• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Syntheses and Characterizations of Cyanido-bridged Dinuclear Ru-complexes and Their MMCT Properties in the One-electron Oxidation State①

    2021-10-28 12:05:08LIUYangZHUXiaoQuanWUXinTaoSHENGTianLu
    結(jié)構(gòu)化學(xué) 2021年10期

    LIU Yang ZHU Xiao-Quan WU Xin-Tao SHENG Tian-Lu②

    a (College of Chemistry,Fuzhou Uniνersity,Fuzhou 350002,China)

    b (State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350002,China)

    c (Uniνersity of Chinese Academy of Sciences,Beijing 100049,China)

    ABSTRACT We have designed and synthesized a family of dinuclear cyanido-bridged complexes [PY5Me2Ru(μ-CN)Ru(dppe)CpMen][PF6]2 (PY5Me2=2,6-bis (1,1-bis(2-pyridyl)ethyl) pyridine,Cp=cyclopentadienyl,n=0,2[PF6]2;n=1,3[PF6]2;n=5,4[PF6]2) by using a mononuclear complex [PY5Me2Ru(μ-CN)][PF6] (1) as the precursor.All the three complexes have been fully characterized by including single-crystal X-ray diffraction analysis.The one-electron oxidation complexes 23+,33+ and 43+ obtained in situ all show a MMCT absorption band in the visible range.The MMCT energy increases as the redox potential of the N-terminal fragments decreases,and the redox potential decreases as the number of methyl groups on the cyclopentadiene of the cyanido-nitrogen coordinated Ru metal increases,supported by the TDF/TDDFT calculations.

    Keywords:electron transfer,mixed-valence,metal to metal charge transfer (MMCT),cyanide bridge;DOI:10.14102/j.cnki.0254-5861.2011-3147

    1 INTRODUCTION

    The investigation on electron transfer process has attracted a lot of attention from chemists and physicists over the past decades[1-4],because understanding electron transfer process is very important in some critical issues such as designing artificial photosynthesis[5],exposing catalytic mechanisms[6],development of superconducting materials[4],design of molecular electronic devices[7,8],etc.Mixed-valence (MV) complexes are ideal simple models for investigating electron transfer process[9-13].Low-valent metals can be used as electron donors to transfer electrons to high-valent metal electron acceptor fragments.Using mixed valence model makes it easy to calculate the electron transfer rate and the activation energy of intervalence electron transfer[14,15].Among them,the investigation on dinuclear ruthenium is the most common[16-19],such as the Creutz-Taube ion[20].Various bridges can be used to connect the electron donors and acceptors,such as pyrazine[20],alkyne[21-31],cyanide bridges[16,32-54],naphthalene[55-58],the organic bridge with redox activity[59,60]and even mononuclear metals with multiple coordination sites[50,54].To date,it has been investigated how electron transfer process is influenced by the distance between the two metals[30],the energy barrier of electron transfer[54]and thecis-/trans-configuration.Cyanide is a short-range and asymmetric linear bridging ligand.The cyanide C-terminal metal feeds back much stronger electrons to the C≡N anti-orbital through the dπorbital than the cyanide N-terminal metal does.For this reason,the cyanide C-terminal metal is often used as electron-donor and the cyanide N-terminal metal as electron-acceptor.The metal center can effectively transfer electrons through the cyanide bridge.Therefore,cyanide bridge is often used as a bridging ligand to investigate the electron transfer process in asymmetric mixed-valence dinuclear compounds.

    2 EXPERIMENTAL

    2.1 Physical measurements

    Vario MICRO elemental analyzer was used to detect the element content (C,H and N).Infrared (IR) spectra were collected using KBr pellets on a PerkinElmer Spectrum.UV-vis-NIR absorption spectroscopy was collected with the PerkinElmer Lambda 365 UV-vis-NIR spectrophotometer.The cyclic voltammetry curve was measured under argon by V3-Studio with methylene chloride as the solvent and 0.1 M (Bu4N) PF6as the promoting electrolyte at a scan rate of 100 mVs-1.The electrolytic cell consists of glassy graphite as working electrode,platinum as counter electrode and Ag/AgCl as the reference electrode.Ferrocene was used to calibrate the potential.The single-crystal X-ray diffraction data for complexes 2 [PF6]2,3 [PF6]2and 4 [PF6]2were collected on a Saturn 724+CCD diffractometer equipped with graphite-monochromatic MoKa(λ=0.71073 ?) radiation at 293 K.Complex 1 (PF6) was collected on a metal Jet D2+diffractometer with graphite-monochromatic GaKα(λ=1.3405 ?) radiation at 110 K.All structures were solved by intrinsic phasing methods using ShelXT-2018/3 and refined with ShelXL-2018/3[61],OLEX2[62]program package.The SQUEEZE program in the PLATON software was used[63].

    2.2 Materials and synthesis

    2.2.1 Materials

    All operations were performed under argon atmosphere using standard Schlenk technology,unless otherwise specified.PY5Me2[64],CpRu(dppe)Cl[65],CpMeRu(dppe)Cl[51]and CpMe5Ru(dppe)Cl[66]were prepared by the previous literature.Methanol,ethanol and dichloromethane are 50 ppm super-dry solvents purchased from Adamas.All other raw materials were purchased commercially and used without further purification.

    2.2.2 Synthesis

    2.2.2.1 Preparation of PY5Me2RuCl2

    At room temperature,RuCl3·3H2O (1.0 g,3.82 mmol) was added to 300 mL of anhydrous ethanol.The mixture was

    Fig.1.Chemical structure of complexes 23+ (n=0),33+ (n=1) and 43+ (n=5)

    Our group has carried out a systematic study on the regulation of electron transfer in cyanide bridged mixed-valence compounds by different methods,such as changing the electron donating ability of ligands,cyanide bridge orientation,cis-trans isomerism and so on[49,50,53,54].In our previous studies,we found that changing the electron-donating ability of the ligand in the electron acceptor fragment has a more impact on the behavior of MMCT than in the electron-donor fragment[53].To further investigate the influence of electron-acceptor fragment's electron-accepting ability on the behavior of MMCT,we have synthesized and characterized three complexes [(PY5Me2)Ru(μ-CN)Ru-(dppe)CpMen]2+(22+,n=0;32+,n=1;42+,n=5).As shown in Fig.1,all the one-electron oxidation complexes N3+(N=2,3,4),which are obtained in situ by gradually adding cerium ammonium nitrate in acetonitrile solution of the N2+complexes,exhibit a metal-to-metal charge transfer (MMCT) properties.The MMCT energy can be tuned by changing the number of methyl groups of cyclopentadiene located on the Ru center of the electron acceptor fragment,further supported by the time-dependent density functional theory (TD-DFT) calculations.refluxed at 88 °C for 6 hours,and then cooled to room temperature,to which PY5Me2(1.7 g,3.83 mmol) in 50 mL ethanol was added.The mixture was refluxed at 88 °C for 48 hours,cooled to room temperature and filtered to remove the precipitate.The filtrate was rotary evaporated to remove the solvent to obtain a pale yellow crude product,which was recrystallized with ethanol to obtain 1.4 g of pure product with a yield of 57.5%.

    2.2.2.2 Preparation of [PY5Me2RuCN][PF6],1[PF6]

    At room temperature,10 equivalents of KCN (1.02 g,15.7 mmol) were added to an aqueous solution of PY5Me2RuCl2(1.0 g,1.57 mmol).The mixture was refluxed at 110 °C for 2 hours,then cooled to room temperature,and an excess of NH4PF6was added,resulting in a light green precipitate.The precipitate was filtered and dried in vacuum,giving 1.02 g light green product of 1[PF6] (yield 90.8%).The yellow crystals of 1[PF6] suitable for X-ray diffraction single-crystal structure analysis were obtained by slow diffusion of anhydrous ether into the DMF solution of 1[PF6] (75 mg,yield 81%).

    Anal.Calcd.(%) for C30H25N6F6PRu·2H2O:C,47.97;H,3.86;N,11.19.Found (%):C,47.69/47.85;H,4.02/4.04;N,11.00/11.01.IR (vCN,KBr pellet):2077 cm-1.

    2.2.2.3 Preparation of [PY5Me2RuⅡCNRuⅡ(dppe)Cp][PF6]2,2[PF6]2

    At room temperature,the compound PY5Me2RuCN [PF6] (50 mg,0.07 mmol) was added to 1 equivalent of CpRu(dppe)Cl (42 mg,0.07 mmol) in methanol (10 mL).The mixture was refluxed for 24 hours and cooled to room temperature.An excess of NH4PF6was added and stirred for ten minutes to obtain a red precipitate.This precipitate was filtered and washed with a small amount of methanol and ether,giving the product of 2[PF6]2.The yellow crystals of 2[PF6]2suitable for X-ray diffraction single-crystal structure analysis were obtained by slow diffusion of anhydrous ether into the dichloromethane solution of 2[PF6]2(69 mg,yield 75%).

    Anal.Calcd.(%) for C61H54F12N6P4Ru2·CH3CN:C,51.30;H,3.89;N,6.69.Found (%):C,50.78;H,3.81;N,6.90.IR (νCN,KBr pellet):2093 cm-1.

    2.2.2.4 Preparation of [PY5Me2RuⅡCNRuⅡ(dppe)MeCp][PF6]2,3[PF6]2

    At room temperature,the compound PY5Me2RuCN [PF6] (50 mg,0.07 mmol) was added to 1 equivalent of Cp1Ru(dppe)Cl (43 mg,0.07 mmol) in methanol (10 mL).The mixture was refluxed for 24 hours and cooled to room temperature.Then an excess of NH4PF6was added and stirred for ten minutes to obtain a red precipitate which was filtered and washed with a small amount of methanol and ether,giving the product of 3[PF6]2.The yellow crystals of 3[PF6]2suitable for X-ray diffraction single-crystal structure analysis were obtained by slow diffusion of anhydrous ether into the dichloromethane solution of 3[PF6]2(75 mg,yield 81%).

    Anal.Calcd.(%) for C62H56F12N6P4Ru2·CH3CN:C,51.89;H,3.99;N,6.62.Found (%):C,52.10/51.49;H,3.98/4.01;N,6.64/6.56.IR (νCN,KBr pellet):2091 cm-1.

    2.2.2.5 Preparation of [PY5Me2RuⅡCNRuⅡ(dppe)Me5Cp][PF6]2,4[PF6]2

    At room temperature,the compound PY5Me2RuCN [PF6] (50 mg,0.07 mmol) was added to 1 equivalent of Cp5Ru (dppe) Cl (47 mg,0.07 mmol) in methanol (10 mL),and the resulting mixture was refluxed for 24 hours and cooled to room temperature.An excess of NH4PF6was added and stirred for ten minutes to obtain a red precipitate.The preci-pitate was filtered and washed with a small amount of methanol and ether,giving the product of 4[PF6]2.The yellow crystals of 4[PF6]2suitable for X-ray diffraction single-crystal structure analysis were obtained by slow diffusion of anhydrous ether into the dichloromethane solution of 4[PF6]2(55 mg,yield 53%).

    Anal.Calcd.(%) for C66H64F12N6P4Ru2·H2O:C,52.38;H,4.37;N,5.55.Found (%):C,52.75/52.62;H,4.78/4.89;N,5.63/5.53.IR (νCN,KBr pellet):2067 cm-1.

    3 RESULTS AND DISCUSSION

    3.1 X-ray structure determination

    X-ray crystal structures of complexes 1[PF6] and 2[PF6]2~4[PF6]2are shown in Fig.2.The crystallographic data are summarized in Table 1.The space groups of compounds 1[PF6],2[PF6]2,3[PF6]2and 4[PF6]2arePbcm,P,P21/mandP21/n,respectively.For dinuclear complexes 2[PF6]2~4[PF6]2,the structures of their anions are similar.In the structure of each anion,the Ru(1) and Ru(2) centers are bridged through the cyanide ligand,and are six-and four-coordinated by five N atoms from the PY5Me2ligand and one cyanido-carbon atom and by cyclopentadiene,one cyanido-nitrogen atom and the two P atoms from the dppe ligand,respectively.Some selected bond lengths and angles are listed in Table 2.The Ru(1)-C(1)≡N(1)-Ru(2) arrange-ments of all dinuclear Ru complexes are close to a linearity with bond angles of almost 180°.For compounds 2 and 3,the bond lengths and angles are very similar,but compound 4 has undergone significant changes.First,the cyanide bond length increases due to the increase of electrons on the Ru(2)dorbital feedback to the cyanideπ* orbital,which reduces the cyanide bond level.The change trend of cyanide length is consistent with the results of the cyclic voltammetry and the infrared spectroscopy.Second,the bond lengths of Ru(1)-N(av.),Ru(2)-P(av.) and Ru-Cp become longer,which may be caused by the greater steric hindrance of the ligand as the methyl group increases.This indicates that the change of bond lengths between the metal center and ligand of such compounds not only depends on the electronic effect of the ligand,but also is affected by the steric effect of the ligand.

    Table 1.Test Condition,Structure Refine and Crystallographic Data for Compounds 1[PF6],2[PF6]2,3[PF6]2 and 4[PF6]2

    Table 2.Selected Bond Lengths (?) and Bond Angles (°) for Compounds 1~4

    Fig.2.X-ray crystal structures of complexes 1~4 ([PF6]- ions,hydrogen atoms,acetonitrile and dichloromethane molecules have been removed for easy observation).Ru,dark blue;N,blue;P,wine red;C,grey

    3.2 Electrochemistry

    The cyclic voltammetry of the four compounds in dichloromethane all showed one reversible redox wave.The results are shown in Fig.3 and Table 2.The cyclic voltammetry of complexes 2[PF6]2,3[PF6]2and 4[PF6]2each shows one reversible redox wave at 0.342,0.267 and 0.234 V,respectively,which could be attributed to CpMen(dppe)RuII/CpMen(dppe)RuIIIand is higher than the similar monomer[67]based on the previous paper[53].The redox wave of the mononuclear complex 1[PF6]2exhibits one redox wave assigned to (PY5Me2)RuII/(PY5Me2)RuIII.However,the same redox wave for (PY5Me2)RuII/(PY5Me2)RuIIIin the three dinuclear complexes was not observed,which may be due to its too higher potential position.From Table 3,it can be found that with the increase of the number of methyl groups on cyclopentadiene the redox wave position moves to a lower potential from 2[PF6]2and 3[PF6]2to 4[PF6]2.

    Table 3.Electrochemical Data (vs Cp2Fe+/0) for Complexes 1~4 in 0.10 M DCM Solution of Bu4NPF6 at a Scan Rate of 100 mV·s-1

    Table 4.CN Stretching Frequencies for Complexes 1(PF6)~4(PF6)2

    3.3 IR spectroscopy

    Infrared spectroscopy is an excellent way to characterize cyanide bridged compounds.The contraction vibration of cyanide is easy to observe in infrared spectroscopy,and the cyanide stretchingν(CN) position can help us judge the connection rigidity and electrons feedback situation of the compounds.Compared with the position of the terminal cyanide signal of the mononuclear compound [PY5Me2RuCN]+(2077 cm-1),the position of the bridged cyanide band of the dinuclear compounds 22+(2093 cm-1) and 32+(2091 cm-1) has a blue shift due to the rigid restriction of the cyanide N-coordinated Ru on the movement of the bridging cyanide.But for compound 42+,the pentamethylcyclopentadiene ligand has a stronger electron-donating ability.It promotes the transfer ofdorbital electron of the nitrogen-terminal Ru fragment to theπanti-bond orbital of the cyanide bridge to form a feedbackπbond,which reduces the cyanide energy level and results in the absorption peak redshift.With the enhancement of the electron-donating ability of the ligand on the C-terminal metal,the redshift of the cyanide vibration frequency is often observed,but it is rare to reduce the cyanide vibration energy through the feedback electron from the N-terminal metal.

    Fig.3.Cyclic voltammograms of 12+~42+ in a 0.10M dichloromethane solution of Bu4NPF6 at a scan rate of 100 mV·s-1 vs (Cp2Fe)+/0

    3.4 UV-VIS-NIR spectroscopy

    UV-VIS-NIR absorption spectroscopy is the most effective method for studying electron transfer.According to the strongest absorption position,absorption intensity and half-width of the MMCT absorption peak,the strength of the electron transfer of the compound can be investigated.In order to study the influence of the electron-donating ability of the acceptor terminal ligand on the MMCT,we used the acetonitrile solution of cerium ammonium nitrate to gradually oxidize the three dinuclear compounds to obtain mixed-valence compounds in situ.Their absorption spectra were measured,as shown in Figs.4 and 5.The absorption peak from 27500 cm-1to 22000 cm-1for each of the mixed-valence compounds 23+,33+and 43+obtained in situ is attributed to the metal-to-ligand electron transfer (MLCT) from Ru2+to the PY5Me2ligand[68],and the new absorption peak from 16000 cm-1to 9000 cm-1is attributed to the metal-to-metal electron transfer (MMCT)[53].For MLCT absorption peaks,the maxima absorption peaks of the three compounds 22+,32+and 42+before oxidation are basically the same,all at about 25000 cm-1.After one-electron oxidation,it can be observed that the positions of the MLCT maxima absorption peaks of the three dinuclear mixed valence Ru compounds 23+,33+and 43+each exhibits a significant blue shift,and the absorption intensity is also significantly weakened.This is because that from 22+,32+and 42+to 23+,33+and 43+the electron-donating ability of RuIIin the (PY5Me2)RuIIfragment weakens due to the electron withdraw effect of the CpMen(dppe)RuIII.

    For the MMCT absorption peak,with the increase of the electron-donating ability of the substituted group from Cp,CpMe to CpMe5,the MMCT absorption peaks of the three mixed-valence compounds each shows a blue shift (10953 cm-1for 23+,11274 cm-1for 33+and 11442 cm-1for 43+),and the absorption intensity increases (2125M-1cm-1→2324 M-1cm-1→2786 M-1cm-1).This is because that the electron-accepting ability of RuIIIin the CpMen(dppe)RuIIIfragment decreases as the electron-donating ability increases from Cp,CpMe to CpMe5,resulting in the increase of the RuII→RuIIIMMCT energy from 23+,33+to 43+,strongly supported by the TD-DFT calculation.

    The electronic coupling constant Habof complexes 23+~43+was calculated using the Hush-Mullikan equation (Eq.1)[9],with the results listed in Table 5.In the equation,v1/2is the bandwidth at half-intensity of the MMCT band maximumνmax,andεmaxandrABrepresent the molar extinction coefficient and the through space intermetallic distance,respectively.As shown in Table 5,the electronic coupling constantHabgradually increases from 23+,33+to 43+.This may be understood by the fact that as the number of methyl groups of Cp increases the mixed valence state [RuII-CN-RuIII] becomes more and more stable,resulting in the more and more MMCT energy from [RuII-CN-RuIII] to [RuIII-CN-RuII] from 23+,33+to 43+,and the Habincreases correspondingly.According to the calculation results,the one-electron oxidation products 23+,33+and 43+belong to the class II mixed valence compounds.

    Table 5.MMCT Transition Energies and Electronic Coupling Constant for All the Mixed-valence Complexes

    Fig.4.UV-Vis-NIR absorption spectra of complexes 2~4 oxidized by the addition of ammonium ceric nitrate in acetonitrile

    3.5 DFT/TDDFT calculations

    To continue studying the influence of electron acceptor orbital changes on the properties of MMCT,we performed TD-DFT calculations using B3LYP/lanl2dz[69,70]for the three MV compounds.As shown in Table 6,the spin electron density of the three MV compounds is mainly localized on RuIII,further indicating that the single-electron oxidation products of the three compounds belong to the class Ⅱ mixed-valence compounds.Due to the decrease of electron-accepting ability of the acceptor fragments from 23+,33+to 43+,the RuII→ RuIIIMMCT gets to be more difficult,resulting in an increase of the spin electron density on the acceptor metal center.For MMCT,the calculation results are basically consistent with the experimental data,as shown in Table 7.The metal donor HOMO orbitals and acceptor LUMO orbitals of the three MV compounds are shown in Fig.6.The major contribution for the MMCT absorption band of complex 23+comes from molecular orbital 248B to 251B.For compound 33+,the MMCT absorption peak is mainly derived from molecular orbital 252B to 255B.For compound 43+,the MMCT absorption peak mainly comes from the molecular orbitals from 268B to 271B.The LUMO orbitals of the three compounds are almost localized on Ru3+,while the HOMO ones are localized on Ru2+,which indicates that the three compounds all belong to the class II mixed-valence compounds,consistent with the measured UV-Vis-NIR absorption spectral results.

    Table 6.Mulliken Spin Density of Mixed-valence Species

    Table 7.Comparison of the Measured and the Calculated MMCT Energies of 23+,33+ and 43+

    Fig.5.MMCT absorption spectra of complexes 2~4 oxidized by adding ammonium ceric nitrate in acetonitrile

    Fig.6.Molecular orbital diagrams of HOMO-2 (248B) and LUMO (251B) for 2 (above),HOMO-2 (252B) and LUMO (255B) for 3 (middle),HOMO-2 (268B) and LUMO (271B) for 4 (bottom).The isosurface value is 0.02 au

    4 CONCLUSION

    In summary,we have synthesized and characterized a mononuclear Ru fragment and three cyanido-bridged dinuclear Ru compounds 22+,32+and 42+.All one-electron oxidation complexes 23+,33+and 43+obtained in situ show a MMCT absorption band in the NIR range.The MMCT energy increases as the number of methyl groups on the cyclopentadiene of the cyanido-nitrogen coordinated Ru metal increases,supported by the DFT/TDDFT calculations.Furthermore,the UV-vis-NIR absorption spectra and TDDFT calculations show that all the single-electron oxidation compounds belong to class Ⅱ mixed-valence compounds.This work shows that slight modifications to the ligand on the N-terminal metal center can tune the MMCT properties of the mixed valence compounds.

    高清欧美精品videossex| 国产精品国产三级国产av玫瑰| 午夜av观看不卡| 18在线观看网站| 国产精品无大码| 日本色播在线视频| 高清午夜精品一区二区三区| 伊人久久国产一区二区| 成人无遮挡网站| 亚洲高清免费不卡视频| 亚洲国产最新在线播放| 久久国产亚洲av麻豆专区| 校园人妻丝袜中文字幕| 国产精品国产三级国产av玫瑰| 男女啪啪激烈高潮av片| 国产女主播在线喷水免费视频网站| 插逼视频在线观看| 十八禁网站网址无遮挡| 国产成人一区二区在线| 久久毛片免费看一区二区三区| 80岁老熟妇乱子伦牲交| 国产午夜精品一二区理论片| 亚洲久久久国产精品| 久久久国产精品麻豆| 久久久久久久国产电影| a 毛片基地| 国产精品99久久99久久久不卡 | 欧美日韩视频精品一区| 亚洲美女黄色视频免费看| 久久精品久久久久久噜噜老黄| 久久久久视频综合| 国产亚洲午夜精品一区二区久久| 高清av免费在线| 菩萨蛮人人尽说江南好唐韦庄| 成人毛片60女人毛片免费| 黄色一级大片看看| 美女脱内裤让男人舔精品视频| 欧美精品人与动牲交sv欧美| 国产午夜精品久久久久久一区二区三区| 男人操女人黄网站| 人体艺术视频欧美日本| 日韩在线高清观看一区二区三区| 乱人伦中国视频| 久久99热6这里只有精品| 人妻人人澡人人爽人人| av天堂久久9| 中文字幕人妻熟人妻熟丝袜美| 亚洲少妇的诱惑av| 妹子高潮喷水视频| 精品久久久精品久久久| 国产高清国产精品国产三级| 少妇人妻 视频| 亚洲精品视频女| 亚洲av二区三区四区| 午夜视频国产福利| 亚洲图色成人| 人妻系列 视频| 最近手机中文字幕大全| 一级二级三级毛片免费看| 国产精品国产三级国产av玫瑰| 91aial.com中文字幕在线观看| 夜夜看夜夜爽夜夜摸| 人人妻人人爽人人添夜夜欢视频| 在线观看免费视频网站a站| 中文字幕免费在线视频6| 亚洲av在线观看美女高潮| 精品一区二区三卡| 蜜桃在线观看..| 日本黄色日本黄色录像| 国产免费又黄又爽又色| 亚洲av不卡在线观看| 韩国高清视频一区二区三区| av黄色大香蕉| 精品一区二区三卡| 亚洲,欧美,日韩| 日本免费在线观看一区| 精品酒店卫生间| 夜夜看夜夜爽夜夜摸| 在线观看免费日韩欧美大片 | 男人爽女人下面视频在线观看| 在线观看www视频免费| av在线app专区| 97在线人人人人妻| 999精品在线视频| 下体分泌物呈黄色| 麻豆乱淫一区二区| 十八禁高潮呻吟视频| 亚洲国产毛片av蜜桃av| 亚洲精品久久成人aⅴ小说 | 欧美日韩成人在线一区二区| 99久久中文字幕三级久久日本| 伦理电影免费视频| 美女福利国产在线| 最近中文字幕高清免费大全6| 黑人猛操日本美女一级片| 九色成人免费人妻av| av天堂久久9| 国产日韩一区二区三区精品不卡 | 成人二区视频| 日日啪夜夜爽| 一级片'在线观看视频| 99热网站在线观看| 丰满乱子伦码专区| 日本爱情动作片www.在线观看| 欧美日韩视频高清一区二区三区二| 精品少妇内射三级| 秋霞在线观看毛片| 飞空精品影院首页| 国产午夜精品一二区理论片| av有码第一页| 欧美精品一区二区大全| 美女主播在线视频| 精品久久久久久久久av| 91在线精品国自产拍蜜月| 久久青草综合色| 中文字幕av电影在线播放| 免费播放大片免费观看视频在线观看| 亚洲美女黄色视频免费看| 亚洲av成人精品一二三区| 最近最新中文字幕免费大全7| 青春草亚洲视频在线观看| 男男h啪啪无遮挡| 狂野欧美激情性xxxx在线观看| 啦啦啦在线观看免费高清www| 成人国产av品久久久| 我要看黄色一级片免费的| 简卡轻食公司| 如何舔出高潮| 一区二区日韩欧美中文字幕 | 99九九线精品视频在线观看视频| 国产亚洲午夜精品一区二区久久| 亚洲一级一片aⅴ在线观看| 少妇人妻久久综合中文| 日韩精品有码人妻一区| 哪个播放器可以免费观看大片| 一区二区三区精品91| 这个男人来自地球电影免费观看 | av.在线天堂| 波野结衣二区三区在线| 女人久久www免费人成看片| 欧美激情极品国产一区二区三区 | 97超碰精品成人国产| 久久久精品免费免费高清| 视频在线观看一区二区三区| 国产精品国产三级专区第一集| 日韩一本色道免费dvd| 精品国产一区二区久久| 久久ye,这里只有精品| av不卡在线播放| 国产欧美日韩一区二区三区在线 | 久久人人爽人人爽人人片va| 丰满乱子伦码专区| 色哟哟·www| 丰满乱子伦码专区| 有码 亚洲区| 在线观看国产h片| 亚洲欧美清纯卡通| 欧美 日韩 精品 国产| 欧美变态另类bdsm刘玥| 精品酒店卫生间| 黑丝袜美女国产一区| 亚洲精品,欧美精品| 一边亲一边摸免费视频| 能在线免费看毛片的网站| 如何舔出高潮| 欧美日本中文国产一区发布| 亚洲精品亚洲一区二区| 26uuu在线亚洲综合色| 免费av中文字幕在线| 亚洲国产欧美在线一区| 亚洲内射少妇av| 日本猛色少妇xxxxx猛交久久| 久久青草综合色| 九色亚洲精品在线播放| 国产一区有黄有色的免费视频| 久久鲁丝午夜福利片| 18在线观看网站| 欧美精品国产亚洲| 免费大片18禁| 久久久久人妻精品一区果冻| 精品少妇久久久久久888优播| 丝袜美足系列| 少妇 在线观看| 久久久国产欧美日韩av| .国产精品久久| 成人黄色视频免费在线看| 又粗又硬又长又爽又黄的视频| 毛片一级片免费看久久久久| 性色av一级| 伊人久久国产一区二区| 亚洲丝袜综合中文字幕| 一级毛片黄色毛片免费观看视频| 美女主播在线视频| 午夜免费鲁丝| 性色avwww在线观看| 中文乱码字字幕精品一区二区三区| 亚洲少妇的诱惑av| 日韩熟女老妇一区二区性免费视频| 成人手机av| 18禁在线播放成人免费| 熟女人妻精品中文字幕| 久久久a久久爽久久v久久| kizo精华| 久久久国产精品麻豆| 国产有黄有色有爽视频| 18在线观看网站| 欧美人与性动交α欧美精品济南到 | h视频一区二区三区| 国产精品久久久久久久电影| 久久久午夜欧美精品| 欧美日韩精品成人综合77777| 亚洲怡红院男人天堂| 丰满乱子伦码专区| 色视频在线一区二区三区| 精品国产国语对白av| 人妻少妇偷人精品九色| 国产精品国产三级国产专区5o| 老女人水多毛片| 99国产精品免费福利视频| 最新的欧美精品一区二区| av又黄又爽大尺度在线免费看| 国国产精品蜜臀av免费| 多毛熟女@视频| 综合色丁香网| 好男人视频免费观看在线| 一本大道久久a久久精品| 人妻人人澡人人爽人人| 最近手机中文字幕大全| 水蜜桃什么品种好| 亚洲成人一二三区av| 97在线人人人人妻| 久久精品熟女亚洲av麻豆精品| videosex国产| 3wmmmm亚洲av在线观看| 亚洲情色 制服丝袜| 午夜福利影视在线免费观看| 免费黄色在线免费观看| 国产精品蜜桃在线观看| 国产色爽女视频免费观看| 18+在线观看网站| 人妻制服诱惑在线中文字幕| 亚洲精品乱码久久久久久按摩| 日韩伦理黄色片| 国产精品人妻久久久影院| 免费大片18禁| 国产精品一二三区在线看| 日韩成人伦理影院| 汤姆久久久久久久影院中文字幕| 亚洲综合色网址| 男女边吃奶边做爰视频| 男男h啪啪无遮挡| 性色av一级| 午夜影院在线不卡| 高清午夜精品一区二区三区| 日本vs欧美在线观看视频| 国产高清国产精品国产三级| 久久精品夜色国产| 精品亚洲成a人片在线观看| 欧美激情 高清一区二区三区| 22中文网久久字幕| 2018国产大陆天天弄谢| 亚洲欧美中文字幕日韩二区| 久久久精品免费免费高清| 国产精品国产三级专区第一集| 亚洲av电影在线观看一区二区三区| 毛片一级片免费看久久久久| 最近2019中文字幕mv第一页| 亚洲美女搞黄在线观看| 午夜视频国产福利| 91午夜精品亚洲一区二区三区| 丰满乱子伦码专区| 三级国产精品片| 久久av网站| 日本av免费视频播放| 中文字幕av电影在线播放| 午夜精品国产一区二区电影| 色网站视频免费| 日韩中字成人| 午夜久久久在线观看| 一本久久精品| 狠狠精品人妻久久久久久综合| 国产成人午夜福利电影在线观看| 人妻夜夜爽99麻豆av| 国产精品欧美亚洲77777| 99热全是精品| 大香蕉久久网| 亚洲怡红院男人天堂| 我要看黄色一级片免费的| 男女无遮挡免费网站观看| 视频在线观看一区二区三区| av在线播放精品| 亚洲成人一二三区av| 18+在线观看网站| 一区二区三区精品91| 日日摸夜夜添夜夜爱| 久久久国产欧美日韩av| 成人毛片a级毛片在线播放| 桃花免费在线播放| 久久韩国三级中文字幕| av在线app专区| 大话2 男鬼变身卡| 国产精品欧美亚洲77777| 韩国高清视频一区二区三区| 性高湖久久久久久久久免费观看| 久久久久久伊人网av| 欧美精品亚洲一区二区| 在线播放无遮挡| 欧美精品一区二区大全| www.色视频.com| 美女xxoo啪啪120秒动态图| 啦啦啦啦在线视频资源| 黄色配什么色好看| www.色视频.com| 亚洲四区av| h视频一区二区三区| 亚洲精品视频女| 国产精品国产三级国产av玫瑰| 色视频在线一区二区三区| 最近的中文字幕免费完整| 涩涩av久久男人的天堂| 国产成人精品福利久久| 一级,二级,三级黄色视频| 日韩av免费高清视频| 春色校园在线视频观看| 涩涩av久久男人的天堂| 成人毛片60女人毛片免费| 久久久久久久久大av| av卡一久久| 自线自在国产av| 国产高清不卡午夜福利| 十分钟在线观看高清视频www| 午夜福利影视在线免费观看| 国产在线一区二区三区精| 亚洲精品aⅴ在线观看| 久久午夜综合久久蜜桃| 蜜桃久久精品国产亚洲av| 日韩一本色道免费dvd| 啦啦啦在线观看免费高清www| 97超视频在线观看视频| 国产av国产精品国产| 久久久精品区二区三区| 少妇的逼水好多| 国产永久视频网站| 久久人人爽人人爽人人片va| 最后的刺客免费高清国语| 自线自在国产av| 精品酒店卫生间| 国产一区二区在线观看日韩| 观看美女的网站| 日本黄色片子视频| 97超碰精品成人国产| 精品人妻偷拍中文字幕| 成人国产av品久久久| 亚洲欧美日韩另类电影网站| 午夜免费观看性视频| av网站免费在线观看视频| 大码成人一级视频| 国产在视频线精品| av在线app专区| 成人亚洲欧美一区二区av| 97超视频在线观看视频| 中文乱码字字幕精品一区二区三区| 精品视频人人做人人爽| 蜜臀久久99精品久久宅男| 国产精品久久久久久av不卡| av专区在线播放| 又大又黄又爽视频免费| 2021少妇久久久久久久久久久| 国产在线视频一区二区| 国产男人的电影天堂91| 亚洲成人一二三区av| 熟女电影av网| 国产精品国产三级国产av玫瑰| av电影中文网址| 少妇精品久久久久久久| 久久99一区二区三区| 最近中文字幕高清免费大全6| 国产一区有黄有色的免费视频| 欧美日韩精品成人综合77777| 亚洲欧美清纯卡通| 精品人妻熟女毛片av久久网站| 成人国语在线视频| 久久99热6这里只有精品| av有码第一页| 国产一区二区在线观看av| 免费观看无遮挡的男女| 老女人水多毛片| 汤姆久久久久久久影院中文字幕| 久久97久久精品| 在线观看免费视频网站a站| 精品久久久久久久久亚洲| 亚洲av免费高清在线观看| 99久久精品一区二区三区| av在线观看视频网站免费| 亚洲精品国产色婷婷电影| 狂野欧美激情性bbbbbb| 蜜桃在线观看..| 免费播放大片免费观看视频在线观看| 五月天丁香电影| 国产欧美亚洲国产| 国产精品人妻久久久影院| 纯流量卡能插随身wifi吗| av网站免费在线观看视频| av卡一久久| 免费看不卡的av| 26uuu在线亚洲综合色| 成人无遮挡网站| 精品一区二区三卡| 欧美日韩成人在线一区二区| 中文字幕av电影在线播放| 免费黄频网站在线观看国产| 高清黄色对白视频在线免费看| av国产精品久久久久影院| 中文字幕久久专区| 欧美日韩精品成人综合77777| 老司机亚洲免费影院| 亚洲国产日韩一区二区| 高清av免费在线| 亚洲不卡免费看| 三级国产精品欧美在线观看| 久久影院123| 在线观看人妻少妇| 亚洲色图 男人天堂 中文字幕 | 免费观看a级毛片全部| 一级毛片我不卡| 亚洲精品一二三| 亚洲一级一片aⅴ在线观看| 国产精品久久久久久精品古装| 男女免费视频国产| 男男h啪啪无遮挡| 国产精品不卡视频一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品久久久久久久久免| 精品人妻偷拍中文字幕| av在线播放精品| 国产成人精品一,二区| 久久久午夜欧美精品| 日日爽夜夜爽网站| 日韩一区二区视频免费看| 十分钟在线观看高清视频www| 国产视频内射| 精品熟女少妇av免费看| 黄色毛片三级朝国网站| 国产午夜精品一二区理论片| 欧美bdsm另类| 国产精品熟女久久久久浪| 亚洲无线观看免费| 亚洲av.av天堂| 少妇人妻精品综合一区二区| 久久久久国产网址| 精品久久蜜臀av无| 嘟嘟电影网在线观看| 日韩一本色道免费dvd| 人妻人人澡人人爽人人| 看免费成人av毛片| 成人影院久久| 亚洲国产精品国产精品| 日韩av不卡免费在线播放| 久久精品久久精品一区二区三区| 丁香六月天网| 亚洲av国产av综合av卡| 久久韩国三级中文字幕| 男人添女人高潮全过程视频| 国产精品成人在线| 少妇被粗大的猛进出69影院 | 日韩精品有码人妻一区| 亚洲欧美日韩另类电影网站| 久久鲁丝午夜福利片| 免费久久久久久久精品成人欧美视频 | a级毛片在线看网站| 大香蕉97超碰在线| 亚洲人成77777在线视频| 国产高清有码在线观看视频| 在线观看免费视频网站a站| 视频区图区小说| 亚洲精品中文字幕在线视频| 免费观看av网站的网址| 天美传媒精品一区二区| 精品久久久噜噜| 人人妻人人澡人人看| 韩国高清视频一区二区三区| 三级国产精品欧美在线观看| 我要看黄色一级片免费的| 亚洲av二区三区四区| 啦啦啦中文免费视频观看日本| kizo精华| 亚洲欧洲日产国产| tube8黄色片| 亚洲国产av新网站| 妹子高潮喷水视频| 精品人妻偷拍中文字幕| 一级毛片我不卡| 亚洲,欧美,日韩| 免费久久久久久久精品成人欧美视频 | 日本与韩国留学比较| 下体分泌物呈黄色| 成人亚洲欧美一区二区av| 日日摸夜夜添夜夜爱| 高清视频免费观看一区二区| 狂野欧美激情性xxxx在线观看| 在线观看免费视频网站a站| 亚洲av福利一区| 在线观看人妻少妇| 一级毛片 在线播放| 国产深夜福利视频在线观看| 成人黄色视频免费在线看| 日韩 亚洲 欧美在线| 国产av码专区亚洲av| 少妇猛男粗大的猛烈进出视频| 欧美xxⅹ黑人| 高清欧美精品videossex| 亚洲中文av在线| 99九九线精品视频在线观看视频| 成年女人在线观看亚洲视频| 在线观看三级黄色| 国产色爽女视频免费观看| 国产欧美另类精品又又久久亚洲欧美| 欧美精品高潮呻吟av久久| 色吧在线观看| 新久久久久国产一级毛片| 久久久久久伊人网av| 日日啪夜夜爽| 亚洲国产精品专区欧美| 亚洲少妇的诱惑av| 亚洲综合色惰| 亚洲不卡免费看| 国产一区二区三区av在线| 国产黄色视频一区二区在线观看| 欧美日韩综合久久久久久| 最近中文字幕高清免费大全6| 国产伦理片在线播放av一区| 国产综合精华液| 在线精品无人区一区二区三| 国产高清有码在线观看视频| 国产在线视频一区二区| 日韩成人av中文字幕在线观看| 日韩成人伦理影院| 欧美性感艳星| 久久av网站| 国产成人av激情在线播放 | 性高湖久久久久久久久免费观看| 久久影院123| av视频免费观看在线观看| 成人国产av品久久久| 一区二区三区精品91| 九色亚洲精品在线播放| 欧美精品人与动牲交sv欧美| 国产成人aa在线观看| 22中文网久久字幕| 简卡轻食公司| 久久热精品热| 简卡轻食公司| 高清黄色对白视频在线免费看| 婷婷色综合www| 夫妻性生交免费视频一级片| av在线播放精品| 蜜桃在线观看..| 男女边吃奶边做爰视频| 久久久久久久亚洲中文字幕| 国产一区二区在线观看av| 纯流量卡能插随身wifi吗| 街头女战士在线观看网站| 亚洲欧美日韩另类电影网站| 欧美精品人与动牲交sv欧美| 亚洲四区av| av.在线天堂| 日韩免费高清中文字幕av| 国产成人精品在线电影| 一区二区三区四区激情视频| 亚洲,欧美,日韩| 制服人妻中文乱码| 精品人妻在线不人妻| 亚洲综合色网址| 免费少妇av软件| 亚洲精品色激情综合| 国产高清三级在线| 成人国产av品久久久| 大片电影免费在线观看免费| 亚洲丝袜综合中文字幕| a级毛片免费高清观看在线播放| 国产精品不卡视频一区二区| 久久ye,这里只有精品| 亚洲人成网站在线观看播放| 精品久久久久久久久av| 在线观看免费视频网站a站| 日韩av免费高清视频| 久久这里有精品视频免费| 久久午夜综合久久蜜桃| 国产精品99久久久久久久久| 啦啦啦视频在线资源免费观看| 色网站视频免费| 国产片特级美女逼逼视频| 大话2 男鬼变身卡| 毛片一级片免费看久久久久| 美女脱内裤让男人舔精品视频| 中文乱码字字幕精品一区二区三区| 最新的欧美精品一区二区| 亚洲人成网站在线播| 美女国产视频在线观看| 国产高清三级在线| 国产亚洲午夜精品一区二区久久| 中国美白少妇内射xxxbb| 日日摸夜夜添夜夜爱| 一级毛片黄色毛片免费观看视频| 日韩亚洲欧美综合| 美女大奶头黄色视频| 99热全是精品| 中文欧美无线码| 晚上一个人看的免费电影| 亚洲国产av新网站| 午夜影院在线不卡| 成人影院久久| 国产女主播在线喷水免费视频网站| 少妇熟女欧美另类| 69精品国产乱码久久久|