• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Superconductivity at 44.4 K achieved by intercalating EMIM+into FeSe?

    2021-10-28 07:02:32JinhuaWang王晉花QingLi李慶WeiXie謝威GuanyuChen陳冠宇XiyuZhu祝熙宇andHaiHuWen聞?;?/span>
    Chinese Physics B 2021年10期
    關(guān)鍵詞:李慶

    Jinhua Wang(王晉花), Qing Li(李慶), Wei Xie(謝威), Guanyu Chen(陳冠宇),Xiyu Zhu(祝熙宇), and Hai-Hu Wen(聞?;?

    Center for Superconducting Physics and Materials,National Laboratory of Solid State Microstructures and Department of Physics,Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    Keywords: FeSe,iron-based superconductor,electrochemical intercalation

    1. Introduction

    Iron-based superconductors have attracted vast interest in condensed matter physics and material science since it was discovered in 2008.[1]Among iron-based superconducting materials, the compound FeSe was reported to have the simplest structure with a critical transition temperature(Tc)of about 8 K at ambient pressure,[2]which is constituted by edgesharing FeSe4-tetrahedra layers stacking along thec-axis. By applying high pressures, a dome-shaped superconducting region with rich physics appears,and itsTcwas enhanced up to 36.7 K at 8.9 GPa.[3,4]Due to the lack of charge carrier reservoir layers, it is natural to dope carriers into the FeSe planes by intercalation in order to increase its transition temperature.Intercalating guest elements or composites into adjacent FeSe layers is the most common way to achieve that goal.

    In the beginning, the alkali metals were intercalated into FeSe by solid state reactions,through whichAxFe2?ySe2(A=K,Rb,Cs,Tl,x<1,y<1)were synthesized withTcaround 32 K.[5–9]However, in order to satisfy the charge balance,phase separation occurs in the body of the material, leading to the coexistence of superconducting phaseAxFe2?ySe2and antiferromagnetic insulating phaseA2Fe4Se5.[10–13]This prohibits a thorough and systematic investigation of the physical properties in those materials. Thus, it is necessary to have a low-temperature technique to prepare intercalated FeSe-layer materials. Due to the special character of dissolving multiple metals, liquid ammonia could help to insert not only alkali metals (Li, Na, K, etc.), but also alkali-earth metals (Ca,Sr, Ba) and rare-earth metals (Eu, Yb) into the FeSe bulk samples.[14–17]These metals are co-inserted with liquid ammonia molecules,thus the inserted molecules are closer to be neutral in charge comparing with the alkali metal ion with valence state of+1,the former causes relatively complete FeSe planes with a significant increase of thec-axis lattice constant. And the highestTcof 46 K was reached among this series of superconductors.[14]Although a large increase ofTcwas realized, the chemical activity of intercalating composites between the adjacent FeSe layers made those materials extremely unstable in air. Using the hydrothermal technique and improved hydrothermal ion-exchange process,[18–20]a stable compound Li1?xFexOHFeSe with an ordered guest-layer Li1?xFexOH was prepared withTcup to 42 K.[20]Besides the inorganic molecules which are co-inserted with metals,organic molecules could also be intercalated into FeSe,[21–28]producing a series of superconductors with differentc-axis lattice parameters. Due to the varying size of organic molecules,such as C5H5N,(H2N)CnH2n(NH2),and CnH2n+3N(n=6,8,18),[21,24,28]the interlayer spacing could be largely stretched to a certain degree, and the largestc-axis lattice parameter of 55.7 °A was achieved in Lix(ODA)yFe1?zSe withTcof about 42 K.[28]

    Besides plenty of researches about alkali metals coinserted with inorganic or organic molecules into FeSe,some new superconductors were also discovered simply by intercalating organic composites, forming for example(C2H8N2)xFeSe.[29]This may pave a new way to synthesize intercalated FeSe derivative superconductors. The intercalation of C2H8N2in FeSe madec-axis lattice parameter expanded up to 21.700(6) °A. Moreover, two other different organic ions,cetyltrimethyl ammonium(CTA+)and tetrabutyl ammonium (TBA+),[30,31]were successfully inserted into FeSe through electrochemical intercalation. It has been found that these two kinds of organic-ions intergrown with FeSe formed a bulk superconductivity showingTcof 45 K and 50 K,withc-axis lattice parameter expanded up to 14.5 °A and 15.5 °A,respectively. Through the similar method, a new derivative of FeSe, the so called protonated FeSe (Hy-FeSe),was discovered withTcof 41 K,[32]in which the existence of hydrogen was indicated by nuclear magnetic resonance(NMR) measurements. But it is unclear what is the real superconducting phase,and studies on the detailed structure and physical properties are lacking up to now.

    In this work,we give detailed investigation on the above material, named as protonated FeSe, obtained through the same method and interactant, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4), as reported by Cuiet al.[32]According to the x-ray diffraction (XRD) measurements, we show that the title compound has a highly expandedc-axis constant, thus we conclude that the relevant phase is not Hy-FeSe, but rather another organic-ion-intercalated FeSe[(EMIM)xFeSe]. TheTcof this new FeSe-based superconductor is 44.4 K, as evidenced by the results of temperature dependent magnetic susceptibility and resistivity measurements. Note that our intercalated (EMIM)xFeSe samples are also not very stable in atmosphere, very similar to the(TBA)0.3FeSe,[31]and after a few days it will degrade back to the pristine FeSe withTcof about 8 K.

    2. Experimental details

    The schematic experimental setup of the electrochemical intercalation experiment is illustrated in Fig. 1(a).[32]As shown in the illustration, the positive and negative electrodes made of platinum are placed in an ionic-liquid container.Then this device is put into a heating mantle to maintain a certain temperature during the electrochemical process.The FeSe single crystal grown by means of chemical vapor transport technique is attached on the negatively charged electrode by silver paste,[33,34]while positive electrode Pt wire is placed right opposite to it. After loading the FeSe single crystal on the electrode,we add ionic liquid into the container till the sample is completely immersed. During the electrochemical process, a constant voltage of 4 V is applied and the temperature of the heating mantle is set to 355 K.After about three days of electrochemical reaction,the intercalated FeSe crystal is removed from the electrode and various measurements are taken after cleaning the silver paste and some residual reactants on the sample surface.

    The XRD is conducted on a Bruker D8 Advanced diffractometer with the CuKαradiation at room temperature. The temperature dependent resistivity is measured by a physical property measurement system(PPMS-16 T,Quantum Design)through the typical four-probe method in different magnetic fields. The temperature dependent magnetic susceptibility is measured by Quantum Design PPMS with vibrating sample magnetometer(VSM),while the magnetic field is applied parallel to thec-axis of the sample.

    3. Results and discussion

    Figure 1(b)shows the XRD patterns of pristine FeSe single crystal and intercalated FeSe after the electrochemical reaction. No matter before or after the experiment, the sample remains having good crystallinity. Hence, the XRD patterns show an obviousc-axis orientation and all peaks are indexed perfectly as (00l) on the basis of tetrahedral structure. The black solid line represents a series of(00l)peaks of FeSe single crystal, which indicates ac-axis lattice parameter of 5.52 °A.Meanwhile,the red solid line contains two sets of peaks. One set of them shows the same diffraction peaks as the black line, belonging to the residual FeSe of the sample. The other set represents a new phase, which has a largerc-axis lattice parameter. The Miller indices(00l)in Fig.1(b)are assigned on the basis of a primitive tetragonal structure with the space group ofP4/nmm, in which thec-axis lattice constant is 10.45 °A. While taking the space group of bodycentered tetragonalI4/mmm,only even values ofh+k+lcan appear in accordance with the extinction rule, and thec-axis lattice constant should be 20.88 °A.However,the precise symmetry needs more experiments to identify.Such an obvious increase of thec-axis lattice parameter suggests that some kind of molecules with big size has been inserted into the sample in the experiment and the spacing between adjacent FeSe layers is expanded. Considering the fact that the pristine FeSe is held on the negative electrode,we intend to conclude that the inserted molecules are most likely organic ions EMIM+from the ionic liquid. The schematic structure of this new phase is shown in Fig.1(c).Considering the finite size for three dimensions of the organic ions, they probably arrange themselves with a specific orientation between the adjacent FeSe layers as shown in Fig.1(c). However,this needs further verification by determining the internal structure.

    Fig.1. (a)An illustration of the device for the electrochemical reaction.(b) XRD patterns of FeSe single crystal and intercalated FeSe. The Miller indices of the intercalated phase are colored by red,and those of FeSe phase are colored by black. (c)The schematic crystal structure of(EMIM)xFeSe.

    The temperature dependences of magnetic susceptibility and resistivity have been measured,and the results are shown in Fig. 2. It is worth mentioning that two samples from the same batch were used for the magnetic and transport measurements since the quality of the samples degraded quickly in the transfer process between two types of measurements. Figure 2(a)exhibits the temperature dependent magnetic susceptibility(χ–Tcurve)of intercalated FeSe,which is measured in zero-field-cooled(ZFC)and field-cooled(FC)modes with an applied magnetic field of 3 mT. The magnetic screening volume calculated from the ZFC data is about 437%comparable to the value reported previously in the similar systems,[30–32]which is larger than 100% as the demagnetization effect has not been taken into account. A sharp transition shows up at about 40 K in theχ–Tcurve,demonstrating the emergence of superconductivity. Note that theTcof FeSe is around 8 K,[2]but this superconducting transition is not visible in theχ–Tcurve. The contradiction between XRD patterns andχ–Tcurve may be explained in the following way. One possible reason for the appearance of two phases in the XRD patterns is that the freshly intercalated sample is extremely unstable and some part of the sample with highTchas degraded into the FeSe phase. It is found that, after exposing samples in air for some time, the content of the phase with highTcsuperconductivity reduces and finally disappears,as revealed by XRD patterns and magnetizations,at the meantime the component of the FeSe phase increases. The time needed for preparing the magnetization and XRD measurements is different. In measuring the magnetization, the sample is quickly put into the sample chamber and cooled down, thus more and even complete content of the highTcphase is sustained. However,the XRD measurements are conducted under ambient environment,usually for hours,during this process the sample which is supposed to be mainly composed by the highTcphase will degraded, and some part will become FeSe. Thus, it is easy to understand the absence of the magnetization drop at about 8 K for FeSe for the freshly intercalated sample,but there are always two phases showing up in the XRD patterns. In order to check this scenario,we have measured temperature dependence of magnetization for samples with different durations after exposing to air. The results are shown in Fig.5. Here we show the magnetization of a freshly intercalated sample with mainly the highTcphase,and that after a long time exposing in air. One can see a clear evolution of the highTcphase to FeSe.Thus for investigating the properties of the highTcphase,the magnetization measurement must be done quickly after the intercalated samples are obtained. Figure 2(b)presents the temperature dependent resistivity under zero magnetic field with a current of 100μA.There is a dramatic decrease of resistivity at 44.4 K,which is roughly consistent with theTcobtained from theχ–Tcurve. The resistivity reaches zero at 38.5 K.

    Fig. 2. (a) Temperature dependent magnetic susceptibility of intercalated FeSe single crystal measured in ZFC and FC modes under a magnetic feild of 3 mT. (b) Temperature dependent resistivity under zero magnetic feild.

    In order to check the magnetic characteristics of the intercalated crystals,we have measured the temperature dependent magnetic susceptibility of intercalated FeSe in ZFC and FC modes at different fields(M–Tcurves),and the results are shown in Fig.3(a). At low fields,the ZFC curves show a trend of saturation. With increasing external magnetic fields, the magnetization value of the ZFC curve at low temperature is suppressed,which corresponds to the decrease of the magnetic screening volume. The inset of Fig. 3(a) shows the enlarged view ofM–Tcurves near the transition. The deviation point of the ZFC and FC curves can be defined as the irreversible temperatureTirrin the external fields, and theTirrdecreases quickly with increasing applied magnetic field. The temperature dependence of irreversibility fieldHirr(T)(M–T)of intercalated FeSe is shown in Fig.4(b).Figure 3(b)shows the magnetization hysteresis loops(MHLs)at 3.5 K and 10 K,respectively. The MHLs show a typical magnetic hysteresis behavior of type-II superconductors. The width of MHL measured at 3.5 K is much wider than that at 10 K,and the ?Mof MHLs at low temperatures are comparable to those of other iron-based superconductors,like(Li1?xFex)OHFeSe,[35]which indicates the good vortex pinning of our samples.

    Fig. 3. (a) Temperature dependent magnetic susceptibility of intercalated FeSe single crystal measured at different magnetic fields. Inset shows the enlarged view of the M–T curves near the transition.(b)Magnetization hysteresis loops (MHLs) of intercalated FeSe single crystal at 3.5 K and 10 K.

    witht=T/Tc,b=H/Hc2, which is deduced from the Lindermann criterion.[39]The parameterαis given by the formulaα=2π(εMZ/M)?1/2c2, with the Lindermann numberc ≈0.15–0.25 andε=16π3κ4(kBTc)2/Φ30H0c2,in whichκis the Ginzburg–Landau parameter. The mass ratio (MZ/M)1/2becomes larger as the spacing distance between FeSe layers increases,whereMZis a quasiparticle effective mass along thecaxis andMdescribes the mass in the FeSe planes. The optimal result ofα=0.33 is obtained by fittingHirr(T) data.In the fitting process, the parameterκin high-Tcsuperconductors usually takes a large value likeκ= 100, such as when it equals to 95, theHirr(T) data of Bi2.2Sr2Ca0.8Cu2O8could be well fitted by the melting criterion.[38]Thus, we take a general value ofκ=100 as the intercalated FeSe is a high-Tcsuperconductor (Tc=44.4 K). By substituting theHc2(0),Tc, andc= 0.2 into the formula ofα, we get the mass ratio (MZ/M)1/2≈44.5, which is comparable with the value of a quasi-two-dimensional (quasi-2D) superconductor Bi2.2Sr2Ca0.8Cu2O8[(MZ/M)1/2=60],[38]and much larger than that of 1.82 in FeSe,[37]11 in (Li1?xFex)OHFeSe single crystal,[40]further proving the high spatial anisotropy of the sample.

    Fig. 4. (a) Temperature dependent resistivity under different applied magnetic fields. (b)H–T phase diagram of the intercalated FeSe.Black squares represent the upper critical field Hc2(T) data. Blue (magenta)symbols represent the irreversibility field Hirr(T) obtained from the temperature dependent resistivity (magnetic susceptibility) data. The red and green solid lines show the fitting results of Hc2(T)and Hirr(T),respectively.

    Figure 5 shows the degradation situation of the intercalated FeSe sample. The magnetization measurements are conducted at a freshly intercalated sample mainly composed by the highTcphase,and the same one after a long time exposing in air as shown in Fig. 5(a). The black squares show the results of magnetization measurement for the intercalated sample. One can clearly see a sharp superconducting transition at about 40 K, which is associated to the intercalated phase.At the meantime, the ZFC curve also drops a little at 8 K,which might be caused by the partial degradation of the sample. After exposing the sample in air for a long time, only the transition at 8 K is seen, which corresponds to the superconducting transition of FeSe,suggesting that the intercalated phase has degraded back to FeSe. Meanwhile, we also measure the XRD patterns after the magnetization measurements.As shown in Fig.5(b),the XRD patterns of the freshly intercalated sample indicate that there are two phases with differentc-axis lattice parameters. However only FeSe phase remains after a long time exposing the sample in air. The simultaneous disappearance of the high-Tcsuperconducting phase and the XRD patterns with larger lattice parameter further proves that the highTcof the freshly intercalated sample is attributed to the intercalation of organic cations.

    Fig.5. (a)Temperature dependent magnetic susceptibility of a freshly intercalated sample and the one after degradation,which is measured in ZFC and FC modes with an applied magnetic field of 1 mT. (b) XRD patterns of the freshly intercalated and degraded phases. The peaks marked by star belong to the intercalated phase,and the rest marked by down-triangle belong to the FeSe phase.

    4. Conclusions

    We report superconductivity with transition temperatureTcabove 40 K by electrochemically reacting FeSe with the ionic liquid of EMIM-BF4.This phenomenon was recently reported as a process of protonating the FeSe crystals,but it was not clear what is the real superconducting phase. By doing x-ray diffraction measurements, we find a new set of diffraction peaks arising from the intercalated samples, these newly emergent peaks coexist with those of residual FeSe. We conclude that the newly emergent superconducting phase is the organic-cation (C6H11N+2, EMIM+)-intercalated FeSe phase,namely,(EMIM)xFeSe.Our results rule out the possibility that the high temperature superconducting phase is the simple protonated one Hy-FeSe. We also find that the upper critical fieldHc2is quite high,indicating a strong pairing potential. While the irreversibility fieldHirris suppressed quickly with increasing temperature,showing a large region of vortex liquid in the phase diagram. By fitting the irreversibility line to the vortex melting formula deduced from the Lindermann criterion, we get a quite large mass ratio(MZ/M)1/2≈44.5,which is much larger than the value of FeSe and (Li1?xFex)OHFeSe single crystal. This also supports that the resultant material should be highly anisotropic, as expected for a system with a large spacing between the FeSe layers.

    Acknowledgment

    We appreciate the kind help from Weiqiang Yu and Tianfeng Duan for establishing the device for the electrochemical reaction.

    猜你喜歡
    李慶
    《追光》曲譜
    《盛世歡歌》曲譜
    對(duì)三相交流異步電動(dòng)機(jī)變頻變壓轉(zhuǎn)差頻率控制調(diào)速系統(tǒng)的探討
    稻菽卷起千層浪 豐收畫卷耀南粵
    源流(2021年11期)2021-03-25 10:32:07
    李慶:高頻量化交易之王
    東西南北(2018年17期)2018-11-20 05:21:38
    讓生命重生的人
    做人與處世(2017年7期)2017-05-20 16:50:31
    身殘志堅(jiān)終圓夢(mèng)
    口香糖
    短篇小說(2015年5期)2015-12-16 07:10:48
    口香糖
    在线 av 中文字幕| 成人美女网站在线观看视频| 亚洲丝袜综合中文字幕| 精品国产一区二区三区久久久樱花| 亚洲精品自拍成人| 欧美少妇被猛烈插入视频| 中文字幕av电影在线播放| 久久精品国产亚洲网站| 黄色欧美视频在线观看| 两个人的视频大全免费| 国产精品欧美亚洲77777| 国产精品熟女久久久久浪| 国产深夜福利视频在线观看| 国产av精品麻豆| 少妇丰满av| 免费大片18禁| 国产一级毛片在线| 中文资源天堂在线| 日本av免费视频播放| 亚洲欧洲精品一区二区精品久久久 | 夜夜看夜夜爽夜夜摸| 欧美日韩一区二区视频在线观看视频在线| 波野结衣二区三区在线| a级毛色黄片| 青青草视频在线视频观看| 一区二区av电影网| 街头女战士在线观看网站| 一级毛片黄色毛片免费观看视频| 午夜福利,免费看| 极品少妇高潮喷水抽搐| 色视频www国产| 欧美日韩av久久| 99久久综合免费| 日本欧美国产在线视频| 久久人人爽人人片av| 欧美 日韩 精品 国产| 亚洲精品一区蜜桃| 精品一品国产午夜福利视频| 伦精品一区二区三区| 欧美日韩综合久久久久久| 我的老师免费观看完整版| 亚洲精品日韩在线中文字幕| 久久99精品国语久久久| 九色成人免费人妻av| 午夜老司机福利剧场| 如何舔出高潮| 久久av网站| 亚洲一区二区三区欧美精品| 久久ye,这里只有精品| 亚洲欧美中文字幕日韩二区| 日韩欧美一区视频在线观看 | 亚洲高清免费不卡视频| 亚洲av在线观看美女高潮| 五月开心婷婷网| 欧美bdsm另类| 最近手机中文字幕大全| 成人午夜精彩视频在线观看| 日本av免费视频播放| 亚洲情色 制服丝袜| 日本黄色片子视频| 伦理电影大哥的女人| 26uuu在线亚洲综合色| 高清不卡的av网站| 国产日韩欧美亚洲二区| 国产女主播在线喷水免费视频网站| 国产亚洲91精品色在线| 久久精品夜色国产| 日韩,欧美,国产一区二区三区| 成人黄色视频免费在线看| 青青草视频在线视频观看| 亚洲精品中文字幕在线视频 | 亚州av有码| 亚洲综合精品二区| 80岁老熟妇乱子伦牲交| 国产极品天堂在线| 青青草视频在线视频观看| 男人狂女人下面高潮的视频| 国产亚洲最大av| av国产久精品久网站免费入址| 免费黄网站久久成人精品| 精品酒店卫生间| 少妇人妻 视频| 国模一区二区三区四区视频| 精品一区二区三卡| 免费人妻精品一区二区三区视频| 国产成人精品婷婷| 午夜激情福利司机影院| 在线精品无人区一区二区三| 国产一区二区在线观看av| av国产久精品久网站免费入址| 中文字幕人妻熟人妻熟丝袜美| 国产有黄有色有爽视频| 久久久精品94久久精品| 国产精品国产三级国产专区5o| 国产精品99久久久久久久久| 这个男人来自地球电影免费观看 | 日本欧美国产在线视频| 80岁老熟妇乱子伦牲交| 少妇被粗大猛烈的视频| 我要看黄色一级片免费的| 午夜影院在线不卡| 国产免费一级a男人的天堂| 亚洲内射少妇av| 狂野欧美激情性bbbbbb| 人妻制服诱惑在线中文字幕| 国产一区亚洲一区在线观看| 久久精品夜色国产| 国产白丝娇喘喷水9色精品| 色婷婷av一区二区三区视频| 国产成人aa在线观看| a级片在线免费高清观看视频| 国产一区二区三区av在线| 最近中文字幕高清免费大全6| 国产爽快片一区二区三区| 久久久久久久久久久免费av| 日韩av免费高清视频| 成年人午夜在线观看视频| 在线观看免费视频网站a站| 日韩av不卡免费在线播放| 中国国产av一级| 国产一级毛片在线| 亚洲欧美精品自产自拍| 久久久久人妻精品一区果冻| av线在线观看网站| 在线观看av片永久免费下载| 久久 成人 亚洲| videos熟女内射| 永久免费av网站大全| 国产视频首页在线观看| 高清毛片免费看| 一级毛片黄色毛片免费观看视频| 多毛熟女@视频| 国产69精品久久久久777片| 国产成人精品福利久久| 国产亚洲91精品色在线| 久久人人爽人人片av| 久久久久国产网址| 国产亚洲91精品色在线| 香蕉精品网在线| 黑丝袜美女国产一区| 大片电影免费在线观看免费| 久热久热在线精品观看| 制服丝袜香蕉在线| 欧美性感艳星| 高清在线视频一区二区三区| 这个男人来自地球电影免费观看 | 韩国高清视频一区二区三区| 欧美+日韩+精品| 欧美日韩在线观看h| 久久6这里有精品| 内地一区二区视频在线| 成人毛片60女人毛片免费| 啦啦啦在线观看免费高清www| 狂野欧美白嫩少妇大欣赏| 尾随美女入室| 99久久精品热视频| 亚洲欧美一区二区三区国产| 三级经典国产精品| 国产精品免费大片| 妹子高潮喷水视频| 国产成人精品久久久久久| 一级毛片电影观看| 精品亚洲乱码少妇综合久久| 亚洲精品日韩在线中文字幕| 天美传媒精品一区二区| 免费少妇av软件| 一级,二级,三级黄色视频| 国产精品三级大全| 99热这里只有精品一区| 国产免费一级a男人的天堂| 亚洲精品国产成人久久av| 在线观看www视频免费| 看十八女毛片水多多多| 啦啦啦在线观看免费高清www| 亚洲国产精品成人久久小说| 午夜免费男女啪啪视频观看| 日韩制服骚丝袜av| 日韩 亚洲 欧美在线| 在线精品无人区一区二区三| 又粗又硬又长又爽又黄的视频| 亚洲精品第二区| 九草在线视频观看| 有码 亚洲区| 男人狂女人下面高潮的视频| 寂寞人妻少妇视频99o| av一本久久久久| 久久精品久久久久久久性| 国产高清不卡午夜福利| 在线观看国产h片| 成年av动漫网址| 欧美三级亚洲精品| 国产精品女同一区二区软件| 成人美女网站在线观看视频| 最黄视频免费看| 国产免费一区二区三区四区乱码| 黄色欧美视频在线观看| 亚洲欧美成人综合另类久久久| 中文字幕精品免费在线观看视频 | 少妇精品久久久久久久| 日韩人妻高清精品专区| 美女内射精品一级片tv| 亚洲国产精品999| 我的女老师完整版在线观看| 香蕉精品网在线| 我的老师免费观看完整版| 久久综合国产亚洲精品| av专区在线播放| 国产欧美日韩综合在线一区二区 | 夫妻性生交免费视频一级片| 免费大片18禁| 人妻 亚洲 视频| av福利片在线| 久久精品国产亚洲网站| 边亲边吃奶的免费视频| 插阴视频在线观看视频| 国产一区二区三区综合在线观看 | 99久久精品热视频| 男女边吃奶边做爰视频| 高清毛片免费看| 22中文网久久字幕| 亚洲色图综合在线观看| 日韩在线高清观看一区二区三区| 久久久久久久久大av| 日韩 亚洲 欧美在线| av福利片在线观看| 偷拍熟女少妇极品色| 中文在线观看免费www的网站| 亚洲一区二区三区欧美精品| 大香蕉97超碰在线| 十八禁网站网址无遮挡 | kizo精华| 黑人高潮一二区| 建设人人有责人人尽责人人享有的| 九草在线视频观看| 成人18禁高潮啪啪吃奶动态图 | 日韩视频在线欧美| 最黄视频免费看| 亚洲国产色片| 99精国产麻豆久久婷婷| 欧美日韩视频高清一区二区三区二| 蜜桃久久精品国产亚洲av| 大话2 男鬼变身卡| 亚洲国产最新在线播放| 亚洲欧美成人精品一区二区| 日本猛色少妇xxxxx猛交久久| 纯流量卡能插随身wifi吗| 伊人亚洲综合成人网| 99九九在线精品视频 | 99久久综合免费| 久久亚洲国产成人精品v| 黑人高潮一二区| 中文字幕免费在线视频6| 91午夜精品亚洲一区二区三区| 嫩草影院入口| 黄色配什么色好看| 国国产精品蜜臀av免费| 国产精品麻豆人妻色哟哟久久| 2022亚洲国产成人精品| 人妻少妇偷人精品九色| 久久99一区二区三区| 午夜福利视频精品| 久久精品国产亚洲av涩爱| 丰满人妻一区二区三区视频av| 美女视频免费永久观看网站| 国产亚洲5aaaaa淫片| 久久午夜福利片| 久久久欧美国产精品| 国产精品秋霞免费鲁丝片| 欧美丝袜亚洲另类| 午夜日本视频在线| a 毛片基地| 插逼视频在线观看| 最近中文字幕高清免费大全6| 日韩精品免费视频一区二区三区 | 欧美三级亚洲精品| 一级毛片我不卡| 国产在线视频一区二区| 午夜免费鲁丝| 国产毛片在线视频| 亚洲欧洲精品一区二区精品久久久 | 性色av一级| 边亲边吃奶的免费视频| 色婷婷久久久亚洲欧美| 天堂中文最新版在线下载| 日日摸夜夜添夜夜爱| 中国美白少妇内射xxxbb| 777米奇影视久久| 亚洲美女搞黄在线观看| 日韩中字成人| 女的被弄到高潮叫床怎么办| 亚洲美女黄色视频免费看| 亚洲国产精品成人久久小说| 99视频精品全部免费 在线| 久久精品久久精品一区二区三区| 99国产精品免费福利视频| 欧美另类一区| 国产欧美日韩精品一区二区| 丰满人妻一区二区三区视频av| 国产爽快片一区二区三区| 国产精品无大码| 亚洲欧美日韩另类电影网站| 午夜福利网站1000一区二区三区| 久久国内精品自在自线图片| 波野结衣二区三区在线| 中文字幕av电影在线播放| 人人妻人人爽人人添夜夜欢视频 | 久久国产精品男人的天堂亚洲 | 婷婷色综合大香蕉| 晚上一个人看的免费电影| 自拍偷自拍亚洲精品老妇| 日韩 亚洲 欧美在线| 国产成人精品久久久久久| 丰满少妇做爰视频| 欧美最新免费一区二区三区| 男男h啪啪无遮挡| 国产成人freesex在线| 精品一区在线观看国产| 少妇被粗大的猛进出69影院 | 男女边摸边吃奶| 免费观看的影片在线观看| 国产精品.久久久| 综合色丁香网| 日韩在线高清观看一区二区三区| 久久影院123| 久热这里只有精品99| 国产成人精品婷婷| 久久精品熟女亚洲av麻豆精品| 一本—道久久a久久精品蜜桃钙片| 免费黄网站久久成人精品| 最黄视频免费看| 一级av片app| 欧美亚洲 丝袜 人妻 在线| 人妻少妇偷人精品九色| 日韩av不卡免费在线播放| 亚洲欧美中文字幕日韩二区| 天天躁夜夜躁狠狠久久av| 色婷婷久久久亚洲欧美| 日韩欧美 国产精品| 午夜老司机福利剧场| 国产精品一区二区在线观看99| av在线播放精品| 伊人久久精品亚洲午夜| 精品少妇久久久久久888优播| 尾随美女入室| 久久影院123| 日韩在线高清观看一区二区三区| 偷拍熟女少妇极品色| 国产精品不卡视频一区二区| 丰满迷人的少妇在线观看| 亚洲人成网站在线观看播放| 国产精品免费大片| 午夜免费男女啪啪视频观看| 成人漫画全彩无遮挡| 国产精品国产av在线观看| 一边亲一边摸免费视频| 两个人免费观看高清视频 | 日韩,欧美,国产一区二区三区| 色视频在线一区二区三区| 日韩成人伦理影院| 国产视频首页在线观看| 国产伦在线观看视频一区| 9色porny在线观看| 国产成人freesex在线| 日本爱情动作片www.在线观看| 色5月婷婷丁香| 中国国产av一级| 91精品一卡2卡3卡4卡| 亚洲精品国产色婷婷电影| 三上悠亚av全集在线观看 | 精品国产国语对白av| 国产成人aa在线观看| 亚洲丝袜综合中文字幕| 国产黄色免费在线视频| 国产av国产精品国产| 建设人人有责人人尽责人人享有的| 亚洲精品一二三| 久久精品国产自在天天线| 欧美日韩国产mv在线观看视频| 在线播放无遮挡| 亚州av有码| 少妇高潮的动态图| 精品久久国产蜜桃| 三上悠亚av全集在线观看 | 老司机影院成人| 久久鲁丝午夜福利片| 国产男女内射视频| 国产乱人偷精品视频| 久久99蜜桃精品久久| 国产精品熟女久久久久浪| 少妇高潮的动态图| 伦理电影免费视频| 乱码一卡2卡4卡精品| 哪个播放器可以免费观看大片| 老司机亚洲免费影院| 国产在线免费精品| 成人特级av手机在线观看| 丝袜喷水一区| 最黄视频免费看| 99热这里只有是精品在线观看| 日本黄大片高清| 国产视频首页在线观看| 各种免费的搞黄视频| 在线观看免费高清a一片| 日韩电影二区| 国内揄拍国产精品人妻在线| 亚洲欧美中文字幕日韩二区| 亚洲久久久国产精品| 亚洲自偷自拍三级| 美女视频免费永久观看网站| 亚洲中文av在线| 国产欧美日韩综合在线一区二区 | 中文字幕亚洲精品专区| 日韩av不卡免费在线播放| 亚洲欧美清纯卡通| 五月开心婷婷网| 黄色怎么调成土黄色| 免费人成在线观看视频色| 亚洲欧美成人综合另类久久久| 性色av一级| 日韩av不卡免费在线播放| 老司机亚洲免费影院| 免费av不卡在线播放| 国产综合精华液| a级一级毛片免费在线观看| 久久久久久伊人网av| 国产一级毛片在线| 午夜日本视频在线| 五月天丁香电影| 国产有黄有色有爽视频| 午夜福利视频精品| 国产成人freesex在线| 狂野欧美激情性xxxx在线观看| 内地一区二区视频在线| 欧美日韩精品成人综合77777| 蜜桃久久精品国产亚洲av| 十分钟在线观看高清视频www | 国产一区二区在线观看av| 亚洲国产毛片av蜜桃av| 国产视频首页在线观看| 九草在线视频观看| 亚洲欧美清纯卡通| 亚洲精品视频女| 美女视频免费永久观看网站| 国产成人免费观看mmmm| 亚洲三级黄色毛片| 久久影院123| 日韩,欧美,国产一区二区三区| 国产成人a∨麻豆精品| 大陆偷拍与自拍| 中文乱码字字幕精品一区二区三区| 日韩人妻高清精品专区| 一级av片app| 日本wwww免费看| av在线老鸭窝| 激情五月婷婷亚洲| 国产成人freesex在线| 我要看日韩黄色一级片| 伊人久久精品亚洲午夜| 夜夜骑夜夜射夜夜干| 交换朋友夫妻互换小说| 一级av片app| 美女国产视频在线观看| 男女无遮挡免费网站观看| 欧美性感艳星| 黑丝袜美女国产一区| 麻豆成人午夜福利视频| 午夜av观看不卡| 十八禁高潮呻吟视频 | 国产成人freesex在线| 一区二区三区免费毛片| 永久免费av网站大全| 建设人人有责人人尽责人人享有的| 最新中文字幕久久久久| 国产色婷婷99| 青青草视频在线视频观看| av福利片在线观看| 最近2019中文字幕mv第一页| 日韩伦理黄色片| 久久久久久久亚洲中文字幕| 丰满迷人的少妇在线观看| 国产精品一区二区三区四区免费观看| 亚洲av免费高清在线观看| 亚洲真实伦在线观看| 狠狠精品人妻久久久久久综合| 各种免费的搞黄视频| 欧美高清成人免费视频www| 久久99热这里只频精品6学生| 国产熟女欧美一区二区| 秋霞在线观看毛片| 国产精品秋霞免费鲁丝片| 一级毛片aaaaaa免费看小| 校园人妻丝袜中文字幕| 天堂中文最新版在线下载| 国产视频内射| 日韩制服骚丝袜av| 少妇被粗大的猛进出69影院 | 草草在线视频免费看| 国产色爽女视频免费观看| 亚洲欧洲精品一区二区精品久久久 | 99久久精品一区二区三区| 校园人妻丝袜中文字幕| 亚洲欧美精品自产自拍| 国产精品久久久久久精品古装| 我的女老师完整版在线观看| 国产精品不卡视频一区二区| 国模一区二区三区四区视频| 国产黄色免费在线视频| 亚洲精品一区蜜桃| 狂野欧美激情性xxxx在线观看| 成人免费观看视频高清| 国产美女午夜福利| 亚洲av成人精品一二三区| 国产淫语在线视频| 嫩草影院新地址| 制服丝袜香蕉在线| 丝袜在线中文字幕| 又粗又硬又长又爽又黄的视频| 99re6热这里在线精品视频| 中文字幕精品免费在线观看视频 | 日韩人妻高清精品专区| 蜜桃久久精品国产亚洲av| 国产精品免费大片| 性高湖久久久久久久久免费观看| 一本一本综合久久| 一区在线观看完整版| 精品久久久噜噜| 校园人妻丝袜中文字幕| 国产精品一区二区性色av| 久热久热在线精品观看| 中文精品一卡2卡3卡4更新| 国产成人一区二区在线| 中文字幕精品免费在线观看视频 | 亚洲激情五月婷婷啪啪| 亚洲av在线观看美女高潮| 激情五月婷婷亚洲| 亚洲成人av在线免费| 国产日韩欧美视频二区| 桃花免费在线播放| 97超碰精品成人国产| 日韩欧美精品免费久久| 久久99蜜桃精品久久| av在线老鸭窝| 久久99热这里只频精品6学生| 亚洲av日韩在线播放| 欧美成人精品欧美一级黄| 国产亚洲91精品色在线| 少妇高潮的动态图| 久久精品夜色国产| 日日撸夜夜添| 国产伦在线观看视频一区| 大香蕉97超碰在线| 精品久久久久久久久亚洲| 久久狼人影院| 91精品国产国语对白视频| 久久免费观看电影| 久久精品国产亚洲av天美| 丰满乱子伦码专区| 精品国产露脸久久av麻豆| 国产69精品久久久久777片| 亚洲精品色激情综合| 亚洲国产日韩一区二区| 日韩 亚洲 欧美在线| 亚洲国产精品专区欧美| 亚洲国产精品999| av不卡在线播放| 免费观看a级毛片全部| 一级毛片aaaaaa免费看小| 99久久综合免费| av在线观看视频网站免费| 久久久久久久亚洲中文字幕| 国精品久久久久久国模美| 久久久亚洲精品成人影院| 高清在线视频一区二区三区| 国产综合精华液| 国产成人精品无人区| 成年av动漫网址| 成人特级av手机在线观看| 精品国产露脸久久av麻豆| 97精品久久久久久久久久精品| www.色视频.com| 亚洲,欧美,日韩| 亚洲欧美中文字幕日韩二区| www.色视频.com| 欧美激情国产日韩精品一区| 国产精品久久久久久精品电影小说| 精品国产一区二区久久| 午夜福利,免费看| 国产片特级美女逼逼视频| 精品国产一区二区久久| 久久亚洲国产成人精品v| 精品少妇内射三级| 久久99一区二区三区| 韩国高清视频一区二区三区| 国产极品粉嫩免费观看在线 | 久久精品夜色国产| 街头女战士在线观看网站| 熟妇人妻不卡中文字幕| 久久久久视频综合| 赤兔流量卡办理| 啦啦啦中文免费视频观看日本| 精品国产一区二区三区久久久樱花| av女优亚洲男人天堂| 婷婷色麻豆天堂久久| 欧美成人精品欧美一级黄| 色吧在线观看| 80岁老熟妇乱子伦牲交| 国产黄片视频在线免费观看| h日本视频在线播放| 日韩亚洲欧美综合| 只有这里有精品99| 精品亚洲乱码少妇综合久久| 精品久久国产蜜桃| 久久鲁丝午夜福利片| 99久久精品国产国产毛片| 国产精品国产三级专区第一集|