• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Superconductivity at 44.4 K achieved by intercalating EMIM+into FeSe?

    2021-10-28 07:02:32JinhuaWang王晉花QingLi李慶WeiXie謝威GuanyuChen陳冠宇XiyuZhu祝熙宇andHaiHuWen聞?;?/span>
    Chinese Physics B 2021年10期
    關(guān)鍵詞:李慶

    Jinhua Wang(王晉花), Qing Li(李慶), Wei Xie(謝威), Guanyu Chen(陳冠宇),Xiyu Zhu(祝熙宇), and Hai-Hu Wen(聞?;?

    Center for Superconducting Physics and Materials,National Laboratory of Solid State Microstructures and Department of Physics,Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    Keywords: FeSe,iron-based superconductor,electrochemical intercalation

    1. Introduction

    Iron-based superconductors have attracted vast interest in condensed matter physics and material science since it was discovered in 2008.[1]Among iron-based superconducting materials, the compound FeSe was reported to have the simplest structure with a critical transition temperature(Tc)of about 8 K at ambient pressure,[2]which is constituted by edgesharing FeSe4-tetrahedra layers stacking along thec-axis. By applying high pressures, a dome-shaped superconducting region with rich physics appears,and itsTcwas enhanced up to 36.7 K at 8.9 GPa.[3,4]Due to the lack of charge carrier reservoir layers, it is natural to dope carriers into the FeSe planes by intercalation in order to increase its transition temperature.Intercalating guest elements or composites into adjacent FeSe layers is the most common way to achieve that goal.

    In the beginning, the alkali metals were intercalated into FeSe by solid state reactions,through whichAxFe2?ySe2(A=K,Rb,Cs,Tl,x<1,y<1)were synthesized withTcaround 32 K.[5–9]However, in order to satisfy the charge balance,phase separation occurs in the body of the material, leading to the coexistence of superconducting phaseAxFe2?ySe2and antiferromagnetic insulating phaseA2Fe4Se5.[10–13]This prohibits a thorough and systematic investigation of the physical properties in those materials. Thus, it is necessary to have a low-temperature technique to prepare intercalated FeSe-layer materials. Due to the special character of dissolving multiple metals, liquid ammonia could help to insert not only alkali metals (Li, Na, K, etc.), but also alkali-earth metals (Ca,Sr, Ba) and rare-earth metals (Eu, Yb) into the FeSe bulk samples.[14–17]These metals are co-inserted with liquid ammonia molecules,thus the inserted molecules are closer to be neutral in charge comparing with the alkali metal ion with valence state of+1,the former causes relatively complete FeSe planes with a significant increase of thec-axis lattice constant. And the highestTcof 46 K was reached among this series of superconductors.[14]Although a large increase ofTcwas realized, the chemical activity of intercalating composites between the adjacent FeSe layers made those materials extremely unstable in air. Using the hydrothermal technique and improved hydrothermal ion-exchange process,[18–20]a stable compound Li1?xFexOHFeSe with an ordered guest-layer Li1?xFexOH was prepared withTcup to 42 K.[20]Besides the inorganic molecules which are co-inserted with metals,organic molecules could also be intercalated into FeSe,[21–28]producing a series of superconductors with differentc-axis lattice parameters. Due to the varying size of organic molecules,such as C5H5N,(H2N)CnH2n(NH2),and CnH2n+3N(n=6,8,18),[21,24,28]the interlayer spacing could be largely stretched to a certain degree, and the largestc-axis lattice parameter of 55.7 °A was achieved in Lix(ODA)yFe1?zSe withTcof about 42 K.[28]

    Besides plenty of researches about alkali metals coinserted with inorganic or organic molecules into FeSe,some new superconductors were also discovered simply by intercalating organic composites, forming for example(C2H8N2)xFeSe.[29]This may pave a new way to synthesize intercalated FeSe derivative superconductors. The intercalation of C2H8N2in FeSe madec-axis lattice parameter expanded up to 21.700(6) °A. Moreover, two other different organic ions,cetyltrimethyl ammonium(CTA+)and tetrabutyl ammonium (TBA+),[30,31]were successfully inserted into FeSe through electrochemical intercalation. It has been found that these two kinds of organic-ions intergrown with FeSe formed a bulk superconductivity showingTcof 45 K and 50 K,withc-axis lattice parameter expanded up to 14.5 °A and 15.5 °A,respectively. Through the similar method, a new derivative of FeSe, the so called protonated FeSe (Hy-FeSe),was discovered withTcof 41 K,[32]in which the existence of hydrogen was indicated by nuclear magnetic resonance(NMR) measurements. But it is unclear what is the real superconducting phase,and studies on the detailed structure and physical properties are lacking up to now.

    In this work,we give detailed investigation on the above material, named as protonated FeSe, obtained through the same method and interactant, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4), as reported by Cuiet al.[32]According to the x-ray diffraction (XRD) measurements, we show that the title compound has a highly expandedc-axis constant, thus we conclude that the relevant phase is not Hy-FeSe, but rather another organic-ion-intercalated FeSe[(EMIM)xFeSe]. TheTcof this new FeSe-based superconductor is 44.4 K, as evidenced by the results of temperature dependent magnetic susceptibility and resistivity measurements. Note that our intercalated (EMIM)xFeSe samples are also not very stable in atmosphere, very similar to the(TBA)0.3FeSe,[31]and after a few days it will degrade back to the pristine FeSe withTcof about 8 K.

    2. Experimental details

    The schematic experimental setup of the electrochemical intercalation experiment is illustrated in Fig. 1(a).[32]As shown in the illustration, the positive and negative electrodes made of platinum are placed in an ionic-liquid container.Then this device is put into a heating mantle to maintain a certain temperature during the electrochemical process.The FeSe single crystal grown by means of chemical vapor transport technique is attached on the negatively charged electrode by silver paste,[33,34]while positive electrode Pt wire is placed right opposite to it. After loading the FeSe single crystal on the electrode,we add ionic liquid into the container till the sample is completely immersed. During the electrochemical process, a constant voltage of 4 V is applied and the temperature of the heating mantle is set to 355 K.After about three days of electrochemical reaction,the intercalated FeSe crystal is removed from the electrode and various measurements are taken after cleaning the silver paste and some residual reactants on the sample surface.

    The XRD is conducted on a Bruker D8 Advanced diffractometer with the CuKαradiation at room temperature. The temperature dependent resistivity is measured by a physical property measurement system(PPMS-16 T,Quantum Design)through the typical four-probe method in different magnetic fields. The temperature dependent magnetic susceptibility is measured by Quantum Design PPMS with vibrating sample magnetometer(VSM),while the magnetic field is applied parallel to thec-axis of the sample.

    3. Results and discussion

    Figure 1(b)shows the XRD patterns of pristine FeSe single crystal and intercalated FeSe after the electrochemical reaction. No matter before or after the experiment, the sample remains having good crystallinity. Hence, the XRD patterns show an obviousc-axis orientation and all peaks are indexed perfectly as (00l) on the basis of tetrahedral structure. The black solid line represents a series of(00l)peaks of FeSe single crystal, which indicates ac-axis lattice parameter of 5.52 °A.Meanwhile,the red solid line contains two sets of peaks. One set of them shows the same diffraction peaks as the black line, belonging to the residual FeSe of the sample. The other set represents a new phase, which has a largerc-axis lattice parameter. The Miller indices(00l)in Fig.1(b)are assigned on the basis of a primitive tetragonal structure with the space group ofP4/nmm, in which thec-axis lattice constant is 10.45 °A. While taking the space group of bodycentered tetragonalI4/mmm,only even values ofh+k+lcan appear in accordance with the extinction rule, and thec-axis lattice constant should be 20.88 °A.However,the precise symmetry needs more experiments to identify.Such an obvious increase of thec-axis lattice parameter suggests that some kind of molecules with big size has been inserted into the sample in the experiment and the spacing between adjacent FeSe layers is expanded. Considering the fact that the pristine FeSe is held on the negative electrode,we intend to conclude that the inserted molecules are most likely organic ions EMIM+from the ionic liquid. The schematic structure of this new phase is shown in Fig.1(c).Considering the finite size for three dimensions of the organic ions, they probably arrange themselves with a specific orientation between the adjacent FeSe layers as shown in Fig.1(c). However,this needs further verification by determining the internal structure.

    Fig.1. (a)An illustration of the device for the electrochemical reaction.(b) XRD patterns of FeSe single crystal and intercalated FeSe. The Miller indices of the intercalated phase are colored by red,and those of FeSe phase are colored by black. (c)The schematic crystal structure of(EMIM)xFeSe.

    The temperature dependences of magnetic susceptibility and resistivity have been measured,and the results are shown in Fig. 2. It is worth mentioning that two samples from the same batch were used for the magnetic and transport measurements since the quality of the samples degraded quickly in the transfer process between two types of measurements. Figure 2(a)exhibits the temperature dependent magnetic susceptibility(χ–Tcurve)of intercalated FeSe,which is measured in zero-field-cooled(ZFC)and field-cooled(FC)modes with an applied magnetic field of 3 mT. The magnetic screening volume calculated from the ZFC data is about 437%comparable to the value reported previously in the similar systems,[30–32]which is larger than 100% as the demagnetization effect has not been taken into account. A sharp transition shows up at about 40 K in theχ–Tcurve,demonstrating the emergence of superconductivity. Note that theTcof FeSe is around 8 K,[2]but this superconducting transition is not visible in theχ–Tcurve. The contradiction between XRD patterns andχ–Tcurve may be explained in the following way. One possible reason for the appearance of two phases in the XRD patterns is that the freshly intercalated sample is extremely unstable and some part of the sample with highTchas degraded into the FeSe phase. It is found that, after exposing samples in air for some time, the content of the phase with highTcsuperconductivity reduces and finally disappears,as revealed by XRD patterns and magnetizations,at the meantime the component of the FeSe phase increases. The time needed for preparing the magnetization and XRD measurements is different. In measuring the magnetization, the sample is quickly put into the sample chamber and cooled down, thus more and even complete content of the highTcphase is sustained. However,the XRD measurements are conducted under ambient environment,usually for hours,during this process the sample which is supposed to be mainly composed by the highTcphase will degraded, and some part will become FeSe. Thus, it is easy to understand the absence of the magnetization drop at about 8 K for FeSe for the freshly intercalated sample,but there are always two phases showing up in the XRD patterns. In order to check this scenario,we have measured temperature dependence of magnetization for samples with different durations after exposing to air. The results are shown in Fig.5. Here we show the magnetization of a freshly intercalated sample with mainly the highTcphase,and that after a long time exposing in air. One can see a clear evolution of the highTcphase to FeSe.Thus for investigating the properties of the highTcphase,the magnetization measurement must be done quickly after the intercalated samples are obtained. Figure 2(b)presents the temperature dependent resistivity under zero magnetic field with a current of 100μA.There is a dramatic decrease of resistivity at 44.4 K,which is roughly consistent with theTcobtained from theχ–Tcurve. The resistivity reaches zero at 38.5 K.

    Fig. 2. (a) Temperature dependent magnetic susceptibility of intercalated FeSe single crystal measured in ZFC and FC modes under a magnetic feild of 3 mT. (b) Temperature dependent resistivity under zero magnetic feild.

    In order to check the magnetic characteristics of the intercalated crystals,we have measured the temperature dependent magnetic susceptibility of intercalated FeSe in ZFC and FC modes at different fields(M–Tcurves),and the results are shown in Fig.3(a). At low fields,the ZFC curves show a trend of saturation. With increasing external magnetic fields, the magnetization value of the ZFC curve at low temperature is suppressed,which corresponds to the decrease of the magnetic screening volume. The inset of Fig. 3(a) shows the enlarged view ofM–Tcurves near the transition. The deviation point of the ZFC and FC curves can be defined as the irreversible temperatureTirrin the external fields, and theTirrdecreases quickly with increasing applied magnetic field. The temperature dependence of irreversibility fieldHirr(T)(M–T)of intercalated FeSe is shown in Fig.4(b).Figure 3(b)shows the magnetization hysteresis loops(MHLs)at 3.5 K and 10 K,respectively. The MHLs show a typical magnetic hysteresis behavior of type-II superconductors. The width of MHL measured at 3.5 K is much wider than that at 10 K,and the ?Mof MHLs at low temperatures are comparable to those of other iron-based superconductors,like(Li1?xFex)OHFeSe,[35]which indicates the good vortex pinning of our samples.

    Fig. 3. (a) Temperature dependent magnetic susceptibility of intercalated FeSe single crystal measured at different magnetic fields. Inset shows the enlarged view of the M–T curves near the transition.(b)Magnetization hysteresis loops (MHLs) of intercalated FeSe single crystal at 3.5 K and 10 K.

    witht=T/Tc,b=H/Hc2, which is deduced from the Lindermann criterion.[39]The parameterαis given by the formulaα=2π(εMZ/M)?1/2c2, with the Lindermann numberc ≈0.15–0.25 andε=16π3κ4(kBTc)2/Φ30H0c2,in whichκis the Ginzburg–Landau parameter. The mass ratio (MZ/M)1/2becomes larger as the spacing distance between FeSe layers increases,whereMZis a quasiparticle effective mass along thecaxis andMdescribes the mass in the FeSe planes. The optimal result ofα=0.33 is obtained by fittingHirr(T) data.In the fitting process, the parameterκin high-Tcsuperconductors usually takes a large value likeκ= 100, such as when it equals to 95, theHirr(T) data of Bi2.2Sr2Ca0.8Cu2O8could be well fitted by the melting criterion.[38]Thus, we take a general value ofκ=100 as the intercalated FeSe is a high-Tcsuperconductor (Tc=44.4 K). By substituting theHc2(0),Tc, andc= 0.2 into the formula ofα, we get the mass ratio (MZ/M)1/2≈44.5, which is comparable with the value of a quasi-two-dimensional (quasi-2D) superconductor Bi2.2Sr2Ca0.8Cu2O8[(MZ/M)1/2=60],[38]and much larger than that of 1.82 in FeSe,[37]11 in (Li1?xFex)OHFeSe single crystal,[40]further proving the high spatial anisotropy of the sample.

    Fig. 4. (a) Temperature dependent resistivity under different applied magnetic fields. (b)H–T phase diagram of the intercalated FeSe.Black squares represent the upper critical field Hc2(T) data. Blue (magenta)symbols represent the irreversibility field Hirr(T) obtained from the temperature dependent resistivity (magnetic susceptibility) data. The red and green solid lines show the fitting results of Hc2(T)and Hirr(T),respectively.

    Figure 5 shows the degradation situation of the intercalated FeSe sample. The magnetization measurements are conducted at a freshly intercalated sample mainly composed by the highTcphase,and the same one after a long time exposing in air as shown in Fig. 5(a). The black squares show the results of magnetization measurement for the intercalated sample. One can clearly see a sharp superconducting transition at about 40 K, which is associated to the intercalated phase.At the meantime, the ZFC curve also drops a little at 8 K,which might be caused by the partial degradation of the sample. After exposing the sample in air for a long time, only the transition at 8 K is seen, which corresponds to the superconducting transition of FeSe,suggesting that the intercalated phase has degraded back to FeSe. Meanwhile, we also measure the XRD patterns after the magnetization measurements.As shown in Fig.5(b),the XRD patterns of the freshly intercalated sample indicate that there are two phases with differentc-axis lattice parameters. However only FeSe phase remains after a long time exposing the sample in air. The simultaneous disappearance of the high-Tcsuperconducting phase and the XRD patterns with larger lattice parameter further proves that the highTcof the freshly intercalated sample is attributed to the intercalation of organic cations.

    Fig.5. (a)Temperature dependent magnetic susceptibility of a freshly intercalated sample and the one after degradation,which is measured in ZFC and FC modes with an applied magnetic field of 1 mT. (b) XRD patterns of the freshly intercalated and degraded phases. The peaks marked by star belong to the intercalated phase,and the rest marked by down-triangle belong to the FeSe phase.

    4. Conclusions

    We report superconductivity with transition temperatureTcabove 40 K by electrochemically reacting FeSe with the ionic liquid of EMIM-BF4.This phenomenon was recently reported as a process of protonating the FeSe crystals,but it was not clear what is the real superconducting phase. By doing x-ray diffraction measurements, we find a new set of diffraction peaks arising from the intercalated samples, these newly emergent peaks coexist with those of residual FeSe. We conclude that the newly emergent superconducting phase is the organic-cation (C6H11N+2, EMIM+)-intercalated FeSe phase,namely,(EMIM)xFeSe.Our results rule out the possibility that the high temperature superconducting phase is the simple protonated one Hy-FeSe. We also find that the upper critical fieldHc2is quite high,indicating a strong pairing potential. While the irreversibility fieldHirris suppressed quickly with increasing temperature,showing a large region of vortex liquid in the phase diagram. By fitting the irreversibility line to the vortex melting formula deduced from the Lindermann criterion, we get a quite large mass ratio(MZ/M)1/2≈44.5,which is much larger than the value of FeSe and (Li1?xFex)OHFeSe single crystal. This also supports that the resultant material should be highly anisotropic, as expected for a system with a large spacing between the FeSe layers.

    Acknowledgment

    We appreciate the kind help from Weiqiang Yu and Tianfeng Duan for establishing the device for the electrochemical reaction.

    猜你喜歡
    李慶
    《追光》曲譜
    《盛世歡歌》曲譜
    對(duì)三相交流異步電動(dòng)機(jī)變頻變壓轉(zhuǎn)差頻率控制調(diào)速系統(tǒng)的探討
    稻菽卷起千層浪 豐收畫卷耀南粵
    源流(2021年11期)2021-03-25 10:32:07
    李慶:高頻量化交易之王
    東西南北(2018年17期)2018-11-20 05:21:38
    讓生命重生的人
    做人與處世(2017年7期)2017-05-20 16:50:31
    身殘志堅(jiān)終圓夢(mèng)
    口香糖
    短篇小說(2015年5期)2015-12-16 07:10:48
    口香糖
    日韩精品青青久久久久久| 久久午夜亚洲精品久久| 天天躁日日操中文字幕| 老司机午夜福利在线观看视频| 午夜久久久久精精品| 亚洲午夜理论影院| 亚洲精品亚洲一区二区| 久久精品综合一区二区三区| 亚洲精华国产精华精| 成人毛片a级毛片在线播放| 黄色女人牲交| 18美女黄网站色大片免费观看| 成年免费大片在线观看| 色5月婷婷丁香| 三级国产精品欧美在线观看| 他把我摸到了高潮在线观看| 一区二区三区免费毛片| 真实男女啪啪啪动态图| 亚洲第一区二区三区不卡| 日本 av在线| 日本 欧美在线| ponron亚洲| 国产精品98久久久久久宅男小说| 真人做人爱边吃奶动态| 日本免费一区二区三区高清不卡| 精品久久久久久久久av| 国产美女午夜福利| 国产亚洲精品综合一区在线观看| 精品人妻1区二区| 亚洲内射少妇av| 一本久久中文字幕| 国产成人a区在线观看| 欧美潮喷喷水| 少妇的逼水好多| 成年版毛片免费区| 久久精品久久久久久噜噜老黄 | 床上黄色一级片| 99riav亚洲国产免费| 亚洲avbb在线观看| .国产精品久久| 色噜噜av男人的天堂激情| 日韩欧美免费精品| 日本免费a在线| 91字幕亚洲| 在线十欧美十亚洲十日本专区| 免费一级毛片在线播放高清视频| 久久国产精品人妻蜜桃| 亚洲欧美日韩高清在线视频| 国语自产精品视频在线第100页| 美女免费视频网站| 老鸭窝网址在线观看| 91麻豆av在线| 免费无遮挡裸体视频| 美女免费视频网站| 亚洲精品久久国产高清桃花| 亚洲av成人精品一区久久| 亚洲中文字幕日韩| 哪里可以看免费的av片| 在线免费观看不下载黄p国产 | 成年女人看的毛片在线观看| 国产欧美日韩精品亚洲av| 一本一本综合久久| 中文字幕av在线有码专区| 日本免费一区二区三区高清不卡| 丰满乱子伦码专区| 美女高潮的动态| 国产免费男女视频| 国产精品久久久久久精品电影| 亚洲精品影视一区二区三区av| 亚洲av不卡在线观看| 在线十欧美十亚洲十日本专区| 精品久久久久久久久亚洲 | 老司机福利观看| 亚洲va日本ⅴa欧美va伊人久久| 国产真实伦视频高清在线观看 | 中出人妻视频一区二区| .国产精品久久| 久久精品国产清高在天天线| 好男人在线观看高清免费视频| 久久久精品大字幕| 日韩精品青青久久久久久| 乱人视频在线观看| 亚洲av不卡在线观看| 免费无遮挡裸体视频| 日韩欧美一区二区三区在线观看| 最近最新免费中文字幕在线| 亚洲欧美精品综合久久99| 免费在线观看亚洲国产| 午夜激情福利司机影院| 韩国av一区二区三区四区| 嫩草影院入口| 国产久久久一区二区三区| 波野结衣二区三区在线| 黄色女人牲交| 久9热在线精品视频| 欧美最黄视频在线播放免费| 国产三级中文精品| 国产黄色小视频在线观看| 特大巨黑吊av在线直播| h日本视频在线播放| 黄色女人牲交| 最近在线观看免费完整版| 午夜精品一区二区三区免费看| 三级国产精品欧美在线观看| 最近视频中文字幕2019在线8| 久久99热6这里只有精品| 日韩国内少妇激情av| eeuss影院久久| 久久亚洲真实| 国产成人啪精品午夜网站| 国产精品98久久久久久宅男小说| 国内揄拍国产精品人妻在线| 噜噜噜噜噜久久久久久91| 很黄的视频免费| 日韩欧美在线二视频| 精品福利观看| 变态另类丝袜制服| 男人狂女人下面高潮的视频| 午夜两性在线视频| 久久久久久久午夜电影| 男人狂女人下面高潮的视频| 久久精品91蜜桃| 99在线人妻在线中文字幕| 很黄的视频免费| 亚洲国产日韩欧美精品在线观看| 久久这里只有精品中国| bbb黄色大片| 国产精品不卡视频一区二区 | 久久伊人香网站| 在线观看免费视频日本深夜| 丰满乱子伦码专区| 久久伊人香网站| 人妻夜夜爽99麻豆av| 噜噜噜噜噜久久久久久91| 99久国产av精品| 亚洲精品一卡2卡三卡4卡5卡| 亚洲激情在线av| 日韩亚洲欧美综合| 欧美+日韩+精品| 在线观看一区二区三区| 国产淫片久久久久久久久 | 欧美午夜高清在线| 欧美色视频一区免费| 国产精品乱码一区二三区的特点| 国产三级在线视频| 一边摸一边抽搐一进一小说| 99久久精品一区二区三区| 神马国产精品三级电影在线观看| 天天躁日日操中文字幕| 中文字幕av在线有码专区| av国产免费在线观看| 国产成人影院久久av| 国产色婷婷99| 男人舔女人下体高潮全视频| 久久久色成人| 亚洲无线在线观看| 色视频www国产| 亚洲一区二区三区不卡视频| 国产精品,欧美在线| 成人av在线播放网站| 在线观看舔阴道视频| 亚洲成人中文字幕在线播放| 亚洲成av人片免费观看| 91狼人影院| 欧美在线黄色| 免费观看的影片在线观看| a级一级毛片免费在线观看| 97人妻精品一区二区三区麻豆| 久久天躁狠狠躁夜夜2o2o| 天堂网av新在线| av中文乱码字幕在线| 国产高清有码在线观看视频| 成人一区二区视频在线观看| 男女下面进入的视频免费午夜| 一本久久中文字幕| 免费看光身美女| 国产欧美日韩一区二区三| 国产精品美女特级片免费视频播放器| 成年版毛片免费区| 亚洲精品粉嫩美女一区| 亚洲久久久久久中文字幕| 人妻夜夜爽99麻豆av| 日本免费a在线| 最近最新中文字幕大全电影3| 久久热精品热| 俺也久久电影网| 99久久99久久久精品蜜桃| 欧美bdsm另类| 简卡轻食公司| 99视频精品全部免费 在线| 国产精品日韩av在线免费观看| 蜜桃亚洲精品一区二区三区| 国内精品美女久久久久久| 乱人视频在线观看| 怎么达到女性高潮| 不卡一级毛片| 久久99热这里只有精品18| 极品教师在线免费播放| 国产成人aa在线观看| 99久久99久久久精品蜜桃| 国内揄拍国产精品人妻在线| 色视频www国产| 午夜两性在线视频| 国产高清有码在线观看视频| 欧美高清成人免费视频www| 黄色女人牲交| 又爽又黄无遮挡网站| 永久网站在线| 99久久无色码亚洲精品果冻| 成人亚洲精品av一区二区| 久久久久久久精品吃奶| 亚洲av一区综合| 国产黄色小视频在线观看| 午夜激情欧美在线| 一本精品99久久精品77| 欧美最新免费一区二区三区 | 在现免费观看毛片| 亚洲色图av天堂| 色哟哟·www| 精品久久久久久成人av| 国产男靠女视频免费网站| 日韩大尺度精品在线看网址| 亚洲片人在线观看| 在线看三级毛片| 国产老妇女一区| 嫩草影院精品99| 中文在线观看免费www的网站| 波多野结衣高清无吗| 最近最新免费中文字幕在线| 天天一区二区日本电影三级| 午夜福利免费观看在线| 国产成人a区在线观看| 美女大奶头视频| 男人和女人高潮做爰伦理| 少妇熟女aⅴ在线视频| 麻豆国产97在线/欧美| 亚洲avbb在线观看| 精品人妻视频免费看| 亚洲国产色片| 99视频精品全部免费 在线| 日韩欧美免费精品| 午夜日韩欧美国产| 床上黄色一级片| 色尼玛亚洲综合影院| 亚洲精品一区av在线观看| 国产亚洲精品久久久com| 内射极品少妇av片p| 99在线人妻在线中文字幕| 蜜桃久久精品国产亚洲av| 亚洲精品在线观看二区| 好男人在线观看高清免费视频| 亚洲av五月六月丁香网| 欧美一区二区亚洲| 天堂av国产一区二区熟女人妻| 国产伦精品一区二区三区视频9| 无人区码免费观看不卡| 日本成人三级电影网站| 亚洲av熟女| 天堂av国产一区二区熟女人妻| 香蕉av资源在线| 亚洲一区高清亚洲精品| 成人国产一区最新在线观看| 亚洲av免费高清在线观看| 黄色一级大片看看| 我要搜黄色片| 91九色精品人成在线观看| 亚洲av免费在线观看| 99久国产av精品| 亚洲精品亚洲一区二区| 简卡轻食公司| 免费在线观看影片大全网站| 男人的好看免费观看在线视频| 特级一级黄色大片| or卡值多少钱| 国产精品野战在线观看| 亚洲18禁久久av| 中文字幕免费在线视频6| 男人舔奶头视频| 日韩亚洲欧美综合| 亚洲精品在线美女| 啪啪无遮挡十八禁网站| 91在线观看av| 久久精品国产自在天天线| 舔av片在线| 美女大奶头视频| www.www免费av| 久久久久久久久中文| 色综合亚洲欧美另类图片| 在线免费观看不下载黄p国产 | netflix在线观看网站| 欧美bdsm另类| 久久久国产成人免费| 国产淫片久久久久久久久 | 免费在线观看影片大全网站| 国产精品精品国产色婷婷| 欧洲精品卡2卡3卡4卡5卡区| 夜夜看夜夜爽夜夜摸| 欧美日韩中文字幕国产精品一区二区三区| 99久久精品国产亚洲精品| 看十八女毛片水多多多| 美女高潮喷水抽搐中文字幕| 在线看三级毛片| 老熟妇乱子伦视频在线观看| 黄色女人牲交| 亚洲av不卡在线观看| 国产三级在线视频| 日本黄色片子视频| 99国产极品粉嫩在线观看| 在现免费观看毛片| 国产极品精品免费视频能看的| 搡老妇女老女人老熟妇| 亚洲中文日韩欧美视频| 十八禁网站免费在线| 在线播放国产精品三级| 久久精品国产亚洲av香蕉五月| 如何舔出高潮| 精品人妻视频免费看| aaaaa片日本免费| 91久久精品电影网| 精品人妻熟女av久视频| 每晚都被弄得嗷嗷叫到高潮| 日韩亚洲欧美综合| 两个人的视频大全免费| 亚洲欧美日韩高清专用| 亚洲一区二区三区色噜噜| 欧美成人一区二区免费高清观看| 又紧又爽又黄一区二区| 嫩草影院入口| 欧美区成人在线视频| 性插视频无遮挡在线免费观看| 黄色配什么色好看| 免费人成视频x8x8入口观看| h日本视频在线播放| 亚洲av熟女| 天天一区二区日本电影三级| 女人十人毛片免费观看3o分钟| 好看av亚洲va欧美ⅴa在| 亚洲最大成人av| 久久久精品大字幕| 亚洲内射少妇av| 啦啦啦观看免费观看视频高清| 国产精品一及| 99热这里只有是精品50| 在线免费观看的www视频| 少妇人妻精品综合一区二区 | 国产野战对白在线观看| 日本黄色片子视频| 亚洲真实伦在线观看| bbb黄色大片| 久久久久久九九精品二区国产| 给我免费播放毛片高清在线观看| 成年女人看的毛片在线观看| 好男人在线观看高清免费视频| 永久网站在线| 简卡轻食公司| 国产精品久久久久久亚洲av鲁大| 很黄的视频免费| 国产精品影院久久| 欧美色欧美亚洲另类二区| 91字幕亚洲| 国产成人av教育| 国产爱豆传媒在线观看| 一进一出抽搐动态| 国产精品久久久久久亚洲av鲁大| 亚洲成a人片在线一区二区| av天堂在线播放| 少妇人妻精品综合一区二区 | 国产人妻一区二区三区在| 12—13女人毛片做爰片一| 一级作爱视频免费观看| 日韩人妻高清精品专区| 两人在一起打扑克的视频| 午夜福利在线在线| 成年免费大片在线观看| 五月伊人婷婷丁香| 校园春色视频在线观看| 久久精品国产亚洲av香蕉五月| 直男gayav资源| 搡女人真爽免费视频火全软件 | 日本一二三区视频观看| 亚洲中文字幕一区二区三区有码在线看| 一本久久中文字幕| 99久久久亚洲精品蜜臀av| 最近在线观看免费完整版| 99久久久亚洲精品蜜臀av| 日韩有码中文字幕| 日韩欧美国产一区二区入口| 99热这里只有是精品在线观看 | 观看免费一级毛片| 99在线人妻在线中文字幕| 国产激情偷乱视频一区二区| 国产一区二区三区在线臀色熟女| 老司机深夜福利视频在线观看| 性色av乱码一区二区三区2| 亚洲va日本ⅴa欧美va伊人久久| av视频在线观看入口| 欧美不卡视频在线免费观看| 性插视频无遮挡在线免费观看| 在线a可以看的网站| 十八禁人妻一区二区| 激情在线观看视频在线高清| 99国产综合亚洲精品| 美女被艹到高潮喷水动态| 亚洲,欧美精品.| 国产精品久久电影中文字幕| 久久人人精品亚洲av| 精品欧美国产一区二区三| 国产精品乱码一区二三区的特点| 变态另类丝袜制服| 国内久久婷婷六月综合欲色啪| av天堂在线播放| 男人和女人高潮做爰伦理| 国产白丝娇喘喷水9色精品| 欧美性猛交黑人性爽| 国产大屁股一区二区在线视频| 国产男靠女视频免费网站| 精品欧美国产一区二区三| .国产精品久久| 国产黄色小视频在线观看| 麻豆一二三区av精品| 宅男免费午夜| 成熟少妇高潮喷水视频| 日本五十路高清| 好男人在线观看高清免费视频| 少妇高潮的动态图| 我要看日韩黄色一级片| 啦啦啦韩国在线观看视频| 精品午夜福利在线看| 免费一级毛片在线播放高清视频| 超碰av人人做人人爽久久| 欧美激情久久久久久爽电影| 国模一区二区三区四区视频| 国产高潮美女av| 亚洲欧美激情综合另类| 男女下面进入的视频免费午夜| 天堂影院成人在线观看| 女生性感内裤真人,穿戴方法视频| 在线播放无遮挡| 少妇裸体淫交视频免费看高清| 老熟妇乱子伦视频在线观看| 久久九九热精品免费| 国产高潮美女av| 国产视频内射| 在线观看一区二区三区| 国产在线精品亚洲第一网站| 久久精品综合一区二区三区| 天天一区二区日本电影三级| www.www免费av| 亚洲成人久久性| 中文字幕精品亚洲无线码一区| 亚洲乱码一区二区免费版| 欧美成人免费av一区二区三区| 他把我摸到了高潮在线观看| 丁香六月欧美| 一个人免费在线观看电影| 伦理电影大哥的女人| 日韩欧美精品免费久久 | 女人被狂操c到高潮| 精品国产三级普通话版| 非洲黑人性xxxx精品又粗又长| 99精品久久久久人妻精品| 国产白丝娇喘喷水9色精品| 亚洲av一区综合| 91在线观看av| 成人特级av手机在线观看| 又黄又爽又刺激的免费视频.| 男女做爰动态图高潮gif福利片| 婷婷丁香在线五月| 色在线成人网| 久久99热6这里只有精品| 国产精品久久久久久亚洲av鲁大| 男人和女人高潮做爰伦理| 成人特级黄色片久久久久久久| 99久久无色码亚洲精品果冻| 又黄又爽又免费观看的视频| 欧美日韩中文字幕国产精品一区二区三区| 午夜精品一区二区三区免费看| 99热只有精品国产| 亚洲第一电影网av| 欧美午夜高清在线| 直男gayav资源| 国产精品久久久久久亚洲av鲁大| 国产91精品成人一区二区三区| 成熟少妇高潮喷水视频| 国产三级中文精品| 非洲黑人性xxxx精品又粗又长| 一进一出抽搐gif免费好疼| 99riav亚洲国产免费| 国产黄片美女视频| 午夜亚洲福利在线播放| 在线播放无遮挡| av在线天堂中文字幕| 国内精品一区二区在线观看| 午夜福利视频1000在线观看| 国产三级在线视频| 国产aⅴ精品一区二区三区波| 成年女人永久免费观看视频| 成人国产综合亚洲| 男人和女人高潮做爰伦理| 国产av在哪里看| 蜜桃久久精品国产亚洲av| 日本精品一区二区三区蜜桃| 久久久久久久久久成人| 97热精品久久久久久| 国产高清视频在线播放一区| 成年女人毛片免费观看观看9| 精品一区二区免费观看| 色综合婷婷激情| 天天躁日日操中文字幕| 好男人电影高清在线观看| 校园春色视频在线观看| 国产欧美日韩精品亚洲av| 成人永久免费在线观看视频| 99久久无色码亚洲精品果冻| 12—13女人毛片做爰片一| 久久久国产成人精品二区| 宅男免费午夜| 国产伦在线观看视频一区| 性色avwww在线观看| av天堂在线播放| 国内久久婷婷六月综合欲色啪| 精品久久久久久久久av| 老熟妇乱子伦视频在线观看| 可以在线观看的亚洲视频| 男女下面进入的视频免费午夜| 天堂网av新在线| 一夜夜www| 国内精品美女久久久久久| 免费看日本二区| 天堂动漫精品| 欧美精品啪啪一区二区三区| 在现免费观看毛片| www日本黄色视频网| 中文字幕久久专区| 亚洲av熟女| 欧美一区二区精品小视频在线| 校园春色视频在线观看| 久久精品综合一区二区三区| 国产精品1区2区在线观看.| 午夜免费激情av| 日韩精品青青久久久久久| 日本在线视频免费播放| 最近视频中文字幕2019在线8| 黄色日韩在线| 国产成人av教育| 精品一区二区免费观看| 韩国av一区二区三区四区| 午夜免费激情av| 亚洲乱码一区二区免费版| 日本一本二区三区精品| 91在线精品国自产拍蜜月| 色哟哟哟哟哟哟| 老司机午夜福利在线观看视频| 亚洲熟妇中文字幕五十中出| 少妇高潮的动态图| 少妇人妻精品综合一区二区 | 欧美色视频一区免费| 中文字幕人成人乱码亚洲影| 天堂av国产一区二区熟女人妻| 日本 欧美在线| 神马国产精品三级电影在线观看| 乱码一卡2卡4卡精品| 制服丝袜大香蕉在线| 亚洲精品在线美女| 成人亚洲精品av一区二区| 久久精品综合一区二区三区| 精品不卡国产一区二区三区| 在线看三级毛片| 美女高潮喷水抽搐中文字幕| 成人高潮视频无遮挡免费网站| 亚洲人成电影免费在线| 色综合亚洲欧美另类图片| 欧美日韩国产亚洲二区| 麻豆国产av国片精品| 国产不卡一卡二| 亚洲中文日韩欧美视频| 嫁个100分男人电影在线观看| 午夜影院日韩av| 怎么达到女性高潮| 男女视频在线观看网站免费| 91午夜精品亚洲一区二区三区 | 国产极品精品免费视频能看的| 精品午夜福利视频在线观看一区| 国产国拍精品亚洲av在线观看| 国产毛片a区久久久久| 熟女人妻精品中文字幕| 国产免费av片在线观看野外av| 欧美高清成人免费视频www| 青草久久国产| 一区福利在线观看| 韩国av一区二区三区四区| 精品欧美国产一区二区三| 国产主播在线观看一区二区| 搡老熟女国产l中国老女人| 国产欧美日韩一区二区精品| 亚洲美女视频黄频| 一本综合久久免费| 简卡轻食公司| 宅男免费午夜| 日韩精品中文字幕看吧| 三级毛片av免费| 我的女老师完整版在线观看| 熟妇人妻久久中文字幕3abv| 麻豆成人午夜福利视频| 免费av毛片视频| 日本熟妇午夜| 国产美女午夜福利| 在线免费观看的www视频| 国产精品一区二区三区四区免费观看 | 精品不卡国产一区二区三区| 精品人妻熟女av久视频| 午夜福利欧美成人| 亚洲国产日韩欧美精品在线观看| 一本一本综合久久| 日韩成人在线观看一区二区三区|