• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication of Large Scale Self-supported WC/Ni(OH)2 Electrode for High-current-density Hydrogen Evolution①

    2021-10-28 12:05:28LIPingYuHONGWenTingLIUWei
    結(jié)構(gòu)化學(xué) 2021年10期

    LI Ping-Yu HONG Wen-Ting LIU Wei②

    a (CAS Key Laboratory of Design and Assembly of Functional Nanostructures,and Fujian Proνincial Key Laboratory of Nanomaterials,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350002,China)

    b (Uniνersity of Chinese Academy of Sciences,Beijing 100049,China)

    ABSTRACT In the industry,cheap and stable electrocatalysts are eagerly expected for hydrogen evolution reaction (HER) at a high current density.Two-component electrochemical catalysts with integrated multiple interfaces seem to be an expedient strategy to enhance the inherent electronic structure of hybrid electrocatalysts and optimize the catalytic ability.In this work,we report an active tungsten carbide and nickel hydroxide (WC/Ni(OH)2) electrocatalyst seamlessly synthesized on the substrate of W foil.Ni(OH)2 trends to adsorb OHad and WC can effectively adsorb Had.Prompted by the synergistic effect,the ability of the catalyst manifests an effective HER kinetics with an overpotential of 475 mV (νs. RHE) at a high current density of 1000 mA/cm2 in 1 M KOH.Moreover,due to its self-supported construction,the catalyst presents reliable long-term stability with no obvious active property loss after 8000 cycles and 50 hours of operation in an alkaline solution.

    Keywords:hydrogen evolution reaction,tungsten carbide,nickel hydroxide,high current density;DOI:10.14102/j.cnki.0254-5861.2011-3168

    1 INTRODUCTION

    Due to the accelerating consumption of fossil fuels,environmental contamination,and global warming,the development of clean and renewable resources has become an exceedingly urgent concern to be solved[1].Hydrogen (H2),as a highly attractive and low-contami-nation resource with immense energy density,has been proposed as an encouraging alternative[2].In order to produce hydrogen efficiently and cyclically,water splitting with an electrochemical approach is an efficient route to synthesize hydrogen production[3].Up to now,noble metals,such as platinum (Pt),have been utilized as electrocatalysts in hydrogen evolution reaction (HER) to highly improve the reaction efficiency because of its approximately zero overpotential[4].At present,Pt is used as an electrode material in alkaline solution in the industry.However,large scale applications are still restricted because of their high cost and low reserves on the earth[5].As a result,replacing noble materials with economical and durable catalysts is an urgent issue.

    In recent decades,more and more transition metal-based materials (phosphides[6],sulfides[7],carbides[8],etc.) are put into use as electrocatalysts in HER,instead of noble metal materials.It is a feasible solution to combine the two components to optimize the hydrogen adsorption and desorption capacity[9].The synergistic effects can be also induced by hybridizing different components including the regulation of electronic structure,the arrangement of the atom,and the stabilization of interface,which can advance the catalytic capability of HER[10,11].In particular,the ample interfaces between different components play an important role in transporting surface matter like electrons and adsorbents[10].Ma’s group synthesized an inlaid ultrathin MoS2/graphene nanosheets by a thermal process,manifesting a prompt hydrogen evolution performance with the overpotential of 110 mV at a current density of 10 mA/cm2and a small Tafel slope of 67.4 mV/dec[12].Shi’s group reported a W2C/WP catalyst via a one-step process with 83 mV overpotential at a current density of 10 mA/cm2[13].Moreover,the current density required for industrial alkaline electrolyzers and membranes from proton exchange is normally higher than 500 and 1000 mA/cm2[14].Zhang’s group reported two-dimensional MoS2/Mo2C catalysts with an overpotential of 412 mV at a high current density of 1000 mA/cm2[14].Chen group synthesized a MoB2that delivers a larger current density and stability of 10 hours of operation[15].However,the cost and the electro-chemical,as well as the mechanical stability,need to be further improved.

    Herein,we report a promising and highly active WC/Ni(OH)2electrode with high current density,which can be synthesized by a simple method for a large scale (Fig.1).This method supplies a seamless electrical contact between WC/Ni(OH)2and W substrate,thus diminishing the loss of voltage and improving the HER performance of WC/Ni(OH)2electrode (Fig.1a)[16].The deposition of Ni(OH)2nano-particles provides more active sites (Fig.1b)[17].Furthermore,WC is endowed with the characteristic similar to Pt for its broadenedd-orbital of W after hybridizing withs-andp-orbitals of carbon[18].Therefore,the capability of hydrogen adsorption for WC is neither strong nor weak[19].Besides,Ni(OH)2improves the dissociation of water and binds OHadappropriately (Fig.1b)[19,20].Under the synergy of Ni(OH)2and WC,the WC/Ni(OH)2nanostructure exhibits an extremely higher performance compared with the single WC catalyst.The WC/Ni(OH)2has a small Tafel slope of 47.5 mV/dec,a high current density of 1000 mA/cm2at 475 mV versus the reversible hydrogen electrode (νs.RHE),and good stability for 50 h at the current density of 500 mA/cm2because of its self-supported structure.

    2 EXPERIMENTAL

    2.1 Materials

    All chemical reagents are commercially available and can be used directly without further purification.

    2.2 Synthesis of the WO3 foils

    The tungsten (W) foils were polished with abrasive paper to remove the oxide layer on the surface,and the treated W foils were soaked in acetone at 80 ℃ for 30 minutes.After that,the W foils were taken out and washed by an ultrasonic cleaner (GT Sonic) for 30 minutes with deionized water and ethanol.The W foils were obtained after drying.The processed W foils were put on a porcelain boat by a chemical vapor deposition (CVD) process in the atmosphere of 80% air and 20% argon (Ar) at 800 ℃ for 30 minutes with a heating rate of 20 ℃/min,with the as-obtained sample to be WO3.

    2.3 Synthesis of the WC foils

    The as-obtained WO3foils were grown in the tube furnace.The temperature of the furnace was increased to 900 ℃ followed by flowing with an Ar and H2mixture (20:20 sccm) for 30 minutes and adding CH4flow (40 sccm) into the carbonization chamber for carbonization for 60 minutes.The heating of the chamber of carbonization was 900 ℃ at a stable rate of 30 ℃/min.After a bunch of reactions above,the furnace was cooled down to room temperature naturally.

    2.4 Synthesis of WC/Ni(OH)2

    Before electrodeposition,the ohmic contact was prepared as follows:Firstly,rinse the WC foils with absolute ethanol and deionized water in turn.Secondly,the electric contact was made by using an alligator clip on the WC foil.The whole surface of WC foil was buried in the solution that consists of 0.1 M NiCl2·6H2O and 0.1 M H3BO3.A graphite rod was used as the counter electrode and the reference electrode was mercuric oxide.The electrodeposition process of Ni(OH)2was completed at a constant potential of -1.5 V for a certain time (20 s was great in experiments).After that,clean the surface with deionized water and dry it with a hot dryer.

    2.5 Materials characterization

    The investigations of microstructures and morphologies were accomplished by the filed-emission scanning electron microscopy (Zeiss) and high-resolution transmission electron microscopy (HRTEM) (JEOL,JEM-3000F FEGTEM,300 kV).The examination of the WC/Ni(OH)2formation was finished by Micro-Taman spectroscopy (LabRAM HR Evolu-tion) with a 532 nm laser.XRD analyses were accomplished on the machine Rogaku Ultima IV diffractometer (CuKαradiation,λ=1.5406 ?) at 40 kV operating voltage and 44 mA operating current.The measurements of XPS were handled on the system of ESCALAB 250Xi (Thermo Fisher) with the source of 100 W AlKαat the incident angle of 45° and a size of 100μm spot.The scanning range of binding energy was from 0 to 1200 eV at the step length of 1 eV;high-intensity excitation was supported by AlKαwith monochrome X-ray whose energy was 1486.6 eV and the resolution of half maximum of full width was 0.48 eV.Every XPS spectra in 50 meV resolution after calibrating the binding energy of carbon of 284.8 eV were recorded.Gaussian function was used to get the positions of deconvoluted peak after the correction of nonlinear emission background.

    2.6 Electrochemical measurements

    All measurements of electrochemistry were operated on an electrochemical workstation (CHI 660 e) which includes three standard electrodes configuration at 25 ℃.A mercuric oxide electrode and a graphite rod were used as reference electrode and counter electrode,respectively.Every potential of the electrode was transformed to RHE adopting the equation fromERHE=EHg/HgO+0.926 V in 1 M KOH solution (PH=14).Refer to the same process,the relationship of the reference electrode (Hg/HgO) and RHE was the equation:ERHE=EHg/HgO+0.983 V in 10 M KOH solution.Ahead of recording the data,cyclic voltammetry was used to prescan the electrodes for 20 cycles from -0.9 to -1.8 V versus RHE in order to make sure solid CV curves occur.After that,the data of polarization curve about linear sweep voltammetry were collected from the range of -0.9 to -1.8 V with the scan speed of 5 mV/s without iR correction.Replotting the polarization curves according to the Tafel equation (η=blog(j)+a) can acquire the Tafel plot.Fitting the Tafel plot linear sections can determine the Tafel slope.Measure the material electrochemi-cal stability by adopting the method of cyclic voltammetry at the sweep rate of 500 mV/s from -0.9 V to -1.8 Vνs.RHE and the method of Amperometrici-tcurve for 50 hours,respectively.IR compensation was not used in the collection of all data.

    3 RESULTS AND DISCUSSION

    3.1 Synthesis and characterization

    W foil is utilized to synthesize WO3.The synthesis of the WO3layer is on the surface of W foil exposed in the air at 800 ℃ for 30 minutes.Then,the generated WO3foil is placed in a CH4/H2/Ar atmosphere at 900 ℃ for 30 minutes to form WC.The synthesis affords the seamless contact between WC and W foil,which reduced the loss of voltage and thus enhanced the HER performance of WC/W.After the fabrication of WC,Ni(OH)2particles are deposited by the method of Amperometrici-tfor 20 s under the potential of -1.5 V in a mixed solution of NiCl2and H3BO3(Fig.1a)[21].

    The mechanism of HER for WC/Ni(OH)2catalysts in alkaline solution is presented in Fig.1b.The step of water dissociation is enhanced by Ni(OH)2and the OHadadsorption of Ni(OH)2is neither strong nor weak[20].In addition,the capacity adsorbing hydrogen of WC is optimal[19].Therefore,the synergistic integration of WC/Ni(OH)2can highly boost the performance of HER.The morphology of the cross-section of WC (Fig.1c) shows the strongly tight combination between the WC layer and W foil,indicating that WO3is fully transformed into WC.The ideal interface with a clean and tight connection can improve the charge transport efficiency and boost the HER performance.With this self-supported fabrication process,stable WC/Ni(OH)2hybrid structures on large scale can be prepared on W substrate.The as-grown WC nanostructure synthesized in the laboratory can reach the size of A4 paper (Fig.1d).

    Fig.1.(a) Illustration of the preparation process of WC/Ni(OH)2 electrodes.(b) Mechanism of HER for the WC/Ni(OH)2 catalyst in alkaline conditions.(c) Scanning electron microscopy (SEM) image of the cross-section of WC/Ni(OH)2.(d) Optical image WC/Ni(OH)2 electrodes

    As exhibited in Fig.2a,the surface of intrinsic WO3is highly dense and smooth.After carbonization process,the complicated layered nanostructures can be observed on the surface of WC,which increases the surface area that could highly improve the performance of HER (Fig.2b).The WC also provides abundant surface area for the electrodeposition of Ni(OH)2.After electrochemical deposition,Fig.2c shows distinct Ni(OH)2particles on the surface of WC catalysts.The optimal deposition time of Ni(OH)2particles with 20 seconds gives moderate size and distribution compared to other deposition time.

    As exhibited in Fig.2d,the high-resolution transmission electron microscopy (HRTEM) image of WC/Ni(OH)2indicates obvious contact between W,WC,and Ni(OH)2,which represents the multiple interfaces of W/WC/Ni(OH)2.The distance of interplane about lattice fringes can be easily measured as 0.25,0.13,and 0.16 nm,respectively (Figs.2d1,2d2 and 2d3),corresponding to the hexagonal WC with the (100) crystallographic plane,hexagonal Ni(OH)2with the (201) plane,and cubic W with (200) plane,respectively.Besides,the energy-dispersive X-ray spectroscopy (EDS) elemental mapping of WC/Ni(OH)2in Fig.2e~2h indicates that W,C,and Ni elements are distributed evenly.These results confirm the presence of the mixed phases of Ni(OH)2,WC,and W.

    Fig.2.(a) SEM image of synthesized WO3.(b) SEM image of carbonized WC.(c) SEM image of electrodeposited WC/Ni(OH)2 with deposition time of 20 seconds.(d) HRTEM image of WC/Ni(OH)2/W.(d1-d3) Fast Fourier Transform (FTT) analysis images of WC/Ni(OH)2.(e-h) Elemental mapping of W,C,and Ni elements

    Fig.3a shows the investigation of Raman spectra.The two weak peaks at 677 and 803 cm-1can be ascribed to the stretching mode of W-C[22].Moreover,the X-ray photoelectron spectroscopy (XPS) spectra of WC/Ni(OH)2are utilized to confirm the chemical states of W,C and Ni elements in Fig.3b.Fig.3c indicates that the XPS spectra of W 4fexhibit four peaks located at 37.5,35.3,34.2 and 32.0 eV,respectively.The last two peaks at 34.2 and 32.0 eV are ascribed to the featured peaks of W4f7/2and W4f5/2of WC.And the peaks of W-O (37.5 and 35.3 eV) are attributed to the oxidation of the surface of WC.Ni 2pXPS spectra show four pronounced peaks located at 879.3,873.6,861.6 and 855.9 eV,respectively (Fig.3d).The binding energy of 855.9 and 861.6 eV are due to Ni2+/Ni(OH)2,and the other two peaks at 873.5 and 879.3 eV result from the Ni 2p1/2,indicating the existence of Ni(OH)2[23].

    Fig.3.(a) Raman spectra of WC foil.(b) Full XPS spectra of WC/Ni(OH)2.(c) High-resolution XPS spectra of W.(d) High-resolution XPS spectra of Ni

    3.2 Electrocatalytic activity

    All measurements about HER electrocatalytic activities of as-grown WC/Ni(OH)2material are evaluated in 1 M KOH solution via a three-electrode setup.The polarization curves are measured using linear sweep voltammetry (LSV) with a sweep rate of 5 mV/s.As exhibited in Figs.4a and 4b,the WC/Ni(OH)2behaves as a dramatic HER activity with a low onset potential of 20 mV (νs.RHE) and an operating overpotential of 51 mV (νs.RHE) at the negative current density of 10 mA/cm2(η10).It is much smaller than the overpotentials of W and WC catalysts with the values of 496 mV (νs.RHE) and 109 mV (νs.RHE),respectively at the current density of 10 mA/cm2.These results demonstrate that the synergistic effect of WC/Ni(OH)2can facilitate the HER performance.Moreover,compared with 20 wt% Pt/C,Pt/C has the best activity at low overpotential (0~164 mV),while at high overpotential (> 164 mV),WC/Ni(OH)2catalyst exhibits impressively better HER performance.A maximum current density can reach 2044.0 mA/cm-2at an overpotential of 800 mV (νs.RHE) for WC/Ni(OH)2catalyst,which is much higher than Pt/C.

    As shown in Fig.4c,according to the Tafel equation (η=blogj+a),the linear region of the Tafel slope is fitted.The Tafel slope of WC/Ni(OH)2is 47.5 mV/dec,which is much smaller than that of WC and W with Tafel slopes of 99.8 and 389.6 mV/dec,respectively.20 wt% Pt/C possesses the minimal Tafel slope with 30.6 mV/dec in 1 M KOH media.The elementary steps are related to the Tafel slope in HER.Thus,the main mechanism for WC/Ni(OH)2is the Volmer-Heyrovsky reaction whose rate-limiting step can be identified as the process of electrochemical desorption,which is different from the Volmer-Tafel mechanism for Pt/C with the rate-limiting step of combination step.

    Large current density at low overpotential can not only improve the efficiency of HER but also reduce the energy consumption.Thus,Fig.4d summarizes the HER perfor-mance for some compound catalysts compared with different reported noble metal catalysts at a large current density of 1000 mA/cm2.It can be seen that the efficiency of WC/Ni(OH)2with 475 mV (νs.RHE) at the current density of 1000 mA/cm2(η1000) performs better than lots of Pt catalysts and compound catalysts[14,15,24-27].Moreover,the HER performance of WC becomes more efficient with increasing the concentration of alkaline solution (Fig.4e).Especially,in a 10 M KOH solution,the current density can be as high as 3108.7 mA/cm-2.Hence,the WC/Ni(OH)2hybrid structure can be a low-cost HER candidate to replace Pt in industrial hydrogen production.

    Besides,durability at high current density is also an important category for electrocatalysts.The cyclic voltammo-grams (CVs) with 8000 cycles are applied and the method about Amperometrici-tcurve at the current density of 500 mA/cm2for 50 hours is also employed to test the durability of WC/Ni(OH)2(Fig.4f).The results imply that the current density remains stable after thei-ttest for 50 hours.The WC/Ni(OH)2shows excellent stability in the HER durability test because of the self-supported structure.The strong bonding between W and WC makes the stability of WC/Ni(OH)2much better than the amounts of compound electrochemical catalysts.Hence,the WC/Ni(OH)2hybrid structure can be a low-cost HER candidate to replace Pt in industrial hydrogen production.

    Fig.4.(a) Polarization curves of WC/Ni(OH)2 in 1 M KOH electrolyte at 5 mV/s,along with W foil,WC foil,and Pt/C for comparison.(b) Polarization curves of different catalysts for comparison at the current density of 200 mA/cm2.(c) Tafel plots of the catalysts shown in (a).(d) Comparison of the high-current-density of 1000 mA/cm2 HER performance of the catalysts in this work with previously reported data of different catalysts.(e) Polarization curves of WC/Ni(OH)2 in 1 M KOH,5 M KOH,and 10 M KOH electrolyte at 5 mV/s,respectively.(f) Chronopotentiometry curve of WC/Ni(OH)2 in 1 M KOH for 50 hours.Insert:the polarization curves of WC/Ni(OH)2 initially and 8000 cycles in 1 M KOH at a scan rate of 5 mV/s

    4 CONCLUSION

    In summary,we have developed a high current density,efficient,and stable WC/Ni(OH)2nanostructures seamlessly grown on W foils by a convenient annealing method.The seamless contact between different composites improves the efficiency of charge transfer.The adsorption of hydrogen of WC is neither strong nor weak and Ni(OH)2can dissociate water and adsorb OHadeffectively.The seamless contact and the synergy of WC and Ni(OH)2highly enhance the HER performance.The as-prepared WC/Ni(OH)2displays a small Tafel slope of 47.5 mV/dec,475 mV (νs.RHE) at 1000 mA/cm2current density and long-term stability of 50 hours after thei-ttest for 50 hours.We offer a route for a stable HER electrocatalyst with high current density on large scale for the industrial manufacturing by a simple thermal process.

    18禁黄网站禁片免费观看直播| a级一级毛片免费在线观看| 国产 一区精品| 91精品国产九色| 久久久久久国产a免费观看| 午夜福利在线在线| 成人三级黄色视频| 色综合站精品国产| 色播亚洲综合网| 热99re8久久精品国产| 精品久久久久久成人av| 成人欧美大片| 国产亚洲精品综合一区在线观看| 国产又黄又爽又无遮挡在线| 国产精品精品国产色婷婷| 日本黄色视频三级网站网址| 淫妇啪啪啪对白视频| 国产精品美女特级片免费视频播放器| 国产亚洲av嫩草精品影院| 一级av片app| 国产精品电影一区二区三区| 亚洲国产高清在线一区二区三| 国产午夜精品久久久久久一区二区三区 | 又黄又爽又免费观看的视频| 亚洲欧美日韩东京热| 亚洲欧美日韩东京热| 成人亚洲欧美一区二区av| av国产免费在线观看| 亚洲国产精品成人久久小说 | 97人妻精品一区二区三区麻豆| 色哟哟哟哟哟哟| 国产女主播在线喷水免费视频网站 | 国产精品久久久久久亚洲av鲁大| 久久人人爽人人片av| 色综合亚洲欧美另类图片| 日本黄大片高清| 三级男女做爰猛烈吃奶摸视频| 日韩av不卡免费在线播放| 国产精品综合久久久久久久免费| 亚洲专区国产一区二区| 99热这里只有是精品50| 日韩欧美精品免费久久| 2021天堂中文幕一二区在线观| 精品不卡国产一区二区三区| 天堂av国产一区二区熟女人妻| 国产欧美日韩精品一区二区| 欧美最新免费一区二区三区| 少妇人妻一区二区三区视频| 久久精品国产亚洲av香蕉五月| 久久人人精品亚洲av| 尾随美女入室| 99久久成人亚洲精品观看| 免费看日本二区| 国产精品美女特级片免费视频播放器| 能在线免费观看的黄片| 国产激情偷乱视频一区二区| 91久久精品电影网| 麻豆国产97在线/欧美| 欧美成人一区二区免费高清观看| 亚洲人成网站在线播| 男女那种视频在线观看| a级一级毛片免费在线观看| 国产精品乱码一区二三区的特点| 天堂网av新在线| а√天堂www在线а√下载| 热99在线观看视频| 免费在线观看影片大全网站| 中文资源天堂在线| 日韩人妻高清精品专区| 综合色av麻豆| 桃色一区二区三区在线观看| 看非洲黑人一级黄片| 亚洲真实伦在线观看| 亚洲熟妇熟女久久| 秋霞在线观看毛片| 真人做人爱边吃奶动态| 最好的美女福利视频网| 国产高清有码在线观看视频| 蜜桃久久精品国产亚洲av| 国内精品一区二区在线观看| 日本 av在线| 91在线精品国自产拍蜜月| 久久久国产成人精品二区| 欧洲精品卡2卡3卡4卡5卡区| 亚洲人成网站高清观看| 校园春色视频在线观看| 久久韩国三级中文字幕| 波多野结衣高清作品| 婷婷色综合大香蕉| 亚洲乱码一区二区免费版| 自拍偷自拍亚洲精品老妇| 久久久久久久久大av| 国产成人a∨麻豆精品| 久久草成人影院| 亚洲丝袜综合中文字幕| 国产视频一区二区在线看| 听说在线观看完整版免费高清| 国产精品美女特级片免费视频播放器| 亚洲中文日韩欧美视频| 亚洲成人精品中文字幕电影| 欧美在线一区亚洲| 一本精品99久久精品77| 国内精品美女久久久久久| 一a级毛片在线观看| 搡老妇女老女人老熟妇| 老司机午夜福利在线观看视频| 波多野结衣巨乳人妻| 可以在线观看毛片的网站| av在线亚洲专区| 久久久欧美国产精品| 亚洲天堂国产精品一区在线| 国产成人影院久久av| 亚洲av第一区精品v没综合| 亚洲av成人av| 卡戴珊不雅视频在线播放| 亚洲av不卡在线观看| 天天一区二区日本电影三级| 婷婷六月久久综合丁香| 午夜爱爱视频在线播放| 久久亚洲国产成人精品v| 午夜福利在线在线| 午夜亚洲福利在线播放| 欧美高清性xxxxhd video| 大香蕉久久网| 国产成年人精品一区二区| 插阴视频在线观看视频| 美女被艹到高潮喷水动态| 日韩欧美 国产精品| 国产成人福利小说| 最近的中文字幕免费完整| 成人欧美大片| 国产 一区精品| 一级毛片久久久久久久久女| 精品欧美国产一区二区三| 夜夜夜夜夜久久久久| 特大巨黑吊av在线直播| 国产精品电影一区二区三区| 久久鲁丝午夜福利片| 国产精品乱码一区二三区的特点| 国产老妇女一区| 久久婷婷人人爽人人干人人爱| 综合色丁香网| 亚洲四区av| aaaaa片日本免费| 国产亚洲av嫩草精品影院| 狂野欧美激情性xxxx在线观看| 99热只有精品国产| 男人舔女人下体高潮全视频| 黄片wwwwww| 色吧在线观看| 免费看美女性在线毛片视频| 麻豆成人午夜福利视频| 久久精品国产亚洲av天美| 久久久欧美国产精品| 国产高清不卡午夜福利| 一进一出抽搐gif免费好疼| 女同久久另类99精品国产91| 内射极品少妇av片p| 亚洲一区二区三区色噜噜| 国产女主播在线喷水免费视频网站 | 最近中文字幕高清免费大全6| 免费在线观看成人毛片| 淫妇啪啪啪对白视频| 看免费成人av毛片| 白带黄色成豆腐渣| 国产亚洲精品综合一区在线观看| 人人妻人人看人人澡| 不卡视频在线观看欧美| 色5月婷婷丁香| 女同久久另类99精品国产91| 我的女老师完整版在线观看| 美女 人体艺术 gogo| 久久久久久久久久成人| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品国产高清国产av| 1000部很黄的大片| 色综合色国产| 亚洲无线观看免费| 亚洲在线观看片| 欧美绝顶高潮抽搐喷水| 欧美三级亚洲精品| 两个人的视频大全免费| 有码 亚洲区| 免费在线观看成人毛片| 黄色一级大片看看| 国产av不卡久久| 别揉我奶头~嗯~啊~动态视频| 亚洲中文日韩欧美视频| 草草在线视频免费看| 女人十人毛片免费观看3o分钟| a级毛色黄片| av黄色大香蕉| 久久久精品大字幕| 国产色婷婷99| 又爽又黄无遮挡网站| 麻豆av噜噜一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 久久午夜福利片| 亚洲天堂国产精品一区在线| 天天躁夜夜躁狠狠久久av| 天美传媒精品一区二区| 最近的中文字幕免费完整| 国产成人一区二区在线| 国产高清视频在线观看网站| 欧美中文日本在线观看视频| 亚洲中文字幕一区二区三区有码在线看| 十八禁国产超污无遮挡网站| av中文乱码字幕在线| 天天躁日日操中文字幕| 久久久欧美国产精品| 色噜噜av男人的天堂激情| 最后的刺客免费高清国语| 国产激情偷乱视频一区二区| 国产精品久久久久久久电影| 一a级毛片在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲美女视频黄频| 久久精品国产自在天天线| 国产精品一及| 女人十人毛片免费观看3o分钟| 99热全是精品| 国产亚洲精品久久久久久毛片| 女生性感内裤真人,穿戴方法视频| 51国产日韩欧美| 免费人成在线观看视频色| 亚洲成人av在线免费| 亚洲成人久久性| 日韩欧美 国产精品| 日韩av不卡免费在线播放| 亚洲欧美成人综合另类久久久 | 免费看日本二区| 国产白丝娇喘喷水9色精品| 亚洲国产欧洲综合997久久,| 亚洲av不卡在线观看| 国产一级毛片七仙女欲春2| 嫩草影院精品99| 欧洲精品卡2卡3卡4卡5卡区| 嫩草影视91久久| 日韩av在线大香蕉| 久久精品国产99精品国产亚洲性色| 亚洲精华国产精华液的使用体验 | .国产精品久久| 亚洲内射少妇av| 女的被弄到高潮叫床怎么办| 男女啪啪激烈高潮av片| 最后的刺客免费高清国语| 免费av观看视频| 亚洲精品亚洲一区二区| 床上黄色一级片| 午夜免费激情av| 亚洲高清免费不卡视频| 18禁裸乳无遮挡免费网站照片| 熟女人妻精品中文字幕| 国产久久久一区二区三区| 级片在线观看| 国产精品亚洲一级av第二区| 国产一区二区在线av高清观看| 99久国产av精品| 不卡一级毛片| 乱人视频在线观看| 亚洲精品456在线播放app| 欧美最黄视频在线播放免费| 伦精品一区二区三区| 国产免费男女视频| 熟妇人妻久久中文字幕3abv| 不卡一级毛片| 免费电影在线观看免费观看| 69人妻影院| 久久久久性生活片| 国产视频一区二区在线看| 国产精品爽爽va在线观看网站| aaaaa片日本免费| 中国美白少妇内射xxxbb| av在线蜜桃| 村上凉子中文字幕在线| 久久久成人免费电影| 国产成人91sexporn| 色综合站精品国产| 久久韩国三级中文字幕| 成年女人毛片免费观看观看9| 欧美激情久久久久久爽电影| 国产一区二区亚洲精品在线观看| 女的被弄到高潮叫床怎么办| 成人高潮视频无遮挡免费网站| 美女大奶头视频| 国产精品日韩av在线免费观看| 国产一区二区三区在线臀色熟女| 美女cb高潮喷水在线观看| 99热全是精品| 国内久久婷婷六月综合欲色啪| 99久久成人亚洲精品观看| 一卡2卡三卡四卡精品乱码亚洲| 黄色日韩在线| 99九九线精品视频在线观看视频| 热99re8久久精品国产| 欧美成人免费av一区二区三区| 精品久久久久久久人妻蜜臀av| 亚洲三级黄色毛片| 国产伦精品一区二区三区四那| 黄色一级大片看看| 亚洲一区二区三区色噜噜| 久久精品夜夜夜夜夜久久蜜豆| 亚洲国产精品成人综合色| 日韩一区二区视频免费看| 亚洲欧美成人综合另类久久久 | 99九九线精品视频在线观看视频| 日日摸夜夜添夜夜添小说| 国产成人91sexporn| 蜜桃亚洲精品一区二区三区| av天堂在线播放| 国产精华一区二区三区| 黄色一级大片看看| 久久中文看片网| 午夜免费激情av| 亚洲在线观看片| 又黄又爽又免费观看的视频| 99久久久亚洲精品蜜臀av| 久久欧美精品欧美久久欧美| 国产爱豆传媒在线观看| 我的女老师完整版在线观看| 99riav亚洲国产免费| 欧美绝顶高潮抽搐喷水| av在线天堂中文字幕| 天堂网av新在线| 久久精品国产亚洲av香蕉五月| 免费看av在线观看网站| 欧美激情久久久久久爽电影| 日韩欧美免费精品| 国产精品电影一区二区三区| 国产精品av视频在线免费观看| 美女高潮的动态| 国产老妇女一区| 久久久久久国产a免费观看| 国产麻豆成人av免费视频| 久久久国产成人精品二区| 国产久久久一区二区三区| 91在线观看av| 亚洲一区二区三区色噜噜| 午夜a级毛片| 国产成人福利小说| 亚洲人成网站在线播| 国产精品一区二区性色av| 午夜老司机福利剧场| 欧美人与善性xxx| 色综合站精品国产| 成年女人毛片免费观看观看9| 欧美不卡视频在线免费观看| 搡女人真爽免费视频火全软件 | 波多野结衣高清作品| 狠狠狠狠99中文字幕| 国产精品嫩草影院av在线观看| 国产精品一区二区免费欧美| 国产乱人视频| 国国产精品蜜臀av免费| 国产精品一区www在线观看| 久久6这里有精品| 亚洲久久久久久中文字幕| av黄色大香蕉| 高清毛片免费看| 国产亚洲精品av在线| 1000部很黄的大片| 哪里可以看免费的av片| 久久国内精品自在自线图片| 91精品国产九色| 亚洲国产日韩欧美精品在线观看| 日韩人妻高清精品专区| 亚洲av一区综合| 精品日产1卡2卡| 亚洲欧美日韩东京热| 国内少妇人妻偷人精品xxx网站| 噜噜噜噜噜久久久久久91| 日本 av在线| 性色avwww在线观看| 久久亚洲国产成人精品v| 热99在线观看视频| 国产精品嫩草影院av在线观看| 特级一级黄色大片| 少妇被粗大猛烈的视频| 人妻少妇偷人精品九色| 不卡视频在线观看欧美| 波多野结衣高清作品| 老司机午夜福利在线观看视频| 在线天堂最新版资源| 亚洲最大成人av| 国产又黄又爽又无遮挡在线| 深夜a级毛片| 男人和女人高潮做爰伦理| 婷婷亚洲欧美| 国产精品国产三级国产av玫瑰| 啦啦啦啦在线视频资源| 两个人的视频大全免费| 成人午夜高清在线视频| 99热精品在线国产| 久久亚洲精品不卡| 午夜激情福利司机影院| 免费av不卡在线播放| 欧美一区二区国产精品久久精品| 成熟少妇高潮喷水视频| 久久精品人妻少妇| 欧美xxxx黑人xx丫x性爽| 精品久久久久久久人妻蜜臀av| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品电影一区二区三区| 18禁黄网站禁片免费观看直播| 午夜精品在线福利| 国产成人freesex在线 | 男女视频在线观看网站免费| 六月丁香七月| 黄色欧美视频在线观看| 亚洲成人中文字幕在线播放| 亚洲七黄色美女视频| 黄色视频,在线免费观看| 色播亚洲综合网| a级毛色黄片| 人妻制服诱惑在线中文字幕| 12—13女人毛片做爰片一| 久久久久久久久久黄片| 最近在线观看免费完整版| 亚洲无线观看免费| 国产伦精品一区二区三区视频9| 少妇裸体淫交视频免费看高清| 99久国产av精品| 你懂的网址亚洲精品在线观看 | 久久久久免费精品人妻一区二区| 偷拍熟女少妇极品色| 亚洲,欧美,日韩| 天美传媒精品一区二区| 少妇高潮的动态图| 亚洲精品久久国产高清桃花| 在线天堂最新版资源| 午夜福利视频1000在线观看| 亚洲成人久久性| 午夜爱爱视频在线播放| 日本五十路高清| a级毛色黄片| 欧美日韩在线观看h| 干丝袜人妻中文字幕| 午夜福利18| 成人二区视频| 亚洲欧美成人综合另类久久久 | 狂野欧美白嫩少妇大欣赏| 亚洲激情五月婷婷啪啪| 美女高潮的动态| 搡老岳熟女国产| 亚洲人成网站在线播| 99久久精品热视频| 亚洲在线自拍视频| 久久久久久国产a免费观看| 午夜日韩欧美国产| 最近中文字幕高清免费大全6| 精品久久久噜噜| 久久久色成人| 在线免费观看不下载黄p国产| 中文字幕av在线有码专区| 久久久久久伊人网av| 欧美色欧美亚洲另类二区| 在线天堂最新版资源| 亚洲av成人av| 成人二区视频| 国内少妇人妻偷人精品xxx网站| 亚洲五月天丁香| 欧美激情国产日韩精品一区| 国产蜜桃级精品一区二区三区| 久久久久九九精品影院| 中文字幕av在线有码专区| 国产精品,欧美在线| 午夜精品国产一区二区电影 | 尾随美女入室| 69av精品久久久久久| 一个人看的www免费观看视频| 最后的刺客免费高清国语| 国产高潮美女av| 桃色一区二区三区在线观看| 草草在线视频免费看| 成人美女网站在线观看视频| 舔av片在线| 人妻制服诱惑在线中文字幕| 男人的好看免费观看在线视频| 亚洲国产高清在线一区二区三| 成人无遮挡网站| 亚洲国产精品合色在线| 听说在线观看完整版免费高清| 午夜精品一区二区三区免费看| 午夜a级毛片| 欧美xxxx性猛交bbbb| 小说图片视频综合网站| 校园人妻丝袜中文字幕| 日日摸夜夜添夜夜添小说| 一进一出好大好爽视频| 久久精品国产99精品国产亚洲性色| 久久精品人妻少妇| 日本一二三区视频观看| 成年版毛片免费区| 日本爱情动作片www.在线观看 | 日本爱情动作片www.在线观看 | 热99re8久久精品国产| 一级a爱片免费观看的视频| 精品午夜福利视频在线观看一区| 深夜a级毛片| 最近2019中文字幕mv第一页| 亚洲经典国产精华液单| 免费观看人在逋| 99热这里只有精品一区| 亚洲精品日韩在线中文字幕 | 久久人妻av系列| 欧美性猛交黑人性爽| 一个人看视频在线观看www免费| 一区二区三区四区激情视频 | eeuss影院久久| 一级av片app| 亚洲欧美日韩无卡精品| 精品午夜福利视频在线观看一区| 最新中文字幕久久久久| 精品99又大又爽又粗少妇毛片| 久久精品久久久久久噜噜老黄 | 久久人人爽人人爽人人片va| 亚洲三级黄色毛片| 校园人妻丝袜中文字幕| 亚洲第一区二区三区不卡| a级毛色黄片| 亚洲精品成人久久久久久| 高清毛片免费看| 色哟哟·www| 国内精品一区二区在线观看| 老司机影院成人| 亚洲欧美日韩无卡精品| 十八禁国产超污无遮挡网站| 人妻丰满熟妇av一区二区三区| 全区人妻精品视频| 亚洲国产日韩欧美精品在线观看| 久久精品国产亚洲av天美| 免费av观看视频| 身体一侧抽搐| av在线天堂中文字幕| 性色avwww在线观看| 成熟少妇高潮喷水视频| 欧美日韩一区二区视频在线观看视频在线 | 国产蜜桃级精品一区二区三区| 欧美xxxx黑人xx丫x性爽| 欧美极品一区二区三区四区| 欧美不卡视频在线免费观看| 男人舔女人下体高潮全视频| 久久午夜福利片| 亚洲中文日韩欧美视频| 久久久成人免费电影| 天天躁日日操中文字幕| 免费av观看视频| 婷婷色综合大香蕉| 亚洲av第一区精品v没综合| 黄色欧美视频在线观看| 在线观看av片永久免费下载| 精品久久久久久久末码| 免费人成在线观看视频色| 国产成人freesex在线 | 国产一区二区在线av高清观看| 久久久a久久爽久久v久久| 国产熟女欧美一区二区| 床上黄色一级片| 国产精品久久久久久久久免| 亚洲专区国产一区二区| 国产国拍精品亚洲av在线观看| av女优亚洲男人天堂| 99久久成人亚洲精品观看| 日韩欧美精品v在线| 中国美女看黄片| 99精品在免费线老司机午夜| 日韩人妻高清精品专区| 两个人视频免费观看高清| 国产亚洲精品综合一区在线观看| 国产av在哪里看| 欧美bdsm另类| 高清毛片免费观看视频网站| 成人欧美大片| 自拍偷自拍亚洲精品老妇| 老师上课跳d突然被开到最大视频| 国产探花极品一区二区| 精华霜和精华液先用哪个| 男女之事视频高清在线观看| 成人二区视频| 夜夜看夜夜爽夜夜摸| 亚洲熟妇熟女久久| 久久精品国产亚洲网站| 国产白丝娇喘喷水9色精品| 亚洲av.av天堂| 最近的中文字幕免费完整| 久久精品国产亚洲av涩爱 | 国产91av在线免费观看| 免费观看在线日韩| a级毛片a级免费在线| 成熟少妇高潮喷水视频| 国产爱豆传媒在线观看| 俺也久久电影网| 久久久欧美国产精品| 日韩制服骚丝袜av| 久久精品夜色国产| 国产成人精品久久久久久| 男女边吃奶边做爰视频| 免费看日本二区| 在线观看66精品国产| 一级毛片电影观看 | 五月伊人婷婷丁香| 久久九九热精品免费| 国产亚洲精品综合一区在线观看| 亚洲精品国产成人久久av| 午夜精品国产一区二区电影 | 国产精品一区二区免费欧美| 亚洲精品亚洲一区二区| 国产片特级美女逼逼视频| 色5月婷婷丁香| 黑人高潮一二区| 日本在线视频免费播放| 波多野结衣高清无吗| 99久久无色码亚洲精品果冻| 亚洲最大成人中文| 免费不卡的大黄色大毛片视频在线观看 |