• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Superconductivity at 44.4 K achieved by intercalating EMIM+into FeSe?

    2021-10-28 07:02:32JinhuaWang王晉花QingLi李慶WeiXie謝威GuanyuChen陳冠宇XiyuZhu祝熙宇andHaiHuWen聞?;?/span>
    Chinese Physics B 2021年10期
    關(guān)鍵詞:李慶

    Jinhua Wang(王晉花), Qing Li(李慶), Wei Xie(謝威), Guanyu Chen(陳冠宇),Xiyu Zhu(祝熙宇), and Hai-Hu Wen(聞?;?

    Center for Superconducting Physics and Materials,National Laboratory of Solid State Microstructures and Department of Physics,Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    Keywords: FeSe,iron-based superconductor,electrochemical intercalation

    1. Introduction

    Iron-based superconductors have attracted vast interest in condensed matter physics and material science since it was discovered in 2008.[1]Among iron-based superconducting materials, the compound FeSe was reported to have the simplest structure with a critical transition temperature(Tc)of about 8 K at ambient pressure,[2]which is constituted by edgesharing FeSe4-tetrahedra layers stacking along thec-axis. By applying high pressures, a dome-shaped superconducting region with rich physics appears,and itsTcwas enhanced up to 36.7 K at 8.9 GPa.[3,4]Due to the lack of charge carrier reservoir layers, it is natural to dope carriers into the FeSe planes by intercalation in order to increase its transition temperature.Intercalating guest elements or composites into adjacent FeSe layers is the most common way to achieve that goal.

    In the beginning, the alkali metals were intercalated into FeSe by solid state reactions,through whichAxFe2?ySe2(A=K,Rb,Cs,Tl,x<1,y<1)were synthesized withTcaround 32 K.[5–9]However, in order to satisfy the charge balance,phase separation occurs in the body of the material, leading to the coexistence of superconducting phaseAxFe2?ySe2and antiferromagnetic insulating phaseA2Fe4Se5.[10–13]This prohibits a thorough and systematic investigation of the physical properties in those materials. Thus, it is necessary to have a low-temperature technique to prepare intercalated FeSe-layer materials. Due to the special character of dissolving multiple metals, liquid ammonia could help to insert not only alkali metals (Li, Na, K, etc.), but also alkali-earth metals (Ca,Sr, Ba) and rare-earth metals (Eu, Yb) into the FeSe bulk samples.[14–17]These metals are co-inserted with liquid ammonia molecules,thus the inserted molecules are closer to be neutral in charge comparing with the alkali metal ion with valence state of+1,the former causes relatively complete FeSe planes with a significant increase of thec-axis lattice constant. And the highestTcof 46 K was reached among this series of superconductors.[14]Although a large increase ofTcwas realized, the chemical activity of intercalating composites between the adjacent FeSe layers made those materials extremely unstable in air. Using the hydrothermal technique and improved hydrothermal ion-exchange process,[18–20]a stable compound Li1?xFexOHFeSe with an ordered guest-layer Li1?xFexOH was prepared withTcup to 42 K.[20]Besides the inorganic molecules which are co-inserted with metals,organic molecules could also be intercalated into FeSe,[21–28]producing a series of superconductors with differentc-axis lattice parameters. Due to the varying size of organic molecules,such as C5H5N,(H2N)CnH2n(NH2),and CnH2n+3N(n=6,8,18),[21,24,28]the interlayer spacing could be largely stretched to a certain degree, and the largestc-axis lattice parameter of 55.7 °A was achieved in Lix(ODA)yFe1?zSe withTcof about 42 K.[28]

    Besides plenty of researches about alkali metals coinserted with inorganic or organic molecules into FeSe,some new superconductors were also discovered simply by intercalating organic composites, forming for example(C2H8N2)xFeSe.[29]This may pave a new way to synthesize intercalated FeSe derivative superconductors. The intercalation of C2H8N2in FeSe madec-axis lattice parameter expanded up to 21.700(6) °A. Moreover, two other different organic ions,cetyltrimethyl ammonium(CTA+)and tetrabutyl ammonium (TBA+),[30,31]were successfully inserted into FeSe through electrochemical intercalation. It has been found that these two kinds of organic-ions intergrown with FeSe formed a bulk superconductivity showingTcof 45 K and 50 K,withc-axis lattice parameter expanded up to 14.5 °A and 15.5 °A,respectively. Through the similar method, a new derivative of FeSe, the so called protonated FeSe (Hy-FeSe),was discovered withTcof 41 K,[32]in which the existence of hydrogen was indicated by nuclear magnetic resonance(NMR) measurements. But it is unclear what is the real superconducting phase,and studies on the detailed structure and physical properties are lacking up to now.

    In this work,we give detailed investigation on the above material, named as protonated FeSe, obtained through the same method and interactant, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4), as reported by Cuiet al.[32]According to the x-ray diffraction (XRD) measurements, we show that the title compound has a highly expandedc-axis constant, thus we conclude that the relevant phase is not Hy-FeSe, but rather another organic-ion-intercalated FeSe[(EMIM)xFeSe]. TheTcof this new FeSe-based superconductor is 44.4 K, as evidenced by the results of temperature dependent magnetic susceptibility and resistivity measurements. Note that our intercalated (EMIM)xFeSe samples are also not very stable in atmosphere, very similar to the(TBA)0.3FeSe,[31]and after a few days it will degrade back to the pristine FeSe withTcof about 8 K.

    2. Experimental details

    The schematic experimental setup of the electrochemical intercalation experiment is illustrated in Fig. 1(a).[32]As shown in the illustration, the positive and negative electrodes made of platinum are placed in an ionic-liquid container.Then this device is put into a heating mantle to maintain a certain temperature during the electrochemical process.The FeSe single crystal grown by means of chemical vapor transport technique is attached on the negatively charged electrode by silver paste,[33,34]while positive electrode Pt wire is placed right opposite to it. After loading the FeSe single crystal on the electrode,we add ionic liquid into the container till the sample is completely immersed. During the electrochemical process, a constant voltage of 4 V is applied and the temperature of the heating mantle is set to 355 K.After about three days of electrochemical reaction,the intercalated FeSe crystal is removed from the electrode and various measurements are taken after cleaning the silver paste and some residual reactants on the sample surface.

    The XRD is conducted on a Bruker D8 Advanced diffractometer with the CuKαradiation at room temperature. The temperature dependent resistivity is measured by a physical property measurement system(PPMS-16 T,Quantum Design)through the typical four-probe method in different magnetic fields. The temperature dependent magnetic susceptibility is measured by Quantum Design PPMS with vibrating sample magnetometer(VSM),while the magnetic field is applied parallel to thec-axis of the sample.

    3. Results and discussion

    Figure 1(b)shows the XRD patterns of pristine FeSe single crystal and intercalated FeSe after the electrochemical reaction. No matter before or after the experiment, the sample remains having good crystallinity. Hence, the XRD patterns show an obviousc-axis orientation and all peaks are indexed perfectly as (00l) on the basis of tetrahedral structure. The black solid line represents a series of(00l)peaks of FeSe single crystal, which indicates ac-axis lattice parameter of 5.52 °A.Meanwhile,the red solid line contains two sets of peaks. One set of them shows the same diffraction peaks as the black line, belonging to the residual FeSe of the sample. The other set represents a new phase, which has a largerc-axis lattice parameter. The Miller indices(00l)in Fig.1(b)are assigned on the basis of a primitive tetragonal structure with the space group ofP4/nmm, in which thec-axis lattice constant is 10.45 °A. While taking the space group of bodycentered tetragonalI4/mmm,only even values ofh+k+lcan appear in accordance with the extinction rule, and thec-axis lattice constant should be 20.88 °A.However,the precise symmetry needs more experiments to identify.Such an obvious increase of thec-axis lattice parameter suggests that some kind of molecules with big size has been inserted into the sample in the experiment and the spacing between adjacent FeSe layers is expanded. Considering the fact that the pristine FeSe is held on the negative electrode,we intend to conclude that the inserted molecules are most likely organic ions EMIM+from the ionic liquid. The schematic structure of this new phase is shown in Fig.1(c).Considering the finite size for three dimensions of the organic ions, they probably arrange themselves with a specific orientation between the adjacent FeSe layers as shown in Fig.1(c). However,this needs further verification by determining the internal structure.

    Fig.1. (a)An illustration of the device for the electrochemical reaction.(b) XRD patterns of FeSe single crystal and intercalated FeSe. The Miller indices of the intercalated phase are colored by red,and those of FeSe phase are colored by black. (c)The schematic crystal structure of(EMIM)xFeSe.

    The temperature dependences of magnetic susceptibility and resistivity have been measured,and the results are shown in Fig. 2. It is worth mentioning that two samples from the same batch were used for the magnetic and transport measurements since the quality of the samples degraded quickly in the transfer process between two types of measurements. Figure 2(a)exhibits the temperature dependent magnetic susceptibility(χ–Tcurve)of intercalated FeSe,which is measured in zero-field-cooled(ZFC)and field-cooled(FC)modes with an applied magnetic field of 3 mT. The magnetic screening volume calculated from the ZFC data is about 437%comparable to the value reported previously in the similar systems,[30–32]which is larger than 100% as the demagnetization effect has not been taken into account. A sharp transition shows up at about 40 K in theχ–Tcurve,demonstrating the emergence of superconductivity. Note that theTcof FeSe is around 8 K,[2]but this superconducting transition is not visible in theχ–Tcurve. The contradiction between XRD patterns andχ–Tcurve may be explained in the following way. One possible reason for the appearance of two phases in the XRD patterns is that the freshly intercalated sample is extremely unstable and some part of the sample with highTchas degraded into the FeSe phase. It is found that, after exposing samples in air for some time, the content of the phase with highTcsuperconductivity reduces and finally disappears,as revealed by XRD patterns and magnetizations,at the meantime the component of the FeSe phase increases. The time needed for preparing the magnetization and XRD measurements is different. In measuring the magnetization, the sample is quickly put into the sample chamber and cooled down, thus more and even complete content of the highTcphase is sustained. However,the XRD measurements are conducted under ambient environment,usually for hours,during this process the sample which is supposed to be mainly composed by the highTcphase will degraded, and some part will become FeSe. Thus, it is easy to understand the absence of the magnetization drop at about 8 K for FeSe for the freshly intercalated sample,but there are always two phases showing up in the XRD patterns. In order to check this scenario,we have measured temperature dependence of magnetization for samples with different durations after exposing to air. The results are shown in Fig.5. Here we show the magnetization of a freshly intercalated sample with mainly the highTcphase,and that after a long time exposing in air. One can see a clear evolution of the highTcphase to FeSe.Thus for investigating the properties of the highTcphase,the magnetization measurement must be done quickly after the intercalated samples are obtained. Figure 2(b)presents the temperature dependent resistivity under zero magnetic field with a current of 100μA.There is a dramatic decrease of resistivity at 44.4 K,which is roughly consistent with theTcobtained from theχ–Tcurve. The resistivity reaches zero at 38.5 K.

    Fig. 2. (a) Temperature dependent magnetic susceptibility of intercalated FeSe single crystal measured in ZFC and FC modes under a magnetic feild of 3 mT. (b) Temperature dependent resistivity under zero magnetic feild.

    In order to check the magnetic characteristics of the intercalated crystals,we have measured the temperature dependent magnetic susceptibility of intercalated FeSe in ZFC and FC modes at different fields(M–Tcurves),and the results are shown in Fig.3(a). At low fields,the ZFC curves show a trend of saturation. With increasing external magnetic fields, the magnetization value of the ZFC curve at low temperature is suppressed,which corresponds to the decrease of the magnetic screening volume. The inset of Fig. 3(a) shows the enlarged view ofM–Tcurves near the transition. The deviation point of the ZFC and FC curves can be defined as the irreversible temperatureTirrin the external fields, and theTirrdecreases quickly with increasing applied magnetic field. The temperature dependence of irreversibility fieldHirr(T)(M–T)of intercalated FeSe is shown in Fig.4(b).Figure 3(b)shows the magnetization hysteresis loops(MHLs)at 3.5 K and 10 K,respectively. The MHLs show a typical magnetic hysteresis behavior of type-II superconductors. The width of MHL measured at 3.5 K is much wider than that at 10 K,and the ?Mof MHLs at low temperatures are comparable to those of other iron-based superconductors,like(Li1?xFex)OHFeSe,[35]which indicates the good vortex pinning of our samples.

    Fig. 3. (a) Temperature dependent magnetic susceptibility of intercalated FeSe single crystal measured at different magnetic fields. Inset shows the enlarged view of the M–T curves near the transition.(b)Magnetization hysteresis loops (MHLs) of intercalated FeSe single crystal at 3.5 K and 10 K.

    witht=T/Tc,b=H/Hc2, which is deduced from the Lindermann criterion.[39]The parameterαis given by the formulaα=2π(εMZ/M)?1/2c2, with the Lindermann numberc ≈0.15–0.25 andε=16π3κ4(kBTc)2/Φ30H0c2,in whichκis the Ginzburg–Landau parameter. The mass ratio (MZ/M)1/2becomes larger as the spacing distance between FeSe layers increases,whereMZis a quasiparticle effective mass along thecaxis andMdescribes the mass in the FeSe planes. The optimal result ofα=0.33 is obtained by fittingHirr(T) data.In the fitting process, the parameterκin high-Tcsuperconductors usually takes a large value likeκ= 100, such as when it equals to 95, theHirr(T) data of Bi2.2Sr2Ca0.8Cu2O8could be well fitted by the melting criterion.[38]Thus, we take a general value ofκ=100 as the intercalated FeSe is a high-Tcsuperconductor (Tc=44.4 K). By substituting theHc2(0),Tc, andc= 0.2 into the formula ofα, we get the mass ratio (MZ/M)1/2≈44.5, which is comparable with the value of a quasi-two-dimensional (quasi-2D) superconductor Bi2.2Sr2Ca0.8Cu2O8[(MZ/M)1/2=60],[38]and much larger than that of 1.82 in FeSe,[37]11 in (Li1?xFex)OHFeSe single crystal,[40]further proving the high spatial anisotropy of the sample.

    Fig. 4. (a) Temperature dependent resistivity under different applied magnetic fields. (b)H–T phase diagram of the intercalated FeSe.Black squares represent the upper critical field Hc2(T) data. Blue (magenta)symbols represent the irreversibility field Hirr(T) obtained from the temperature dependent resistivity (magnetic susceptibility) data. The red and green solid lines show the fitting results of Hc2(T)and Hirr(T),respectively.

    Figure 5 shows the degradation situation of the intercalated FeSe sample. The magnetization measurements are conducted at a freshly intercalated sample mainly composed by the highTcphase,and the same one after a long time exposing in air as shown in Fig. 5(a). The black squares show the results of magnetization measurement for the intercalated sample. One can clearly see a sharp superconducting transition at about 40 K, which is associated to the intercalated phase.At the meantime, the ZFC curve also drops a little at 8 K,which might be caused by the partial degradation of the sample. After exposing the sample in air for a long time, only the transition at 8 K is seen, which corresponds to the superconducting transition of FeSe,suggesting that the intercalated phase has degraded back to FeSe. Meanwhile, we also measure the XRD patterns after the magnetization measurements.As shown in Fig.5(b),the XRD patterns of the freshly intercalated sample indicate that there are two phases with differentc-axis lattice parameters. However only FeSe phase remains after a long time exposing the sample in air. The simultaneous disappearance of the high-Tcsuperconducting phase and the XRD patterns with larger lattice parameter further proves that the highTcof the freshly intercalated sample is attributed to the intercalation of organic cations.

    Fig.5. (a)Temperature dependent magnetic susceptibility of a freshly intercalated sample and the one after degradation,which is measured in ZFC and FC modes with an applied magnetic field of 1 mT. (b) XRD patterns of the freshly intercalated and degraded phases. The peaks marked by star belong to the intercalated phase,and the rest marked by down-triangle belong to the FeSe phase.

    4. Conclusions

    We report superconductivity with transition temperatureTcabove 40 K by electrochemically reacting FeSe with the ionic liquid of EMIM-BF4.This phenomenon was recently reported as a process of protonating the FeSe crystals,but it was not clear what is the real superconducting phase. By doing x-ray diffraction measurements, we find a new set of diffraction peaks arising from the intercalated samples, these newly emergent peaks coexist with those of residual FeSe. We conclude that the newly emergent superconducting phase is the organic-cation (C6H11N+2, EMIM+)-intercalated FeSe phase,namely,(EMIM)xFeSe.Our results rule out the possibility that the high temperature superconducting phase is the simple protonated one Hy-FeSe. We also find that the upper critical fieldHc2is quite high,indicating a strong pairing potential. While the irreversibility fieldHirris suppressed quickly with increasing temperature,showing a large region of vortex liquid in the phase diagram. By fitting the irreversibility line to the vortex melting formula deduced from the Lindermann criterion, we get a quite large mass ratio(MZ/M)1/2≈44.5,which is much larger than the value of FeSe and (Li1?xFex)OHFeSe single crystal. This also supports that the resultant material should be highly anisotropic, as expected for a system with a large spacing between the FeSe layers.

    Acknowledgment

    We appreciate the kind help from Weiqiang Yu and Tianfeng Duan for establishing the device for the electrochemical reaction.

    猜你喜歡
    李慶
    《追光》曲譜
    《盛世歡歌》曲譜
    對(duì)三相交流異步電動(dòng)機(jī)變頻變壓轉(zhuǎn)差頻率控制調(diào)速系統(tǒng)的探討
    稻菽卷起千層浪 豐收畫卷耀南粵
    源流(2021年11期)2021-03-25 10:32:07
    李慶:高頻量化交易之王
    東西南北(2018年17期)2018-11-20 05:21:38
    讓生命重生的人
    做人與處世(2017年7期)2017-05-20 16:50:31
    身殘志堅(jiān)終圓夢(mèng)
    口香糖
    短篇小說(2015年5期)2015-12-16 07:10:48
    口香糖
    99精品在免费线老司机午夜| 日韩大尺度精品在线看网址| 精品免费久久久久久久清纯| 亚洲国产精品999在线| 精品久久久久久久人妻蜜臀av| 香蕉国产在线看| 亚洲av日韩精品久久久久久密| 亚洲电影在线观看av| 级片在线观看| 青草久久国产| 欧美黄色片欧美黄色片| 亚洲精品中文字幕在线视频| 国产成人精品久久二区二区免费| 真人一进一出gif抽搐免费| 亚洲中文av在线| 999久久久国产精品视频| 看黄色毛片网站| 精品久久久久久成人av| 大香蕉久久成人网| 在线天堂中文资源库| 亚洲国产精品999在线| 在线观看www视频免费| 国产1区2区3区精品| av超薄肉色丝袜交足视频| 最好的美女福利视频网| 欧美精品啪啪一区二区三区| 亚洲欧洲精品一区二区精品久久久| 国产国语露脸激情在线看| 久久久国产精品麻豆| 一区福利在线观看| 亚洲av成人一区二区三| 三级毛片av免费| 琪琪午夜伦伦电影理论片6080| 日韩欧美一区视频在线观看| 老汉色∧v一级毛片| 日日摸夜夜添夜夜添小说| 欧美日韩一级在线毛片| 琪琪午夜伦伦电影理论片6080| 国产成人系列免费观看| 此物有八面人人有两片| 中文亚洲av片在线观看爽| 亚洲av五月六月丁香网| 日本熟妇午夜| 久久精品亚洲精品国产色婷小说| 午夜免费鲁丝| 国产精品一区二区免费欧美| svipshipincom国产片| 在线观看日韩欧美| 日韩av在线大香蕉| 一二三四社区在线视频社区8| av天堂在线播放| 韩国av一区二区三区四区| xxx96com| 在线看三级毛片| 国产精华一区二区三区| 淫秽高清视频在线观看| 国产av在哪里看| 在线观看www视频免费| 麻豆成人av在线观看| 夜夜躁狠狠躁天天躁| a级毛片a级免费在线| 老熟妇仑乱视频hdxx| 制服人妻中文乱码| 人人妻人人澡人人看| 午夜免费观看网址| 悠悠久久av| 亚洲一区二区三区不卡视频| 亚洲欧洲精品一区二区精品久久久| 亚洲男人的天堂狠狠| 性色av乱码一区二区三区2| 午夜a级毛片| av中文乱码字幕在线| 欧美日本亚洲视频在线播放| 国产熟女xx| 精品日产1卡2卡| 在线看三级毛片| 大香蕉久久成人网| 日韩欧美免费精品| 99在线人妻在线中文字幕| 欧美av亚洲av综合av国产av| 国产高清视频在线播放一区| 欧美激情久久久久久爽电影| 免费观看精品视频网站| 午夜福利成人在线免费观看| 国产国语露脸激情在线看| 一区二区三区精品91| 色播亚洲综合网| 免费搜索国产男女视频| 亚洲精品美女久久av网站| 久久亚洲精品不卡| 99国产极品粉嫩在线观看| 久久精品91蜜桃| 欧美日韩黄片免| 亚洲午夜精品一区,二区,三区| 激情在线观看视频在线高清| 美女国产高潮福利片在线看| 50天的宝宝边吃奶边哭怎么回事| 美女扒开内裤让男人捅视频| 亚洲成a人片在线一区二区| 久久性视频一级片| 精品乱码久久久久久99久播| 黑人巨大精品欧美一区二区mp4| 50天的宝宝边吃奶边哭怎么回事| videosex国产| 999久久久国产精品视频| 国产亚洲精品久久久久久毛片| 国产亚洲精品久久久久久毛片| 亚洲一区二区三区色噜噜| 在线国产一区二区在线| 日日爽夜夜爽网站| 哪里可以看免费的av片| 黄网站色视频无遮挡免费观看| 国产精品电影一区二区三区| 少妇的丰满在线观看| 成人手机av| 欧美成人一区二区免费高清观看 | 久9热在线精品视频| 欧美激情高清一区二区三区| 色综合站精品国产| 亚洲久久久国产精品| 婷婷六月久久综合丁香| 亚洲激情在线av| av在线播放免费不卡| 男人舔女人下体高潮全视频| 男女午夜视频在线观看| 一级a爱片免费观看的视频| 亚洲精品一区av在线观看| 国产成人系列免费观看| 久久亚洲精品不卡| 国产野战对白在线观看| 亚洲成人精品中文字幕电影| 无遮挡黄片免费观看| 不卡一级毛片| 免费在线观看视频国产中文字幕亚洲| 啦啦啦韩国在线观看视频| 老司机午夜福利在线观看视频| 老司机午夜福利在线观看视频| e午夜精品久久久久久久| www国产在线视频色| 亚洲第一电影网av| 亚洲成国产人片在线观看| 亚洲第一欧美日韩一区二区三区| 免费看日本二区| 黄色a级毛片大全视频| 观看免费一级毛片| 91麻豆av在线| 精品久久久久久成人av| 久久草成人影院| 人人澡人人妻人| 九色国产91popny在线| 日韩欧美国产在线观看| 91老司机精品| 一级作爱视频免费观看| 亚洲精品久久国产高清桃花| 亚洲一码二码三码区别大吗| 少妇裸体淫交视频免费看高清 | 中文字幕久久专区| 男男h啪啪无遮挡| 亚洲一区二区三区不卡视频| 怎么达到女性高潮| 欧美大码av| 最近最新中文字幕大全电影3 | 99国产精品一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 色婷婷久久久亚洲欧美| av免费在线观看网站| 久久午夜综合久久蜜桃| 午夜成年电影在线免费观看| 一本精品99久久精品77| 日日爽夜夜爽网站| 在线观看舔阴道视频| 亚洲色图av天堂| 999久久久精品免费观看国产| 精品人妻1区二区| 老汉色∧v一级毛片| ponron亚洲| 亚洲真实伦在线观看| 2021天堂中文幕一二区在线观 | 欧美激情高清一区二区三区| 久久精品国产亚洲av高清一级| 久久精品91无色码中文字幕| 中国美女看黄片| 制服诱惑二区| 女人被狂操c到高潮| 正在播放国产对白刺激| 香蕉久久夜色| 久久久久免费精品人妻一区二区 | 欧美成人午夜精品| 国产精品亚洲一级av第二区| 一二三四在线观看免费中文在| 欧美乱色亚洲激情| 婷婷亚洲欧美| 国产黄片美女视频| 亚洲成人免费电影在线观看| 精品国产超薄肉色丝袜足j| 男女午夜视频在线观看| 亚洲激情在线av| 19禁男女啪啪无遮挡网站| 亚洲中文av在线| 亚洲九九香蕉| 十八禁人妻一区二区| 一进一出抽搐动态| 美女扒开内裤让男人捅视频| 国产99久久九九免费精品| 神马国产精品三级电影在线观看 | 黄色a级毛片大全视频| 免费观看精品视频网站| 99国产精品99久久久久| 亚洲av成人一区二区三| 一级a爱视频在线免费观看| 免费在线观看影片大全网站| 人人妻人人澡欧美一区二区| 99精品欧美一区二区三区四区| 亚洲精品美女久久av网站| 黄频高清免费视频| 嫁个100分男人电影在线观看| 狂野欧美激情性xxxx| 精品欧美一区二区三区在线| 亚洲欧洲精品一区二区精品久久久| 日日夜夜操网爽| av免费在线观看网站| 午夜视频精品福利| 一区二区三区国产精品乱码| 看片在线看免费视频| 亚洲色图av天堂| 久久久国产欧美日韩av| avwww免费| 色综合站精品国产| a在线观看视频网站| 很黄的视频免费| 精品一区二区三区四区五区乱码| 十分钟在线观看高清视频www| 日韩欧美国产在线观看| 一区二区三区国产精品乱码| 伦理电影免费视频| 午夜免费鲁丝| 亚洲中文日韩欧美视频| 亚洲中文字幕日韩| 精品国产一区二区三区四区第35| 亚洲第一青青草原| 久久人妻福利社区极品人妻图片| 欧美人与性动交α欧美精品济南到| 99久久综合精品五月天人人| 91老司机精品| 99国产精品一区二区三区| 精品少妇一区二区三区视频日本电影| 成人国产一区最新在线观看| 午夜a级毛片| 嫩草影院精品99| a在线观看视频网站| 欧美黄色淫秽网站| 久久青草综合色| 国产精品一区二区精品视频观看| 成人国产一区最新在线观看| 免费av毛片视频| 中文字幕另类日韩欧美亚洲嫩草| 1024手机看黄色片| 色综合欧美亚洲国产小说| 成人欧美大片| 黑人巨大精品欧美一区二区mp4| 啦啦啦免费观看视频1| 精品久久久久久久毛片微露脸| 男人的好看免费观看在线视频 | 国产精华一区二区三区| 精品欧美一区二区三区在线| 欧美乱码精品一区二区三区| 日韩免费av在线播放| 99热只有精品国产| 亚洲欧美一区二区三区黑人| 别揉我奶头~嗯~啊~动态视频| 成人18禁在线播放| 国产熟女xx| 老熟妇仑乱视频hdxx| 18禁国产床啪视频网站| 精品国产乱码久久久久久男人| 国产精品美女特级片免费视频播放器 | 午夜福利视频1000在线观看| 十分钟在线观看高清视频www| 亚洲 欧美一区二区三区| 在线观看66精品国产| 亚洲成人精品中文字幕电影| 19禁男女啪啪无遮挡网站| 成人手机av| 久久热在线av| 久久婷婷成人综合色麻豆| 国产私拍福利视频在线观看| cao死你这个sao货| 国产区一区二久久| 精品国产国语对白av| 精品国产超薄肉色丝袜足j| 日韩 欧美 亚洲 中文字幕| 免费观看人在逋| 久久香蕉激情| xxx96com| 又紧又爽又黄一区二区| 亚洲美女黄片视频| 色综合站精品国产| 欧美乱妇无乱码| svipshipincom国产片| 亚洲最大成人中文| 午夜免费成人在线视频| 免费在线观看完整版高清| 1024视频免费在线观看| 国产亚洲欧美精品永久| 国产成+人综合+亚洲专区| 亚洲专区中文字幕在线| 国产精品,欧美在线| 久久久精品欧美日韩精品| 国产欧美日韩一区二区精品| 日韩欧美在线二视频| 欧美不卡视频在线免费观看 | 亚洲五月色婷婷综合| 日韩欧美国产一区二区入口| 国产精品,欧美在线| 丰满的人妻完整版| 国产伦人伦偷精品视频| 国产97色在线日韩免费| 黄色a级毛片大全视频| 日本黄色视频三级网站网址| 在线永久观看黄色视频| 亚洲av熟女| 免费看日本二区| 亚洲中文日韩欧美视频| 亚洲精品中文字幕在线视频| 免费在线观看完整版高清| 国产成人影院久久av| 两个人看的免费小视频| 曰老女人黄片| 久久亚洲精品不卡| 日韩高清综合在线| 天堂影院成人在线观看| 久久久久久免费高清国产稀缺| 亚洲精品美女久久久久99蜜臀| 在线观看日韩欧美| 亚洲最大成人中文| АⅤ资源中文在线天堂| 精品久久久久久成人av| 成人国产一区最新在线观看| 日韩av在线大香蕉| 精品午夜福利视频在线观看一区| 精品国产国语对白av| 999久久久国产精品视频| 岛国视频午夜一区免费看| 色播亚洲综合网| 国产亚洲欧美98| 成人欧美大片| 亚洲熟女毛片儿| 少妇被粗大的猛进出69影院| 欧美在线一区亚洲| 91麻豆av在线| 国产精品乱码一区二三区的特点| 亚洲国产精品sss在线观看| 免费看美女性在线毛片视频| 国产视频内射| 在线观看舔阴道视频| 97碰自拍视频| 亚洲中文av在线| 精品一区二区三区四区五区乱码| 窝窝影院91人妻| 99久久久亚洲精品蜜臀av| АⅤ资源中文在线天堂| 亚洲色图 男人天堂 中文字幕| 中文字幕最新亚洲高清| 在线观看66精品国产| 男人舔女人下体高潮全视频| 欧美zozozo另类| 成人亚洲精品av一区二区| 国产成+人综合+亚洲专区| 亚洲成人精品中文字幕电影| 亚洲七黄色美女视频| 少妇的丰满在线观看| 日本熟妇午夜| 亚洲国产看品久久| 久久中文字幕一级| 国产97色在线日韩免费| 黑人操中国人逼视频| 亚洲全国av大片| 国产一区二区激情短视频| 在线观看免费午夜福利视频| 可以在线观看毛片的网站| 久久久久久免费高清国产稀缺| 亚洲男人天堂网一区| tocl精华| 国产精品野战在线观看| 好男人电影高清在线观看| 亚洲成av片中文字幕在线观看| 大香蕉久久成人网| 国产精品一区二区免费欧美| 精品国产亚洲在线| 国产精品一区二区三区四区久久 | 亚洲av电影在线进入| 非洲黑人性xxxx精品又粗又长| 亚洲午夜理论影院| 99国产极品粉嫩在线观看| 亚洲av电影在线进入| 欧美黄色淫秽网站| 国产亚洲精品一区二区www| 亚洲真实伦在线观看| 亚洲精品国产精品久久久不卡| 久久久国产成人免费| 久久国产亚洲av麻豆专区| 97碰自拍视频| 欧美性猛交╳xxx乱大交人| 首页视频小说图片口味搜索| 老司机深夜福利视频在线观看| 久久国产乱子伦精品免费另类| 精品免费久久久久久久清纯| 法律面前人人平等表现在哪些方面| 午夜激情av网站| 香蕉av资源在线| tocl精华| 一级毛片高清免费大全| 国产野战对白在线观看| av在线天堂中文字幕| 国产精品亚洲av一区麻豆| av电影中文网址| 国产主播在线观看一区二区| 一本久久中文字幕| 丰满人妻熟妇乱又伦精品不卡| 亚洲熟女毛片儿| 国产91精品成人一区二区三区| 高清毛片免费观看视频网站| 一级毛片女人18水好多| 99国产极品粉嫩在线观看| 狠狠狠狠99中文字幕| www.熟女人妻精品国产| 一区二区三区激情视频| 国产精品九九99| 桃色一区二区三区在线观看| 757午夜福利合集在线观看| 一区二区日韩欧美中文字幕| 黄片大片在线免费观看| 亚洲av中文字字幕乱码综合 | 日韩欧美免费精品| 成人亚洲精品av一区二区| 亚洲五月色婷婷综合| 香蕉av资源在线| 1024手机看黄色片| 亚洲国产欧美网| 在线观看一区二区三区| 在线观看午夜福利视频| 成人18禁高潮啪啪吃奶动态图| 午夜福利高清视频| 欧美日韩中文字幕国产精品一区二区三区| 国产精品av久久久久免费| 9191精品国产免费久久| 国产又爽黄色视频| 后天国语完整版免费观看| 亚洲午夜理论影院| 久久精品aⅴ一区二区三区四区| 制服诱惑二区| 超碰成人久久| 在线免费观看的www视频| 亚洲一卡2卡3卡4卡5卡精品中文| 一本综合久久免费| 精品国产一区二区三区四区第35| 一区二区三区精品91| av电影中文网址| 91麻豆精品激情在线观看国产| 操出白浆在线播放| 免费无遮挡裸体视频| АⅤ资源中文在线天堂| 亚洲第一欧美日韩一区二区三区| 亚洲电影在线观看av| 黑丝袜美女国产一区| 正在播放国产对白刺激| 伊人久久大香线蕉亚洲五| 精品久久久久久久末码| 91在线观看av| 久久中文看片网| 欧美中文日本在线观看视频| 国产高清视频在线播放一区| 欧美成人性av电影在线观看| 99精品在免费线老司机午夜| 国产真人三级小视频在线观看| 俺也久久电影网| 一本综合久久免费| 亚洲第一青青草原| 桃色一区二区三区在线观看| 久久精品91蜜桃| 亚洲av第一区精品v没综合| 亚洲 欧美一区二区三区| 日韩 欧美 亚洲 中文字幕| 好男人在线观看高清免费视频 | 亚洲第一av免费看| 在线观看免费午夜福利视频| 婷婷亚洲欧美| 视频区欧美日本亚洲| 亚洲天堂国产精品一区在线| 亚洲国产精品sss在线观看| 别揉我奶头~嗯~啊~动态视频| 在线十欧美十亚洲十日本专区| 变态另类丝袜制服| 级片在线观看| 国产成人系列免费观看| 国产麻豆成人av免费视频| 中文亚洲av片在线观看爽| 国产高清有码在线观看视频 | 1024视频免费在线观看| 亚洲国产日韩欧美精品在线观看 | 男女做爰动态图高潮gif福利片| 久久久精品国产亚洲av高清涩受| 国产精品99久久99久久久不卡| 欧美性猛交黑人性爽| 中文在线观看免费www的网站 | 人人妻,人人澡人人爽秒播| 桃红色精品国产亚洲av| 色婷婷久久久亚洲欧美| or卡值多少钱| 淫妇啪啪啪对白视频| 日韩欧美一区视频在线观看| 两人在一起打扑克的视频| 黄色 视频免费看| 桃红色精品国产亚洲av| 婷婷亚洲欧美| 免费女性裸体啪啪无遮挡网站| 可以在线观看毛片的网站| 黄片小视频在线播放| 国产v大片淫在线免费观看| 日韩欧美国产一区二区入口| 国产色视频综合| 老司机在亚洲福利影院| 国产伦人伦偷精品视频| 看片在线看免费视频| 国产成年人精品一区二区| √禁漫天堂资源中文www| 一a级毛片在线观看| 十分钟在线观看高清视频www| 黄色 视频免费看| 中国美女看黄片| 激情在线观看视频在线高清| 国产一区二区三区在线臀色熟女| 久久久久久久久免费视频了| 黄色女人牲交| 特大巨黑吊av在线直播 | 桃红色精品国产亚洲av| 欧美精品亚洲一区二区| 久久中文字幕人妻熟女| 中文字幕av电影在线播放| 宅男免费午夜| 欧美日韩亚洲国产一区二区在线观看| 国产精品影院久久| 欧美色视频一区免费| 少妇 在线观看| 69av精品久久久久久| av电影中文网址| 琪琪午夜伦伦电影理论片6080| 欧美久久黑人一区二区| 国产蜜桃级精品一区二区三区| 老司机福利观看| 亚洲自拍偷在线| 亚洲欧美激情综合另类| 久久久久久九九精品二区国产 | 久久久久国内视频| 婷婷亚洲欧美| 最近最新中文字幕大全免费视频| 91九色精品人成在线观看| 女生性感内裤真人,穿戴方法视频| 亚洲在线自拍视频| 国产91精品成人一区二区三区| 日本三级黄在线观看| 巨乳人妻的诱惑在线观看| 日韩一卡2卡3卡4卡2021年| 久久久久久人人人人人| 欧美成狂野欧美在线观看| 成人特级黄色片久久久久久久| 男人的好看免费观看在线视频 | 白带黄色成豆腐渣| cao死你这个sao货| 欧美激情久久久久久爽电影| 欧美在线一区亚洲| 成人国产综合亚洲| 欧美黑人巨大hd| 国产精品98久久久久久宅男小说| 男女视频在线观看网站免费 | 欧美乱色亚洲激情| 久久中文字幕一级| 香蕉久久夜色| 黄频高清免费视频| 亚洲一区二区三区不卡视频| 成人免费观看视频高清| 亚洲人成网站高清观看| 18禁国产床啪视频网站| 日本一本二区三区精品| 国产成年人精品一区二区| 高潮久久久久久久久久久不卡| 亚洲成av片中文字幕在线观看| 黄片播放在线免费| 国产精品二区激情视频| 午夜免费鲁丝| 亚洲国产欧洲综合997久久, | 少妇被粗大的猛进出69影院| 色尼玛亚洲综合影院| 18禁国产床啪视频网站| xxx96com| 波多野结衣高清作品| 欧美最黄视频在线播放免费| 欧美性猛交黑人性爽| 波多野结衣巨乳人妻| 免费看美女性在线毛片视频| 国产精品国产高清国产av| 18美女黄网站色大片免费观看| 亚洲 欧美 日韩 在线 免费| 国产亚洲av嫩草精品影院| 久久久久久九九精品二区国产 | 热99re8久久精品国产| 此物有八面人人有两片| 欧美黄色淫秽网站| 美女午夜性视频免费| 亚洲第一电影网av| 中文字幕人妻丝袜一区二区| 成人一区二区视频在线观看| 一个人免费在线观看的高清视频| 欧美日本视频| 久久精品国产亚洲av高清一级|