• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generation of a large orbital angular momentum beam via an optical fiber winding around a curved path and its application?

    2021-10-28 07:01:10WeiHanTan譚維翰ChaoYingZhao趙超櫻YiChaoMeng孟義朝andQiZhiGuo郭奇志
    Chinese Physics B 2021年10期
    關(guān)鍵詞:奇志

    Wei-Han Tan(譚維翰) Chao-Ying Zhao(趙超櫻) Yi-Chao Meng(孟義朝) and Qi-Zhi Guo(郭奇志)

    1Department of Physics,Shanghai University,Shanghai 200444,China

    2College of Science,Hangzhou Dianzi University,Hangzhou 310018,China

    3State Key Laboratory of Quantum Optics and Quantum Optics Devices,Institute of Opto-Electronics,Shanxi University,Taiyuan 030006,China

    4Institute of Fiber Optics,Shanghai University,Shanghai 200444,China

    Keywords: fiber optics,orbital angular momentum(OAM),differential Fernet equation,Rayleigh criterion

    1. Introduction

    The generation of the optical beams with orbital angular momentum (OAM) have attracted much attention in optics communication and quantum key distribution. In these applications, we find that the OAM mode can be detected by the discrete “twisting” rate of helical phase. Up to now, the traditional methods of preparing OAM beam include rotating cylindrical lens, helical phase plates, and fiber[1–5]when the wave-front phase is changing and the principal ray is basically unchanged,[6–8]and it is difficult to obtain a large OAM modes. In order to solve the problem,we establish a theoretical framework on the condition that the principal ray is changing and the wave-front phase is basically unchanged.[9,10]The light emitted from the cylindrical spiral wave-guide can carry a high-order OAM modes.[11]In this paper,we achieve a large OAM modes in an optical fiber winding around a curved path of spiral body. We calculate the large OAM modes in the flowing coordinate system(α,β,γ). Applying the large OAM diffraction patterns,we can obtain a 12-bitencodes,and finally provide a high security information transfer system. At the same time, according to analyzing the zero OAM diffraction patterns, we find that our method can improve the spatial resolving power beyond the Rayleigh limiting.

    The organization is as follows: The notation and parameters of the coordinate system,and types of winding around a curved path are presented in Section 2;subsequently,analytical solution is calculated in Section 3;numerical calculation of the OAM via an optical fiber winding around a curved path is given in Section 4;the diffraction patterns calculation and applications are given in Section 5; an experimental scheme for observation of a large OAM beam is proposed in Section 6;finally,the conclusion and discussion are given in Section 7.

    2. The winding-types around the spiral body and the coordinate systems

    The fiber winding around the circular cylinder body results in a spiral form,[9]but it does not mean that the circular cylinder body itself be a spiral form. The circular cones are depicted in Figs. 1(a)–1(c); and Figs. 1(d)–1(f) are the spiral curves of optical fiber around the circular cones.

    In the static coordinate system,the curves as a function ofθcan be expressed by

    wherea(θ)andbθdenote the radius and the axis of the circular cone function,respectively,andf(θ)is the winding function. As shown in Figs. 1(d)–1(f), we call the types of spiral curves, “Exponential”, “Gaussian”, and“Flower”, respectively:

    where the constantsa0,l1>0, andncontrol the characteristic of circular cone;l2≥0 controls the winding-type.l2=0,l2> 0, andl2= ∞denote the homogeneous winding, inhomogeneous winding,and stop-winding,respectively.

    As shown in Figs. 2(a) and 2(b), we adopt two coordinate systems in order to perform the following calculation,the first is static coordinate systemr=rxx+ryy+rzz,where the fixed unit vectors(x,y,z)are perpendicular to each other,and the second is flowing coordinate systemr=ξβ+ηγ+ζα,where the moving unit vectors (β,γ,α) are perpendicular to each other,which along a spiral curve of optical fiber as shown in Figs.1(d)–1(f).

    Fig.1. Circular cones(a)–(c),and the spiral curves of optical fiber around the circular cones(d)–(f).

    Fig.2. Static coordinate system(a)and flowing coordinate system(b).

    3. Analytical solutions for the OAM

    In generally, the curved path can be written by the static coordinate systemr=rxx+ryy+rzz. The path lengthscan be defined by

    The moving unit vectors(α,β,γ)satisfy the Frenet equations

    whereκ(s) andτ(s) are the curvature and the torsion of the curve,respectively.

    In the static coordinate system,when curved path winding around the spiral body,Eq.(1)takes the following form:

    Using Eqs.(6)and(7),we can calculate the moving unit vectors(α,β,γ),and scalarκandτas a function ofθas

    whereusatisfies the boundary condition|u|=0,whenρ ≥ρ0,whereρ0is the optical fiber radius. The solution ofy(ρ)can be written in terms of the Bessel function ofρ/ρ0as

    4. Numerical calculations of the OAM

    Figures 3(a) and 3(b) depict the three dimension spiral path around the “Exponential” curve andLα/? is a function ofθas shown in Figs.3(b1)–3(b3). We can find out:

    (i) Homogeneous winding(see Figs.3(a1)–3(b1))is uniform, but the spiral path amplitude andLα/? gradually decrease to zero at the same time, which can not give a large OAM.

    (ii) In-homogeneous winding (see Figs. 3(a2)–3(b2))gradually decreases to a straight line(see Fig.3(a2)),and theLα/? curve(see Fig.3(b2))drops simultaneously from a high value to a low gradually, which also can not generate a large OAM.

    (iii) The two stages winding(see Figs.3(a3)–3(b3))consists of two parts.The first homogeneous winding begins fromθ=0 to 200,and theLα/? increases from 0 to 148. The second stopping winding begins fromθ=200 to 1000,theLα/? maintains at 148, and the curve of Figs. 3(a3) moves in the direction of the tangent direction gradually approaching to a straight line. More discussions are given in Section 7.

    It is useful for us to obtain a high OAM modes when light beam propagates along a straight line. The continuity of curve atθ=200 will be proved in Appendix C.

    From the above we can not come to the conclusion that the spiral path (see Figs. 3(b1) or 3(b2)) is not a valid path to obtain the large OAM modes. Because there are two kinds of optical fiber winding directions, one is the clockwise direction winding from right to left, and the other is the anticlockwise direction winding from left to right. From the zero OAM increasing to the maximum OAM, we adopt the anti-clockwise direction winding,and after reaching the maximum OAM, we adopt the clockwise direction winding. In the exponential type Eq.(2),the anti-clockwise winding functionfc(θ)=θ/(1+l2|θ|), and the clockwise winding functionfac(θ) =?θ/(1+l2|θ|). The numerical calculations of spiral path according to anti-clockwise direction before the maximum ofLα/? (the winding functionfc(θ)) and afterward according to clockwise direction (the winding functionfac(θ))are depicted in Figs.3(c1)–3(c3),and the corresponding large OAM are shown in Figs.3(d1)–3(d3),respectively.

    Fig.3.The three-dimensional spiral path around the exponential type Lα/? as a function of θ with parameters ka=5,kb=1,(a1),(b1) l1=0.015,l2=0,homogeneous winding;(a2),(b2)l1=0.015,l2=0.01,in-homogeneous winding;(a3),(b3)l1=0.015,θ =0?200,l2=0,homogeneous winding,θ =200–1000,l2=∞,stop-winding. (c1),(c2),(c3)and(d1),(d2),(d3)change the winding direction at the maxima of Lα/?.

    In Figs. 4 and 5, we depict the three dimensional spiral curves withLα/? as a function ofθf(wàn)or the Gaussian and the Flower types,respectively. The winding are homogeneousl2=0.

    This curve tells us that we can obtain a large OAM modes easily.

    One interesting thing is the Flower type OAM withLα/? as a periodic function ofθ, and the maximum and minimum locates nearly at two straight linesLα/?≈±60×θ,±100×θ,±250×θf(wàn)orn=1,3,5, respectively. The input light beam should be along the tangent direction near the positionθ ≈0 of Figs.5(b1)–5(b3). Figures 5(a1)and 5(a2)show clearly the low ends of the optical fiber,which is the position of the input beam.

    The input light beam should be along the tangent direction near the positionθ ≈0 of Figs. 5(b1)–5(b3). Figures 5(a1) and 5(a2) show that the pointθ ≈0 locates at the milder of the optical fiber. It is a suitable input beam position,due toθ ≈0,Lα/?≈0,andd(Lα/?)/dθ=0. If we choose the end of the optical fiber as the input beam,due toθ=?10,andLα/?/=0, we must choose a point near the end and satisfying the conditionLα=0. Refer to Fig. 5, the points ofLα=0 areθ=?9.4,?9.9,?9.95 forn=1,3,5,respectively.

    For the purpose of convenience of experimental realization, we give some explanations. In Figs. 1–3, the parameterkb0=1,yieldsrz=θλ0/2π,andδrz=δθλ0/2π. When the spiral path makes a circuit,δθ=2π, the distance between adjacent spiral coil satisfiesδrz=d=λ0. Hereλ0is the orbital wave length. As shown in Fig.1(b1),we setd=0.1 cm,θ=1000, then the total length of the spiral body equals torz=0.16 m and we havekzrz=θλ0/λ=θd/λ, whereλis the laser wave length. In the flowing coordinate system (see Eq. (15))kzrz=θd/λ →θl=?(ωt ?kζζ). In general, the variableθis essential for theθlin the wave function Eq.(16),except a constant factord/λ.

    Fig.4. The Gaussian type with parameters ka=100, kb=1, l1 =0.0005,l2=0: (a)three-dimensional curve,(b)Lα/? as a function of θ.

    Fig.5. The flower type with parameters ka=25,kb=1,l2=0. (a1)n=1,(a2)n=3,(a3)n=5,three-dimensional curve;(b1)n=1,(b2)n=3,(b3)n=5,Lα/? as a function of θ;(c1)n=1,(c2)n=3,(c3)n=5,the flower type finding zero point curve.

    5. Diffraction pattern calculations and applications

    Before the diffraction pattern calculations, we need demarcate the diffraction modes in free space and the diffraction modes inside the optical fiber.

    The underlying physics meaning will be discussed in Section 7.

    With the purpose of observation of the diffraction patterns calculated in Fig.3(b1),the OAM regionν=0–53 as shown in Table 1.

    The first group containsa1–a12diffraction patterns forθ=0–24 andν=0–30 (see Table 1), and the second group containsb1–b12diffraction patterns forθ=29–34.5 andν=42–53(see Table 1).

    For simplification, the diffraction patterns shown in Figs.7(a)and 7(b)present only part of that listed in Table 1.

    By utilizing the 12-bit(ai,bi,i=1–12)encoded diffraction patterns and the experimental observation of the OAM as a function of time(the temporal variation of diffraction patterns),the optical information transfer may be realized in principle. Combining the total 24 patterns,we have more different 12-bit encodes.

    Table 1. The a1–a12 diffraction patterns for θ =0–24 and ν =0–30, the b1–b12 diffraction patterns for θ =29–34.5 and ν =42–53.

    Fig. 6. (a1)–(a2) The diffraction pattern in free space ν =Lα/?=0;[12](b1)–(b2)inside the optical fiber(see Appendix B)ν=Lα/?=0,s00=2.3;(c1)–(c2)inside the optical fiber s016=49.5.

    Fig.7(b). Part of the b1–b12 diffraction patterns(listed in Table 1)of optical fiber at the end of spiral body in Fig.3(b1).

    Fig.7(a). Part of the a1–a12 diffraction patterns(listed in Table 1)of optical fiber at the end of spiral body in Fig.3(b1).

    6. A thinking experimental scheme for observation of a large OAM temporal pulse

    The diffraction patterns calculated in Figs. 6 and 7 are electric fields inside the optical fiber, which can not be observed directly. In order to observe these patterns, we must let it propagate out of the fiber and transfer a distancezarriving the screen. For this purpose and refer to Ref. [14], we propose a thinking experimental scheme for observation of a large OAM temporal pulse as shown in Fig.8,using the linear polarized laser as the input beam.

    Fig. 8. The optical fiber winding is stopped at θ0 =388, ν =30, z=B=0.07 m,0.7 m.

    The electric field of laser beam is incident from the leftside of circular cone enjoying the formE0(r,θ)=A0e?r2/w2,and after passing through the spiral curve winding the circular cone(see Fig.3(b3),the homogenous windingθ=0–θ0,and the stop windingθ>θ0),the electric field of large OAM spiral optical fiber(SOF)E0sof(r,θ)presents at the end of right-side of circular cone,then transferszdistance in free space to arrive the screen. We can calculate the diffraction patterns with the help of Collins formula[15]

    In real calculation, we takeE0sof(r,θ)=a9,a12in Fig. 7(a).The parameters are listed in Table 2.

    We can observe the following diffraction pattern in Fig.7(a).

    Table 2. The parameters of the electric field of large OAM spiral optical fiber E0sof(r,θ)=a9,a12 in Fig.7(a)with the same ν and z.

    Fig.9. The spiral optical fiber(SOF)modes a9, a12 (see Fig.7)propagate through a distance z=0.07 m,z=0.7 m and arrive at the diffraction screen,where ν denotes the OAM modes.

    For reference, we remove the circular cone from Fig. 8 and let the laser beam incident directly to the diffraction screen with the sameνandz,and the traditional circular hole(CIH)diffraction patterns are also calculated

    According to Ref. [16], the beam spot sizew(z), the radius of optical fiberρ0, the minimum beam spot sizew(0) =w0=ρ0=sν0/k. The diffraction patternsEsof(ρ,r,θ), andEcih(ρ,r,θ) on the screen are calculated as shown in Figs. 9,and 10, respectively. The SOF and CIH diffraction patterns present a quit different intensity distribution on the screen when we take the sameνandz.

    Fig. 10. The circular hole (CIH) modes propagate through a distance z=0.07 m,z=0.7 m and arrive at the diffraction screen,where ν denotes the OAM modes.

    7. Discussion and conclusion

    In this paper, based on the differential Frenet equation and Einstein’s photon momentum assumption, we obtain an analytical solution for the OAM of ray propagating in an optical fiber with winding around a spiral body, then we proceed the numerical calculations of the OAM of the principal light and the diffraction patterns at different pointθcorresponding to different OAM. The diagrams of OAM depicted in Figs.3(b1)–3(b3)demonstrate that the necessary and sufficient conditions for an increase(or decrease)ofδ(Lα/?)/=0,area(θ)>0 and windingδθ/=0. In Figs. 3(b1) and 3(b2),we find out that whena(θ)→0,δ(Lα/?)→0. In Fig.3(b3),the winding stop point atθ=200,Lα/?=148. whenθ>200,δ(Lα/?)=0. In theory,[10]it is proved when curvatureκ(θ)=0, the curve degenerates to a straight line; when torsionτ(θ)=0, the curve is a plane curve; the necessary and sufficient condition of the curve being space curve isκ(θ)/=0,andτ(θ)/=0.The second stopping winding stage of Fig.3(a3)shows the path of fiber is a plane curve,the torsionτ(θ)=0,a simple algebra also givingrγ=rxηx+ryηy+rzηz=0,and using Eq.(13),it is easily to proveLα1/?=Lα2/?=0. This means in the second stage,there is no new contribution to the total OAM.

    The results in Figs.3(c1)–3(c3)and 3(d1)–3(d3)supplement that of Figs. 3(a1)–3(a3) and 3(b1)–3(b3) by changing the winding direction from clockwise to anti-clockwise at the maxima ofLα/?,with the OAM maintaining a high vale,and the circular-cone approaching a straight line, in the limit ofθ →∞.

    The calculated diffraction patterns provide a 12 bit OAMencoded ultrahigh-security information system. From the viewpoint of fundamental research,the OAM of principal ray winding around a spiral curve is a particle picture, while the OAM of LG beam is a wave picture. The connection between the two pictures is the Einstein’s assumption for the photon momentummds/dt=?k. In the theoretical study of spiral curves, it includs “Exponential”, “Gaussian”, and “Flower”types, while in reality, the first and second type are easily to obtain a high OAM up to 103?5, and the third “Flower” type is very interesting, which has a periodic relation between the maximum and minimum of OAM output.

    Appendix A: OAM calculation

    Appendix B: Diffraction pattern integral

    Using the solutionsu, the diffraction pattern can be calculated. Similar to the

    where the acting forcesF1, andF2present the acting forces of the homogeneous winding stage and the stopping winding stage. Eq. (C1) shows that OAMLseems discontinuous due to the termεr×((F1+F2)+(F1?F2)Sgn[θ ?θ0])ω?1,but in the limitε →0, and the acting force of the stopping winding stageF2=0, therefore, we have a continuous solutionL/?=∫θ00r×F1dθ(?ω)?1as a function ofθshown in Fig.3(b3)(θ0=200).

    猜你喜歡
    奇志
    寂寞空庭冷:“共房養(yǎng)老”陡變拼子大戰(zhàn)
    Investigation of convergent Richtmyer–Meshkov instability at tin/xenon interface with pulsed magnetic driven imploding?
    王奇志作品
    詩(shī)潮(2018年7期)2018-07-18 08:46:08
    讀王奇志的畫(huà)
    王奇志花鳥(niǎo)畫(huà)作品欣賞
    再說(shuō)奇志
    王奇志花鳥(niǎo)畫(huà)作品欣賞
    湖湘論壇(2017年2期)2017-03-20 10:08:44
    交叉小徑的花園
    LAND OF RAZOR CLAMS
    茶 戲
    茶葉通訊(2012年2期)2012-03-31 18:48:58
    国产精品二区激情视频| 一区二区三区乱码不卡18| 性色av一级| 国产一区有黄有色的免费视频| 国产一区二区三区综合在线观看| 午夜福利网站1000一区二区三区| 99久久精品国产亚洲精品| 精品一区在线观看国产| 国产精品女同一区二区软件| 亚洲色图综合在线观看| 2018国产大陆天天弄谢| 日韩av免费高清视频| 男女国产视频网站| 欧美国产精品一级二级三级| 久久久国产一区二区| 制服人妻中文乱码| 日本猛色少妇xxxxx猛交久久| 欧美久久黑人一区二区| 国产视频首页在线观看| 欧美日韩视频高清一区二区三区二| 在线观看国产h片| 一个人免费看片子| 老司机在亚洲福利影院| 免费黄色在线免费观看| 久久久久久免费高清国产稀缺| 久久久久久久国产电影| tube8黄色片| 少妇被粗大的猛进出69影院| 99re6热这里在线精品视频| 叶爱在线成人免费视频播放| 黑丝袜美女国产一区| 只有这里有精品99| 肉色欧美久久久久久久蜜桃| 99久久综合免费| 天天躁日日躁夜夜躁夜夜| 日本欧美国产在线视频| 亚洲婷婷狠狠爱综合网| 欧美乱码精品一区二区三区| 久久热在线av| 日日爽夜夜爽网站| 男女高潮啪啪啪动态图| 亚洲情色 制服丝袜| 久久99热这里只频精品6学生| av国产精品久久久久影院| 久久韩国三级中文字幕| 欧美国产精品va在线观看不卡| 免费看av在线观看网站| 午夜福利一区二区在线看| 美女大奶头黄色视频| 一级片'在线观看视频| 一本久久精品| 国产精品香港三级国产av潘金莲 | av视频免费观看在线观看| 亚洲精品aⅴ在线观看| 成年女人毛片免费观看观看9 | 少妇 在线观看| 一区二区日韩欧美中文字幕| 国产黄频视频在线观看| 国产成人a∨麻豆精品| 亚洲精品中文字幕在线视频| 曰老女人黄片| 成人免费观看视频高清| 精品一区二区三卡| 又粗又硬又长又爽又黄的视频| 欧美xxⅹ黑人| 美女视频免费永久观看网站| 成人18禁高潮啪啪吃奶动态图| 国产人伦9x9x在线观看| 丁香六月欧美| 久久精品国产综合久久久| 国产亚洲av高清不卡| 久久久久精品性色| 99热全是精品| 美女视频免费永久观看网站| 涩涩av久久男人的天堂| 久久久久久人人人人人| 久久久久精品国产欧美久久久 | 成年人免费黄色播放视频| av有码第一页| 国产免费福利视频在线观看| 国产极品天堂在线| 各种免费的搞黄视频| 国产片内射在线| 国产精品熟女久久久久浪| 夜夜骑夜夜射夜夜干| 欧美变态另类bdsm刘玥| 欧美黄色片欧美黄色片| 色94色欧美一区二区| 国产精品一国产av| 国产人伦9x9x在线观看| 午夜激情av网站| 丝瓜视频免费看黄片| 18禁观看日本| 另类亚洲欧美激情| 各种免费的搞黄视频| 日韩不卡一区二区三区视频在线| 欧美精品一区二区大全| 亚洲视频免费观看视频| a级片在线免费高清观看视频| 亚洲成av片中文字幕在线观看| www.av在线官网国产| 成人免费观看视频高清| av.在线天堂| 亚洲av国产av综合av卡| 亚洲伊人久久精品综合| 日韩av免费高清视频| netflix在线观看网站| 亚洲三区欧美一区| 久久久久网色| 精品久久久精品久久久| 国产亚洲午夜精品一区二区久久| 亚洲精品国产一区二区精华液| 日韩免费高清中文字幕av| 悠悠久久av| 国产精品久久久久久精品古装| 天天躁狠狠躁夜夜躁狠狠躁| 免费在线观看完整版高清| 久久国产精品大桥未久av| 日韩av在线免费看完整版不卡| 最黄视频免费看| 可以免费在线观看a视频的电影网站 | 亚洲久久久国产精品| 老司机影院毛片| 男女边摸边吃奶| 午夜老司机福利片| 成人影院久久| 一本久久精品| 侵犯人妻中文字幕一二三四区| 免费黄频网站在线观看国产| 久久精品国产亚洲av涩爱| 免费女性裸体啪啪无遮挡网站| 观看av在线不卡| 色婷婷av一区二区三区视频| 日韩精品有码人妻一区| 亚洲视频免费观看视频| 搡老岳熟女国产| 国产精品香港三级国产av潘金莲 | 日韩一区二区三区影片| 国产欧美日韩一区二区三区在线| 久久精品aⅴ一区二区三区四区| 欧美激情极品国产一区二区三区| 国产老妇伦熟女老妇高清| 日韩成人av中文字幕在线观看| 欧美国产精品va在线观看不卡| 999久久久国产精品视频| 午夜福利乱码中文字幕| 国产又爽黄色视频| 人妻 亚洲 视频| 久久久久久久久久久久大奶| 中文字幕最新亚洲高清| 成人影院久久| 最近的中文字幕免费完整| 国产探花极品一区二区| 啦啦啦在线观看免费高清www| 一二三四在线观看免费中文在| 日本黄色日本黄色录像| 国产男人的电影天堂91| 飞空精品影院首页| a级毛片在线看网站| 最近中文字幕高清免费大全6| 亚洲精品一区蜜桃| 日韩一本色道免费dvd| 在线观看国产h片| 久久久久网色| 国产精品二区激情视频| 国产麻豆69| 国产精品嫩草影院av在线观看| 美女视频免费永久观看网站| 深夜精品福利| 18禁裸乳无遮挡动漫免费视频| 免费观看性生交大片5| 久久精品国产a三级三级三级| 黄频高清免费视频| 日本爱情动作片www.在线观看| 99久久人妻综合| 亚洲国产精品一区二区三区在线| 午夜福利视频精品| 国产成人午夜福利电影在线观看| av片东京热男人的天堂| 最近的中文字幕免费完整| 大香蕉久久网| 多毛熟女@视频| 欧美成人午夜精品| 亚洲人成77777在线视频| 亚洲精品国产一区二区精华液| 国产精品久久久久久精品古装| 欧美日韩亚洲综合一区二区三区_| 欧美中文综合在线视频| 极品少妇高潮喷水抽搐| av免费观看日本| 国产精品久久久久成人av| 国产午夜精品一二区理论片| 日韩伦理黄色片| 男人爽女人下面视频在线观看| 欧美黄色片欧美黄色片| 七月丁香在线播放| 蜜桃国产av成人99| 亚洲第一区二区三区不卡| 黑人欧美特级aaaaaa片| avwww免费| 国产精品一国产av| 亚洲欧美一区二区三区国产| 黑丝袜美女国产一区| 亚洲精品国产色婷婷电影| av线在线观看网站| 国产精品偷伦视频观看了| 一区二区三区乱码不卡18| kizo精华| 狂野欧美激情性xxxx| 久久精品久久久久久久性| 一级毛片黄色毛片免费观看视频| 黄色怎么调成土黄色| 天天躁狠狠躁夜夜躁狠狠躁| 人人妻人人澡人人看| 欧美精品亚洲一区二区| 免费观看av网站的网址| 亚洲精品av麻豆狂野| 午夜影院在线不卡| 中文字幕人妻熟女乱码| 麻豆精品久久久久久蜜桃| 叶爱在线成人免费视频播放| 国产av国产精品国产| 午夜影院在线不卡| 日本vs欧美在线观看视频| 国产 精品1| 亚洲男人天堂网一区| 少妇的丰满在线观看| 欧美亚洲日本最大视频资源| 老鸭窝网址在线观看| 亚洲成人手机| 亚洲国产日韩一区二区| 制服人妻中文乱码| 日韩一区二区视频免费看| 99热国产这里只有精品6| 亚洲国产精品成人久久小说| 你懂的网址亚洲精品在线观看| 搡老乐熟女国产| 丁香六月天网| 99精品久久久久人妻精品| 老司机影院成人| 伦理电影大哥的女人| 激情五月婷婷亚洲| 搡老岳熟女国产| 最黄视频免费看| 国产精品99久久99久久久不卡 | 老司机亚洲免费影院| 国产成人精品福利久久| 国产成人av激情在线播放| 日韩电影二区| 色吧在线观看| 老熟女久久久| 欧美日韩一级在线毛片| 另类精品久久| 亚洲精品视频女| 丝袜美足系列| 精品人妻熟女毛片av久久网站| 午夜久久久在线观看| 亚洲美女搞黄在线观看| 婷婷色综合大香蕉| 亚洲三区欧美一区| 亚洲精品视频女| 欧美人与性动交α欧美软件| 黑丝袜美女国产一区| 色视频在线一区二区三区| 日韩电影二区| 爱豆传媒免费全集在线观看| 18禁观看日本| 亚洲一卡2卡3卡4卡5卡精品中文| 麻豆乱淫一区二区| 亚洲av欧美aⅴ国产| 精品少妇内射三级| 精品人妻熟女毛片av久久网站| xxx大片免费视频| 欧美日韩精品网址| 亚洲国产精品国产精品| 在线天堂最新版资源| 成人国语在线视频| 亚洲,一卡二卡三卡| 麻豆乱淫一区二区| 亚洲精品美女久久av网站| 91aial.com中文字幕在线观看| 9色porny在线观看| 国产无遮挡羞羞视频在线观看| 亚洲国产精品999| 青草久久国产| 综合色丁香网| 亚洲av综合色区一区| 最近2019中文字幕mv第一页| 久久久久久人妻| 伦理电影大哥的女人| 菩萨蛮人人尽说江南好唐韦庄| 日韩成人av中文字幕在线观看| 天天躁夜夜躁狠狠躁躁| 在线天堂最新版资源| 大片电影免费在线观看免费| 国产精品熟女久久久久浪| 亚洲成人国产一区在线观看 | 在线 av 中文字幕| 国产精品.久久久| 天堂8中文在线网| 一区福利在线观看| 国产精品免费大片| 日韩视频在线欧美| 爱豆传媒免费全集在线观看| tube8黄色片| av免费观看日本| 亚洲熟女毛片儿| 中文天堂在线官网| 久久97久久精品| 国产日韩欧美亚洲二区| 99热网站在线观看| 人人妻,人人澡人人爽秒播 | 丰满乱子伦码专区| h视频一区二区三区| 十分钟在线观看高清视频www| 中文字幕制服av| 只有这里有精品99| 啦啦啦啦在线视频资源| 大香蕉久久成人网| 亚洲欧美激情在线| 日韩大码丰满熟妇| 国产精品一二三区在线看| 国产精品久久久久久人妻精品电影 | 日韩精品免费视频一区二区三区| 成年女人毛片免费观看观看9 | 蜜桃在线观看..| 欧美日韩亚洲国产一区二区在线观看 | 亚洲欧美一区二区三区国产| 日韩人妻精品一区2区三区| 女性被躁到高潮视频| 最近中文字幕2019免费版| 久久 成人 亚洲| 深夜精品福利| 日本av手机在线免费观看| 免费看不卡的av| 欧美另类一区| 亚洲精品一二三| 夫妻午夜视频| 亚洲视频免费观看视频| 亚洲国产精品一区三区| 免费在线观看完整版高清| 久久久久人妻精品一区果冻| 午夜福利,免费看| 青春草亚洲视频在线观看| 秋霞伦理黄片| 欧美国产精品一级二级三级| 日韩一区二区视频免费看| 又粗又硬又长又爽又黄的视频| 亚洲欧美色中文字幕在线| 99久久精品国产亚洲精品| 18禁观看日本| 少妇人妻久久综合中文| 免费黄频网站在线观看国产| 777米奇影视久久| 久久久国产欧美日韩av| 亚洲av福利一区| 波多野结衣av一区二区av| 亚洲av男天堂| 巨乳人妻的诱惑在线观看| 日韩中文字幕视频在线看片| 精品视频人人做人人爽| 激情五月婷婷亚洲| 一本一本久久a久久精品综合妖精| 免费av中文字幕在线| avwww免费| 欧美中文综合在线视频| 亚洲欧美成人精品一区二区| 国产成人av激情在线播放| 亚洲,欧美,日韩| 国产一区二区 视频在线| 国产成人午夜福利电影在线观看| 亚洲情色 制服丝袜| 亚洲,欧美,日韩| 日本av手机在线免费观看| 老汉色av国产亚洲站长工具| 国产av国产精品国产| 五月开心婷婷网| 黄色毛片三级朝国网站| 亚洲成人av在线免费| 9191精品国产免费久久| 丝袜美腿诱惑在线| 不卡av一区二区三区| 久久人妻熟女aⅴ| 色婷婷久久久亚洲欧美| 麻豆av在线久日| 一二三四在线观看免费中文在| 亚洲精品自拍成人| 国产亚洲一区二区精品| 日韩伦理黄色片| 老熟女久久久| 国产精品人妻久久久影院| 亚洲欧美色中文字幕在线| 在线观看三级黄色| 国产xxxxx性猛交| 在线观看三级黄色| 久久久欧美国产精品| 搡老乐熟女国产| 日韩 欧美 亚洲 中文字幕| 欧美精品一区二区大全| 亚洲av日韩在线播放| 成人18禁高潮啪啪吃奶动态图| 一区二区三区激情视频| 国产免费现黄频在线看| 卡戴珊不雅视频在线播放| 国产精品二区激情视频| 一级片'在线观看视频| 亚洲三区欧美一区| 日韩一本色道免费dvd| 老司机影院成人| 男女床上黄色一级片免费看| 一级毛片电影观看| 91成人精品电影| 如日韩欧美国产精品一区二区三区| 高清不卡的av网站| 在线亚洲精品国产二区图片欧美| 丝瓜视频免费看黄片| 成年动漫av网址| 菩萨蛮人人尽说江南好唐韦庄| 青春草国产在线视频| 免费高清在线观看日韩| 精品第一国产精品| 久久久国产欧美日韩av| 一区在线观看完整版| 亚洲婷婷狠狠爱综合网| 女人高潮潮喷娇喘18禁视频| 青草久久国产| av女优亚洲男人天堂| 五月开心婷婷网| 国产激情久久老熟女| 高清在线视频一区二区三区| 免费人妻精品一区二区三区视频| 老司机深夜福利视频在线观看 | 校园人妻丝袜中文字幕| 90打野战视频偷拍视频| 99久国产av精品国产电影| 欧美精品人与动牲交sv欧美| 妹子高潮喷水视频| 99精品久久久久人妻精品| 久久精品国产a三级三级三级| 国产成人欧美在线观看 | 亚洲图色成人| 国产成人精品久久久久久| 少妇被粗大猛烈的视频| 色视频在线一区二区三区| 男女午夜视频在线观看| 黄片无遮挡物在线观看| 亚洲欧美中文字幕日韩二区| 久久国产精品大桥未久av| 久久久久久久精品精品| 亚洲第一av免费看| 久久久久精品久久久久真实原创| 国产精品免费视频内射| 欧美日韩一区二区视频在线观看视频在线| 综合色丁香网| av视频免费观看在线观看| 亚洲av男天堂| 国产成人欧美| 色精品久久人妻99蜜桃| 高清欧美精品videossex| 大香蕉久久网| 精品一区二区三区av网在线观看 | 日韩精品免费视频一区二区三区| 久久影院123| 国产在线视频一区二区| 夜夜骑夜夜射夜夜干| 日韩av不卡免费在线播放| 国产成人欧美| 爱豆传媒免费全集在线观看| 宅男免费午夜| 91精品国产国语对白视频| 成年美女黄网站色视频大全免费| 久久久久国产精品人妻一区二区| 中文欧美无线码| 成年av动漫网址| xxx大片免费视频| 久久亚洲国产成人精品v| 亚洲 欧美一区二区三区| 你懂的网址亚洲精品在线观看| www.av在线官网国产| 国产麻豆69| 一区二区三区激情视频| 亚洲精品,欧美精品| 青春草国产在线视频| 日本av免费视频播放| 国产一级毛片在线| 国产欧美日韩综合在线一区二区| 建设人人有责人人尽责人人享有的| 天天躁夜夜躁狠狠久久av| 又黄又粗又硬又大视频| 亚洲久久久国产精品| 中国国产av一级| 人人妻,人人澡人人爽秒播 | 蜜桃国产av成人99| 国产精品国产三级专区第一集| 国产 精品1| 国产成人精品久久二区二区91 | 亚洲av综合色区一区| 在线观看免费日韩欧美大片| 一边摸一边做爽爽视频免费| 老鸭窝网址在线观看| 曰老女人黄片| 51午夜福利影视在线观看| av国产久精品久网站免费入址| 在线天堂中文资源库| 丰满迷人的少妇在线观看| 巨乳人妻的诱惑在线观看| av片东京热男人的天堂| 人人妻,人人澡人人爽秒播 | 80岁老熟妇乱子伦牲交| 国产成人欧美在线观看 | 日本色播在线视频| 建设人人有责人人尽责人人享有的| 一级片免费观看大全| 午夜激情av网站| 午夜福利网站1000一区二区三区| 婷婷色综合www| 精品国产露脸久久av麻豆| 一二三四中文在线观看免费高清| 午夜免费男女啪啪视频观看| 精品久久蜜臀av无| 男女午夜视频在线观看| 精品一区二区免费观看| 黑人巨大精品欧美一区二区蜜桃| 国产极品天堂在线| 婷婷成人精品国产| 免费不卡黄色视频| 国产av一区二区精品久久| 亚洲av电影在线观看一区二区三区| 国产在线免费精品| 中文字幕精品免费在线观看视频| 亚洲av国产av综合av卡| 如何舔出高潮| 色婷婷av一区二区三区视频| 久久精品aⅴ一区二区三区四区| 久久99热这里只频精品6学生| 亚洲中文av在线| 免费日韩欧美在线观看| 亚洲精品久久久久久婷婷小说| 国产爽快片一区二区三区| 成人三级做爰电影| 一本一本久久a久久精品综合妖精| 亚洲婷婷狠狠爱综合网| 久久久久久久久久久久大奶| 如何舔出高潮| 亚洲国产欧美在线一区| 高清视频免费观看一区二区| 天天躁日日躁夜夜躁夜夜| 欧美在线一区亚洲| 丝袜在线中文字幕| 中文字幕色久视频| 亚洲男人天堂网一区| 丰满少妇做爰视频| 电影成人av| 在线亚洲精品国产二区图片欧美| 亚洲国产欧美在线一区| 亚洲精品国产av蜜桃| 久久久久精品久久久久真实原创| 丝袜喷水一区| 国产亚洲午夜精品一区二区久久| 欧美日本中文国产一区发布| 97人妻天天添夜夜摸| 日本午夜av视频| 一级爰片在线观看| 亚洲情色 制服丝袜| 精品国产一区二区三区久久久樱花| 最近的中文字幕免费完整| 日本一区二区免费在线视频| 一级爰片在线观看| 综合色丁香网| 免费女性裸体啪啪无遮挡网站| 亚洲精品在线美女| 精品午夜福利在线看| kizo精华| 日韩欧美精品免费久久| 亚洲精品久久久久久婷婷小说| 黑人巨大精品欧美一区二区蜜桃| 久久久久精品国产欧美久久久 | 9191精品国产免费久久| 国产免费福利视频在线观看| 亚洲精品中文字幕在线视频| 一级毛片 在线播放| 亚洲成人国产一区在线观看 | 综合色丁香网| 免费观看av网站的网址| 国产一级毛片在线| 自拍欧美九色日韩亚洲蝌蚪91| 熟女av电影| 成人漫画全彩无遮挡| 精品国产一区二区三区久久久樱花| 精品少妇一区二区三区视频日本电影 | 免费观看av网站的网址| 亚洲精品在线美女| 狂野欧美激情性xxxx| 亚洲精品美女久久av网站| 女性被躁到高潮视频| 美女主播在线视频| 国产精品麻豆人妻色哟哟久久| 一边亲一边摸免费视频| av视频免费观看在线观看| 中文精品一卡2卡3卡4更新| 亚洲欧洲国产日韩| 久久久久久久国产电影| 亚洲欧美成人综合另类久久久| 无遮挡黄片免费观看| 亚洲综合色网址| 热99久久久久精品小说推荐| 久久热在线av| 国产精品国产av在线观看| 国产人伦9x9x在线观看| 国产不卡av网站在线观看| 欧美日韩视频高清一区二区三区二| 五月开心婷婷网| 2021少妇久久久久久久久久久| 母亲3免费完整高清在线观看| 国产亚洲一区二区精品|