站| 香蕉国产在线看| 美女午夜性视频免费| 日日摸夜夜添夜夜添小说| 俺也久久电影网| 男人舔女人下体高潮全视频| 国产亚洲精品av在线| 国产欧美日韩一区二区精品| 日韩欧美一区二区三区在线观看| 超碰成人久久|