• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced Upconversion Emissions of TiO2:Yb3+/Tm3+ Nanocrystals:Comparison with Different Effects of Li+,Mn2+ and Cu2+ Ions①

    2021-10-28 12:05:30JIHeMingXUMingGungZHANGHiYnLIXioLongQIANYnNn
    結(jié)構(gòu)化學(xué) 2021年10期

    JI He-Ming XU Ming-Gung ZHANG Hi-Yn LI Xio-Long QIAN Yn-Nn②

    a (Guangdong Proνincial Key Laboratory of Functional Soft Condensed Matter,School of Materials and Energy,Guangdong Uniνersity of Technology,Guangzhou 510006,China)

    b (School of Mechanical and Electrical Engineering,Yunnan Agricultural Uniνersity,Kunming 650201,China)

    ABSTRACT Codoping with Mn+ ions (Mn+=Li+,Mn2+ and Cu2+) enhanced the blue and red upconversion (UC) emissions in TiO2:Yb3+/Tm3+ nanocrystals under 980 nm excitation.The different effects of Li+,Mn2+ and Cu2+ ions on the phase structures,morphologies and optical characteristics of TiO2:Yb3+/Tm3+ were discussed.The minor shifting in the diffraction peaks at 25.2° was observed for TiO2:Yb3+/Tm3+/Li+,and adding Mn2+ ions remained almost the same position of diffraction peaks,while the introduction of Cu2+ ions resulted in the shift of the diffraction peaks towards the larger angles.TiO2:Yb3+/Tm3+/Li+ and TiO2:Yb3+/Tm3+/Mn2+ nanosheets and the sphere-like TiO2:Yb3+/Tm3+/Cu2+ were observed.The mechanisms for increased UC emissions caused by adding Li+,Mn2+ and Cu2+ ions were attributed to the tailored local environment around Tm3+ ions,efficient energy transition between Mn2+-Yb3+ dimer and Tm3+ ions,and the localized surface plasmon resonance (LSPR) of Cu2+ ions,respectively.

    Keywords:TiO2:Yb3+/Tm3+,Li+,Mn2+ and Cu2+,optical characteristics;DOI:10.14102/j.cnki.0254-5861.2011-3185

    1 INTRODUCTION

    The utilization of solar energy by dye-sensitized solar cells (DSSCs) and photocatalysts in dealing with environmental pollution has been explored for improving the energy consumption and filling the gap left by fossil fuels[1,2].However,owing to the limitation of the wide bandgap (~3.2 eV) of semiconductor TiO2,the DSSCs and photocatalysts absorb only a part of the solar spectrum,suppressing their efficiency[3].In order to enlarge the solar spectrum response,rare earth ions (RE3+) doped anatase TiO2has been widely applied in DSSCs and photocatalysts since TiO2,exhibiting the excellent electron mobility,lower dielectric constant,high chemical and photo stability,a high refractive index at visible wavelength and non-toxicity,successfully combines with the upconverting near infrared (NIR) sunlight into ultraviolet (UV) and visible emissions presented by RE3+ions[4-6].J.Z.Huang and X.J.Xu reported that TiO2:Yb3+/Er3+thin film showed an increased photocatalytic degradation of Rhodamine B[7].F.Trabelsi synthesized the anatase TiO2:Er3+/Yb3+nano-spherical particles to compensate the mismatch of the solar spectrum in NIR range and further enhance the efficiency of optoelectronic devices[8].It has been reported by P.Qu that the introduction of TiO2:Yb3+/Er3+spheres into the photoanodes of QDSCs increased the photoelectric efficiency by 30%[9].

    Among many RE3+ions,Yb3+/Tm3+codoping system becomes an ideal candidate to obtain the efficient blue and red UC emissions under NIR laser excitation[10,11].This is because the Yb3+ions,which possess a larger absorption cross section of NIR,could efficiently transfer their energy to the Tm3+ions[12,13].However,the low efficiency of UC emissions still limits the practical applications in photoelectric devices.It is well known that the UC optical characteristics of RE3+ions are affected by the concentrations of RE3+ions,the local environmental around RE3+ions,the crystal surface chemical and the non-radiative energy transition (ET) between RE3+and codoping ions[14].Recently,it is a useful strategy for enhancing the intensities of UC emissions through adding metal ions (Li+,K+and Mg2+) and transition metal ions (Mn2+,Cu2+,Ag+and Au+)[15,16].

    In this work,for the first time to our knowledge,the different mechanisms of Li+,Mn2+and Cu2+ions for improving the UC performance of TiO2:Yb3+/Tm3+are discussed.The crystal structure,the morphology and the optical characteristics of TiO2:Yb3+/Tm3+/Mn+nanocrystals are studied.

    2 EXPERIMENTAL

    2.1 Materials and methods

    TiO2:Yb3+/Tm3+/Mn+(Mn+=Li+,Mn2+and Cu2+) nanocrystals were synthesized by the hydrothermal method.Firstly,2 mol% Yb3+,0.3 mol% Tm3+andxmol% Li+(orymol% Mn2+orzmol% Cu2+) were dissolved into the mixing solution containing 0.6 mL HF and 5 mL TTIP under stirring.The above mixture was transferred into a 100 mL autoclave and heated at 200 °C for 24 h.The white precipitates TiO2:Yb3+/Tm3+/Mn+were centrifuged and washed with deionized water and ethanol for three times,and dried at 80 °C.Here,TiO2:Yb3+/Tm3+/xmol% Li+(xmol%=0.3 and 1.0),TiO2:Yb3+/Tm3+/ymol% Mn2+(ymol%=0.2 and 1.0) and TiO2:Yb3+/Tm3+/zmol% Cu2+(zmol%=0.2,0.4 and 0.6) were respectively named as Li-x,Mn-yand Cu-z.Titanium (IV) isopropoxide (TTIP,99.99%),thulium trinitrate pentahydrate (Tm(NO3)3·5H2O,99.99%),ytterbium nitrate pentahydrate (Yb(NO3)3·5H2O,99.99%) and hydrofluoric acid (HF,40%) were purchased from Aladdin.All chemicals were used without further purification.

    2.2 Characteristics

    The powder X-ray diffraction (XRD) spectra were measured by using a powder diffractometer equipped with CuKαradiation source (40 kV,30 mA,λ=1.5406 ?,Bruker AXS D8-Advance,Germany).The morphologies of all samples were measured by field emission scanning electron microscopy (FESEM,Hitachi SU8010,Japan).The UC emission spectra were measured by a fluorescence spectrometer system (Zolix FV-CFR-A-1707,China) under 980 nm excitation.

    3 RESULTS AND DISCUSSION

    3.1 Structure and morphology

    Fig.1 (a) shows the effect of Cu2+,Mn2+and Li+ions on the crystalline structure of TiO2:Yb3+/Tm3+nanocrystals,which is investigated by using XRD technique.Enlarged patterns of the diffraction peaks at 2θvalues ranging from 22° to 28° of Li-x,Mn-yand Cu-zare displayed in Fig.1 (b-d),respectively.As illustrated in Fig.1(a),the XRD patterns of all samples can be assigned to the anatase phase of TiO2((JCPDS no.21-1272).Obviously,the diffraction peaks at 2θvalues of 25.2°,36.9°,37.8°,38.6°,48.8°,53.9°,55.1°,62.7°,68.8°,70.4° and 75.2° are corresponding to (101),(103),(004),(112),(200),(105),(211),(204),(116),(220) and (215) reflection planes in turn.However,an impurity phase of YbF3(JCPDS No.49-1805) from its 2θreflection at 27.8° and 31.7° is observed in all samples.As shown in Fig.1 (b),compared with the standard JCPDS card of anatase TiO2,the diffraction peaks at 25.2° of Li-0.3 and Li-1.0shift slightly toward smaller angles.As for the introduction of Mn2+ions (shown in Fig.1 (c)),the diffraction peaks still remain at 25.2°.It can be seen from Fig.1 (d) that the (101) peaks of TiO2:Yb3+/Tm3+/Cu2+nanospheres exhibit drastic shift toward larger 2θangles with increasing the concentrations of Cu2+ions.The shifting in the diffraction peaks observed in TiO2:Yb3+/Tm3+/Li+and TiO2:Yb3+/Tm3+/Cu2+is dependence on the ionic radii of doping ions.The substitution of the Ti4+ions (CN=6,r=0.605 ?) by the larger Tm3+(CN=6,r=0.88 ?),Yb3+(CN=6,r=0.868 ?) and Li+(CN=6,r=0.76 ?) results in the expansion in the crystal lattice,leading to the shift of the diffraction peaks towards a lower 2θvalue[17].In contrast,the shift of diffraction peaks to the larger angles in Cu-zcaused by the lattice contraction is attributed to the fact that Cu2+ions with the smaller ionic radii (CN=4,r=0.57 ?) replace Ti4+ions.Consequently,doping Li+and Cu2+ions tailors the local environment of Tm3+ions,which would improve the UC optical properties of TiO2:Yb3+/Tm3+nanocrystals.

    Fig.1.XRD patterns of TiO2:Yb3+/Tm3+ codoped with Li+,Mn2+ and Cu2+ ions.Fig.1 (b-d) the enlarged patterns of the diffraction peaks at 2θ values ranged from 20° to 30° of Li-x,Mn-y and Cu-z,respectively

    The influences of codoping Li+,Mn2+and Cu2+ions on the morphologies of the synthesized TiO2:Yb3+/Tm3+are shown in Fig.2.Utilizing the HF as the capping agent,the uniform nanosheets are investigated in TiO2:Yb3+/Tm3+.Similarly,Li-xand Mn-yalso exhibit the nanosheets in shape,suggesting that Li+and Mn2+ions have little effects on the morphologies of TiO2:Yb3+/Tm3+.Contrastively,Cu2+ions play a key role in the change of the morphology of TiO2:Yb3+/Tm3+.Cu-znanocrystals are featured spheres-like in smaller size,which is consistent with the crystal lattice contraction of TiO2:Yb3+/Tm3+/Cu2+shown in Fig.1 (c).

    Fig.2.SEM images of TiO2:Yb3+/Tm3+ codoped with Cu2+,Mn2+ and Li+ ions

    3.2 Optical characteristics

    Fig.3 (a-c) displays the UC emissions spectra of Li-x,Mn-yand Cu-znanocrystals under 980 nm excitation,respectively.As for all samples,a strong blue UC emission centered at 478 nm and two red UC emissions at 647 nm/695 nm are attributed to the3H4→3H6and1G4→3F4/3F3→3H6transitions of Tm3+ions,respectively[18,19].As shown in Fig.3 (a-b),the intensities of blue and red UC emissions are increased with the increasing concentrations of Li+and Mn2+ions in Li-xand Mn-ynanocrystals.Furthermore,a drastically enhanced red UC emission at 695 nm is observed in Mn-1.0 nanocrystal under 980 nm excitation.Different from codoping Li+and Mn2+ions,the intensities of blue and red UC emissions are increased with Cu2+ions of 0.2 mol%,whereas decreased at higher concentrations of Cu2+ions of 0.4 and 0.6 mol% (Shown in Fig.3 (c)).The effects of Li+,Mn2+and Cu2+ions on the luminescence properties of Tm3+are understood in the next section.

    Fig.3.UC emissions of TiO2:Yb3+/Tm3+ codoped with dopant under 980 nm excitation (a) Li+ ions (b) Mn2+ ions (c) Cu2+ ions

    The energy levels of Yb3+,Tm3+,Mn2+and Cu2+ions,as well as the UC mechanism under 980 nm excitation are shown in Fig.4.The1G4state of Tm3+ions is populated from Yb3+ionsνiaenergy transition (ET) processes of ET1:3H6(Tm3+)+2F5/2(Yb3+) →3H5(Tm3+)+2F7/2(Yb3+),ET2:3F4(Tm3+)+2F5/2(Yb3+) →3F3(Tm3+)+2F7/2(Yb3+) and ET3:3H4(Tm3+)+2F5/2(Yb3+) →1G4(Tm3+)+2F7/2(Yb3+)[20,21].Radiatively relaxing processes from the1G4state to the3H6and3F4states of Tm3+ions,respectively,yield the blue emission at 478 nm and red one at 647 nm.The Tm3+ions at the3F3state decay radiatively to the3H6ground state,producing red UC emission at 695 nm.On the basis of the above analytical results,the mechanism for increased blue and red UC emissions in Li-x(shown in Fig.3(a)) results from the fact that the local environment of Tm3+ions is tailored by adding metal Li+ions because the Li+ion,which is the smallest metallic ion with the smallest cationic radius,is benefit for its movement and localization in the host lattice.In the case of TiO2:Yb3+/Tm3+/Mn2+,it is proposed that the bidirectional energy transfer between Yb3+-Mn2+dimer and Tm3+ions contributes to the increase in blue and red UC emissions.The bidirectional energy transfer processes include the ET4 process (1G4(Tm3+)+|2F7/2,6A1g>(Mn2+-Yb3+dimer) →3H6(Tm3+)+|2F7/2,4T1g>(Mn2+-Yb3+dimer)) and back energy transfer (BET) process (3H6(Tm3+)+|2F7/2,4T1g>(Mn2+-Yb3+dimer) →3F2(Tm3+)+|2F7/2,6A1g>(Mn2+-Yb3+dimer))[22,23].Since the rate of energy transition is inversely proportional to the distance between two neighboring ions,the increasing concentrations of Mn2+ions shorten the distance between Tm3+and Mn2+ions,resulting in the fast ET and BET processes in Mn-1.0 nanocrystal.Consequently,the decreased blue emission at 476 nm and red one at 647 nm are obtained in Mn-1.0.Additionally,the increased populations of |2F7/2,4T1g>of Mn2+-Yb3+dimer,which arose from the ground state absorption (GSA:|2F7/2,6A1g>→ |2F5/2,6A1g>) and excited state absorption (ESA:|2F5/2,6A1g>→ |2F7/2,4T1g>),lead to an efficient BET process to also populate the3F3state of Tm3+ions.Subsequently,the Tm3+ions at the3F3state partly decay radiatively to the ground3H6state,yielding the strongly increased red UC emission at 695 nm in Mn-1.0,and partly are promoted to the UC emitting1G4state via ET5 process.The ET5 process would compensate the reduced populations of1G4state due to the ET4 process.Consequently,the overall results are the increased blue (476 nm)/red (647 nm) UC emissions and a drastic enhancement of red emission at 695 nm,as illustrated in Fig.3(b).As for the TiO2:Yb3+/Tm3+/Cu2+nanocrystals (seen in Fig.3(c)),the enhanced intensities of blue and red UC emissions in Cu-0.2 are assigned to the modified local environment around Tm3+ions induced by the localized surface plasmon resonance (LSPR) of Cu2+ions.And the ET6 process from 3d104s0state of the Cu2+ions to the1G4state of Tm3+ions also contributes to populate the1G4state.

    Fig.4.Energy levels of Yb3+,Tm3+,Mn2+ and Cu2+ ions,as well as the UC mechanism under 980 nm excitation

    4 CONCLUSION

    In summary,the different effects of Li+,Mn2+and Cu2+ions on the phase structure,morphology and optical characteristics of anatase TiO2:Yb3+/Tm3+are investigated.It has been shown that TiO2:Yb3+/Tm3+codoped with Li+and Mn2+ions display the nanosheets in shape,and TiO2:Yb3+/Tm3+/Cu2+exhibits the spheres-like in smaller size.The XRD diffraction peaks at 25.2° shift slightly toward lower angles in TiO2:Yb3+/Tm3+/Li+,and almost remain unchanged for TiO2:Yb3+/Tm3+/Mn2+,while shows a drastic shift to larger 2θangles with increasing the Cu2+ion concentrations.Li+,Mn2+and Cu2+ions in anatase TiO2:Yb3+/Tm3+present the dissimilar mechanisms for the enhancement of UC emissions.The increased blue and red UC emissions in TiO2:Yb3+/Tm3+/Li+nanosheets are due to the tailored local environment around Tm3+ions by adding Li+ions.In the case of TiO2:Yb3+/Tm3+/Mn2+nanosheets,the BET process of3H6(Tm3+)+|2F7/2,4T1g>(Mn2+-Yb3+dimer) →3F2(Tm3+)+|2F7/2,6A1g>(Mn2+-Yb3+dimer) is responsible for the drastically strong red UC emission at 695 nm.As for sphere-like TiO2:Yb3+/Tm3+/Cu2+,the synergistic effects of the LSPR of Cu2+ions and the energy transfer process from 3d104s0state of the Cu2+ions to the1G4state of Tm3+ions are responsible for the increased intensities of blue and red UC emissions under 980 nm excitation.

    kizo精华| 亚洲精品在线美女| 国产精品国产av在线观看| 精品国产一区二区三区久久久樱花| 只有这里有精品99| www.精华液| av不卡在线播放| 国产爽快片一区二区三区| 欧美变态另类bdsm刘玥| a级毛片在线看网站| 啦啦啦在线观看免费高清www| 亚洲欧美一区二区三区久久| 国产亚洲精品第一综合不卡| videosex国产| 亚洲av成人精品一二三区| 亚洲欧美日韩高清在线视频 | 亚洲国产欧美在线一区| www.熟女人妻精品国产| 我的亚洲天堂| 成人18禁高潮啪啪吃奶动态图| 免费久久久久久久精品成人欧美视频| 欧美日韩亚洲国产一区二区在线观看 | 亚洲第一av免费看| 在线观看一区二区三区激情| 天天影视国产精品| avwww免费| 一区二区日韩欧美中文字幕| av在线老鸭窝| 久热这里只有精品99| 国产成人一区二区在线| 久久鲁丝午夜福利片| 人人妻人人爽人人添夜夜欢视频| 日本黄色日本黄色录像| 国产亚洲欧美在线一区二区| 亚洲av日韩精品久久久久久密 | 婷婷色综合www| 日本五十路高清| 看十八女毛片水多多多| 免费不卡黄色视频| 国产精品久久久久成人av| 成人国产一区最新在线观看 | 久久精品亚洲熟妇少妇任你| 性色av一级| 老熟女久久久| 国产成人系列免费观看| 亚洲av成人不卡在线观看播放网 | 久久天躁狠狠躁夜夜2o2o | 国产一区二区三区综合在线观看| 少妇人妻 视频| 亚洲,一卡二卡三卡| 免费看av在线观看网站| 亚洲久久久国产精品| 日本黄色日本黄色录像| 久久精品人人爽人人爽视色| 亚洲成色77777| 高清黄色对白视频在线免费看| 国产97色在线日韩免费| 丝袜脚勾引网站| 久久精品熟女亚洲av麻豆精品| 免费观看av网站的网址| 黑人猛操日本美女一级片| 国产精品久久久久久精品电影小说| 日本欧美视频一区| 亚洲av国产av综合av卡| 国产av国产精品国产| 黄色 视频免费看| 精品少妇黑人巨大在线播放| 欧美成狂野欧美在线观看| 久久影院123| 国产视频一区二区在线看| 国产91精品成人一区二区三区 | 夫妻性生交免费视频一级片| 日韩大片免费观看网站| 9热在线视频观看99| 国产淫语在线视频| 电影成人av| 日本猛色少妇xxxxx猛交久久| 美女国产高潮福利片在线看| 1024香蕉在线观看| 欧美日韩一级在线毛片| 一区二区三区乱码不卡18| 国产野战对白在线观看| 夫妻性生交免费视频一级片| 免费久久久久久久精品成人欧美视频| 激情视频va一区二区三区| 深夜精品福利| 极品人妻少妇av视频| 99九九在线精品视频| 新久久久久国产一级毛片| 久久人妻福利社区极品人妻图片 | 欧美变态另类bdsm刘玥| 中文字幕人妻熟女乱码| 咕卡用的链子| 两个人免费观看高清视频| 欧美亚洲 丝袜 人妻 在线| 黄片播放在线免费| 日韩制服丝袜自拍偷拍| 国产成人精品久久二区二区91| 国产精品免费大片| 热re99久久精品国产66热6| 亚洲精品美女久久久久99蜜臀 | 欧美av亚洲av综合av国产av| 男女边摸边吃奶| 制服人妻中文乱码| 男人舔女人的私密视频| 人人妻人人澡人人爽人人夜夜| 国产一区二区在线观看av| 欧美日韩国产mv在线观看视频| 久久久国产欧美日韩av| 亚洲黑人精品在线| 高潮久久久久久久久久久不卡| 欧美成人精品欧美一级黄| 日韩熟女老妇一区二区性免费视频| 日韩制服骚丝袜av| 曰老女人黄片| 热99久久久久精品小说推荐| 最黄视频免费看| 亚洲av片天天在线观看| av欧美777| 嫁个100分男人电影在线观看 | 精品国产乱码久久久久久男人| 日韩大片免费观看网站| 99热全是精品| 亚洲人成77777在线视频| 一本—道久久a久久精品蜜桃钙片| 免费日韩欧美在线观看| 亚洲,欧美精品.| 别揉我奶头~嗯~啊~动态视频 | 国产在线一区二区三区精| 一级毛片黄色毛片免费观看视频| 欧美另类一区| 亚洲国产中文字幕在线视频| 一边摸一边做爽爽视频免费| 天天添夜夜摸| 中文字幕最新亚洲高清| 精品亚洲乱码少妇综合久久| 人成视频在线观看免费观看| 亚洲精品久久午夜乱码| 精品亚洲乱码少妇综合久久| 亚洲精品日韩在线中文字幕| 亚洲av片天天在线观看| 热99久久久久精品小说推荐| 精品久久久久久电影网| 亚洲精品第二区| 中文字幕人妻丝袜一区二区| 各种免费的搞黄视频| 欧美日韩精品网址| 性高湖久久久久久久久免费观看| 国产精品人妻久久久影院| 又紧又爽又黄一区二区| 午夜福利免费观看在线| 啦啦啦在线观看免费高清www| 侵犯人妻中文字幕一二三四区| 亚洲成av片中文字幕在线观看| 视频区图区小说| av电影中文网址| av欧美777| 国产精品成人在线| 欧美性长视频在线观看| 亚洲精品美女久久久久99蜜臀 | 国产淫语在线视频| 成人手机av| 男男h啪啪无遮挡| 亚洲国产毛片av蜜桃av| 午夜av观看不卡| 日日夜夜操网爽| 午夜福利视频在线观看免费| 免费看十八禁软件| 精品久久久精品久久久| 国产成人一区二区在线| 大片电影免费在线观看免费| 飞空精品影院首页| 欧美精品人与动牲交sv欧美| 99国产精品99久久久久| 国产午夜精品一二区理论片| 国产成人91sexporn| a级毛片黄视频| 高清视频免费观看一区二区| 国产精品亚洲av一区麻豆| 亚洲精品第二区| 女性生殖器流出的白浆| 国产激情久久老熟女| 久久久久久免费高清国产稀缺| 老司机影院毛片| 777米奇影视久久| 五月天丁香电影| 久久久久久免费高清国产稀缺| 国产日韩一区二区三区精品不卡| 在现免费观看毛片| 三上悠亚av全集在线观看| 久久天堂一区二区三区四区| 99国产精品一区二区蜜桃av | 亚洲成av片中文字幕在线观看| 在线看a的网站| 色精品久久人妻99蜜桃| 国产精品一国产av| 99久久99久久久精品蜜桃| 国产欧美日韩一区二区三区在线| 夫妻性生交免费视频一级片| 99久久精品国产亚洲精品| 免费在线观看日本一区| 中文字幕制服av| 国产精品.久久久| 亚洲国产av新网站| 老司机亚洲免费影院| 赤兔流量卡办理| 日韩av在线免费看完整版不卡| 日韩av免费高清视频| 亚洲午夜精品一区,二区,三区| 欧美老熟妇乱子伦牲交| 国产精品成人在线| 91精品伊人久久大香线蕉| 丝袜在线中文字幕| 另类亚洲欧美激情| 麻豆av在线久日| 看免费av毛片| 久久人人97超碰香蕉20202| 国产亚洲欧美在线一区二区| 日韩大片免费观看网站| 国产精品免费视频内射| 男女午夜视频在线观看| 99国产精品一区二区蜜桃av | 老司机深夜福利视频在线观看 | 黑丝袜美女国产一区| 亚洲国产av影院在线观看| 国产免费视频播放在线视频| 精品亚洲乱码少妇综合久久| 日韩熟女老妇一区二区性免费视频| 日韩伦理黄色片| 日韩免费高清中文字幕av| 午夜免费观看性视频| 亚洲av欧美aⅴ国产| 国产精品一区二区在线不卡| 每晚都被弄得嗷嗷叫到高潮| 久久亚洲国产成人精品v| 婷婷色综合大香蕉| 亚洲精品国产av成人精品| 午夜免费男女啪啪视频观看| 久久久久久久久久久久大奶| av一本久久久久| 婷婷色av中文字幕| 亚洲,欧美,日韩| 亚洲av国产av综合av卡| 男女边吃奶边做爰视频| 久久久久久人人人人人| 日本黄色日本黄色录像| 亚洲欧美成人综合另类久久久| 少妇猛男粗大的猛烈进出视频| 精品亚洲成国产av| 亚洲精品自拍成人| 亚洲精品av麻豆狂野| 亚洲中文字幕日韩| 国产精品二区激情视频| 十分钟在线观看高清视频www| 亚洲欧美激情在线| 亚洲成色77777| 免费av中文字幕在线| 国产无遮挡羞羞视频在线观看| 国产成人一区二区在线| 免费看十八禁软件| 一级毛片电影观看| 国产精品99久久99久久久不卡| 人妻 亚洲 视频| 亚洲黑人精品在线| 成人影院久久| 韩国高清视频一区二区三区| 国产精品秋霞免费鲁丝片| 我的亚洲天堂| 美女视频免费永久观看网站| 精品少妇黑人巨大在线播放| 国产欧美日韩综合在线一区二区| 99九九在线精品视频| 久久国产精品男人的天堂亚洲| 国产精品 国内视频| 欧美大码av| 国产亚洲精品第一综合不卡| 人人妻人人澡人人看| 一级黄色大片毛片| 老鸭窝网址在线观看| 王馨瑶露胸无遮挡在线观看| 亚洲av日韩精品久久久久久密 | 精品亚洲成国产av| 老司机午夜十八禁免费视频| 在线亚洲精品国产二区图片欧美| 亚洲天堂av无毛| 老司机亚洲免费影院| 久久女婷五月综合色啪小说| 国产1区2区3区精品| 国产不卡av网站在线观看| 中文字幕色久视频| 丝袜喷水一区| 成人国产av品久久久| 日日夜夜操网爽| 蜜桃在线观看..| 中文精品一卡2卡3卡4更新| 国产欧美日韩一区二区三区在线| 69精品国产乱码久久久| 国产无遮挡羞羞视频在线观看| 天天躁夜夜躁狠狠久久av| 天天躁日日躁夜夜躁夜夜| 国产一区二区三区综合在线观看| 精品一区二区三区av网在线观看 | 成年人午夜在线观看视频| 亚洲人成77777在线视频| 久久青草综合色| a级片在线免费高清观看视频| 久久久国产一区二区| 91成人精品电影| 国产国语露脸激情在线看| 亚洲精品在线美女| 国产色视频综合| 又紧又爽又黄一区二区| 亚洲精品日韩在线中文字幕| 一级黄色大片毛片| 亚洲精品日韩在线中文字幕| 亚洲五月色婷婷综合| 天天操日日干夜夜撸| 亚洲自偷自拍图片 自拍| 亚洲成色77777| 亚洲 欧美一区二区三区| 亚洲国产精品999| www.精华液| 免费少妇av软件| 黄色片一级片一级黄色片| 国产一级毛片在线| 男人操女人黄网站| 少妇粗大呻吟视频| 国产欧美日韩综合在线一区二区| 国产欧美日韩一区二区三区在线| 免费在线观看黄色视频的| 欧美日韩黄片免| 这个男人来自地球电影免费观看| 亚洲专区国产一区二区| 这个男人来自地球电影免费观看| 麻豆乱淫一区二区| 国产精品国产三级专区第一集| 欧美日韩精品网址| 日韩av不卡免费在线播放| 成年人午夜在线观看视频| 天堂中文最新版在线下载| 女人爽到高潮嗷嗷叫在线视频| 视频区欧美日本亚洲| 啦啦啦中文免费视频观看日本| 人妻一区二区av| 在线观看国产h片| 国产精品久久久人人做人人爽| 成人三级做爰电影| h视频一区二区三区| 啦啦啦在线观看免费高清www| 欧美精品高潮呻吟av久久| 少妇人妻久久综合中文| 51午夜福利影视在线观看| 国产精品欧美亚洲77777| 美女午夜性视频免费| 久久久久视频综合| 久久国产精品男人的天堂亚洲| 少妇的丰满在线观看| 国产亚洲av片在线观看秒播厂| 久久久精品国产亚洲av高清涩受| 97在线人人人人妻| 成人国语在线视频| 天天影视国产精品| 欧美中文综合在线视频| 赤兔流量卡办理| 欧美另类一区| 国产伦理片在线播放av一区| 色视频在线一区二区三区| 免费在线观看完整版高清| 国产日韩一区二区三区精品不卡| 中文字幕人妻丝袜一区二区| 亚洲,一卡二卡三卡| 黄色视频不卡| 男男h啪啪无遮挡| videosex国产| av电影中文网址| 国产有黄有色有爽视频| 欧美人与性动交α欧美软件| 久久99一区二区三区| 老司机影院成人| 日本a在线网址| 女性被躁到高潮视频| 国产福利在线免费观看视频| 午夜激情av网站| 日韩av不卡免费在线播放| 少妇 在线观看| 亚洲一区二区三区欧美精品| 丰满饥渴人妻一区二区三| 久久99精品国语久久久| 999精品在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲 国产 在线| 国产精品秋霞免费鲁丝片| 亚洲精品一区蜜桃| 亚洲精品乱久久久久久| h视频一区二区三区| 一级毛片电影观看| 男女床上黄色一级片免费看| 日日摸夜夜添夜夜爱| 久久久国产精品麻豆| 亚洲av片天天在线观看| 性色av乱码一区二区三区2| 国产精品久久久久成人av| 高清黄色对白视频在线免费看| 成年人午夜在线观看视频| 亚洲av欧美aⅴ国产| 亚洲专区国产一区二区| 欧美成狂野欧美在线观看| 每晚都被弄得嗷嗷叫到高潮| 菩萨蛮人人尽说江南好唐韦庄| 国产野战对白在线观看| 2018国产大陆天天弄谢| 久久久欧美国产精品| 国产精品一区二区在线不卡| 欧美日本中文国产一区发布| 亚洲成人手机| 国产成人精品久久久久久| 手机成人av网站| 又大又爽又粗| 久久久久久人人人人人| 国产成人免费观看mmmm| 精品一品国产午夜福利视频| 欧美久久黑人一区二区| 成年人免费黄色播放视频| 啦啦啦视频在线资源免费观看| 国产成人精品在线电影| 老司机影院成人| 麻豆av在线久日| 久久精品久久久久久久性| 观看av在线不卡| 亚洲 国产 在线| 女人精品久久久久毛片| 国产主播在线观看一区二区 | 成人亚洲精品一区在线观看| 婷婷色综合www| 欧美精品一区二区大全| 性色av一级| 亚洲人成电影免费在线| 无遮挡黄片免费观看| 熟女少妇亚洲综合色aaa.| 考比视频在线观看| 啦啦啦中文免费视频观看日本| 久久女婷五月综合色啪小说| 在现免费观看毛片| 超色免费av| 欧美成人精品欧美一级黄| 日韩制服骚丝袜av| 男女无遮挡免费网站观看| 国产高清videossex| 人人妻人人爽人人添夜夜欢视频| 亚洲成人手机| 欧美在线一区亚洲| 美女大奶头黄色视频| 高清欧美精品videossex| 交换朋友夫妻互换小说| 国产精品一二三区在线看| 婷婷色综合大香蕉| 无遮挡黄片免费观看| 亚洲欧洲日产国产| 国产欧美日韩精品亚洲av| 精品高清国产在线一区| 久久99一区二区三区| 国产日韩欧美视频二区| av福利片在线| 亚洲欧美色中文字幕在线| 国产亚洲午夜精品一区二区久久| 高清视频免费观看一区二区| 久久精品国产综合久久久| 男女免费视频国产| 啦啦啦啦在线视频资源| 操美女的视频在线观看| 成年动漫av网址| 久久热在线av| 黑丝袜美女国产一区| 男人爽女人下面视频在线观看| 最新的欧美精品一区二区| 国产高清视频在线播放一区 | 亚洲精品国产av成人精品| 久久免费观看电影| 丝袜在线中文字幕| 亚洲精品乱久久久久久| a级片在线免费高清观看视频| 黄色毛片三级朝国网站| 国产免费福利视频在线观看| 午夜两性在线视频| 亚洲av成人精品一二三区| 欧美在线黄色| 国产精品一区二区免费欧美 | 午夜老司机福利片| 日韩电影二区| 午夜免费鲁丝| 性色av乱码一区二区三区2| 99热全是精品| 精品久久久久久电影网| 80岁老熟妇乱子伦牲交| 啦啦啦视频在线资源免费观看| 欧美xxⅹ黑人| 建设人人有责人人尽责人人享有的| 日本一区二区免费在线视频| 日韩视频在线欧美| 两个人看的免费小视频| 国产成人精品在线电影| 亚洲欧美精品综合一区二区三区| 亚洲熟女精品中文字幕| 在线观看一区二区三区激情| 黄片播放在线免费| 欧美激情高清一区二区三区| 亚洲五月色婷婷综合| 视频区图区小说| 亚洲精品一区蜜桃| 国产成人91sexporn| 国产亚洲av片在线观看秒播厂| 精品久久久久久电影网| 老熟女久久久| 精品国产一区二区久久| 成人国产一区最新在线观看 | 好男人电影高清在线观看| 99热国产这里只有精品6| 成年av动漫网址| 亚洲国产av新网站| 国产在线一区二区三区精| 国产一区二区在线观看av| 极品少妇高潮喷水抽搐| 亚洲免费av在线视频| 波多野结衣av一区二区av| 狂野欧美激情性xxxx| 国产xxxxx性猛交| 亚洲精品国产一区二区精华液| 成年动漫av网址| 国产精品欧美亚洲77777| 国产不卡av网站在线观看| 国产一区二区 视频在线| www.999成人在线观看| 国产av国产精品国产| 精品久久久久久久毛片微露脸 | 999精品在线视频| 亚洲成国产人片在线观看| 亚洲精品久久成人aⅴ小说| 久久青草综合色| 亚洲七黄色美女视频| 亚洲精品中文字幕在线视频| 久久久久国产一级毛片高清牌| 尾随美女入室| 我要看黄色一级片免费的| 十八禁人妻一区二区| av在线app专区| 成人影院久久| 精品国产一区二区三区久久久樱花| 亚洲五月色婷婷综合| 日本vs欧美在线观看视频| 热99久久久久精品小说推荐| 欧美日韩国产mv在线观看视频| 日韩大码丰满熟妇| 国产亚洲精品第一综合不卡| 丰满迷人的少妇在线观看| 久久人妻福利社区极品人妻图片 | 99热网站在线观看| 亚洲精品一二三| 亚洲欧美一区二区三区久久| 大香蕉久久成人网| 天天影视国产精品| 日日爽夜夜爽网站| 日韩一本色道免费dvd| 好男人电影高清在线观看| 欧美另类一区| 最近中文字幕2019免费版| 国产日韩欧美视频二区| 18禁裸乳无遮挡动漫免费视频| 亚洲久久久国产精品| 在线 av 中文字幕| 欧美日韩一级在线毛片| 欧美变态另类bdsm刘玥| 一区二区三区乱码不卡18| 中文欧美无线码| 国产一区有黄有色的免费视频| 欧美日韩视频高清一区二区三区二| 狠狠婷婷综合久久久久久88av| 欧美亚洲日本最大视频资源| 一边亲一边摸免费视频| av有码第一页| 一级黄片播放器| 久久久久久亚洲精品国产蜜桃av| 男女床上黄色一级片免费看| 亚洲一区中文字幕在线| 国产成人一区二区三区免费视频网站 | 久久人妻熟女aⅴ| 欧美 日韩 精品 国产| 欧美另类一区| 久久中文字幕一级| 免费在线观看影片大全网站 | 精品亚洲成国产av| 亚洲欧美日韩高清在线视频 | 国产男女超爽视频在线观看| 国产亚洲一区二区精品| 成人三级做爰电影| 色94色欧美一区二区| 亚洲欧美激情在线| av又黄又爽大尺度在线免费看| 日韩,欧美,国产一区二区三区| 国产精品一区二区精品视频观看| 亚洲av男天堂| 国产一区二区三区综合在线观看| 国产黄色视频一区二区在线观看| 亚洲av男天堂| 日本黄色日本黄色录像| 久热爱精品视频在线9| 在线av久久热| 19禁男女啪啪无遮挡网站| 秋霞在线观看毛片| 亚洲国产欧美在线一区| videosex国产| 国产无遮挡羞羞视频在线观看| 亚洲国产中文字幕在线视频| 人体艺术视频欧美日本| 晚上一个人看的免费电影| av一本久久久久|