• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Driven injection of a polymer into a spherical cavity:A Langevin dynamics simulation study?

    2021-10-28 07:18:14ChaoWang王超FanWu吳凡XiaoYang楊肖YingCaiChen陳英才andMengBoLuo羅孟波
    Chinese Physics B 2021年10期
    關鍵詞:王超英才

    Chao Wang(王超) Fan Wu(吳凡) Xiao Yang(楊肖) Ying-Cai Chen(陳英才) and Meng-Bo Luo(羅孟波)

    1Department of Physics,Taizhou University,Taizhou 318000,China

    2Department of Physics,Zhejiang University,Hangzhou 310027,China

    Keywords: polymer,injection,simulation,free energy

    1. Introduction

    Polymers (such as DNA and RNA) can be driven to translocate through nanopores from thecisspace to thetransspace. It relates to many biological processes and technological applications,such as ejection of DNA from a virus capsid into host cells,[1]transportation of proteins,and RNA through channels in biological membranes,[2–4]DNA packaging,[5–8]genome mapping,[9–12]gene therapy,[13]new method for DNA sequencing and separation,[14–23]etc. Accordingly, the dynamical properties of the translocation process have been studied extensively in the last two decades.

    Since the size of the pore connecting thecisspace and thetransspace is much smaller than that of the polymer in the free space,it is very difficult for the polymer to translocate through the pore spontaneously. Therefore, polymer translocation is often driven by an external force,which can be provided by the electrical field,[20–23]the flow of fluid,[24,25]binding particles,[26–28]the attraction of the membrane on thetransside,[29,30]or the spatial confinement,[31–37]etc.In the studies of polymer translocation,the dependence of the translocation time(τ)on related parameters have attracted lots of attention.

    For the case that both thecisspace and thetransspace are half-infinite,it was found thatτas a function of the polymer lengthNand the driving forcefcan be expressed asτ∝Nα f?β. For driven translocation by a transmembrane force,Kantor and Kardar predictedα=1+ν,whereνis the Flory exponent.[38]However,based on the idea of tensile force propagation theory,the value ofαwas found to range between 2νand 1+ν,depending on the strength of the driving force.[39–41]Recent simulation results showed thatαchanges from 1.37 for faster translocation to 1+νfor slower translocation.[42–44]The value ofαwas also found to be dependent on the polymerpore interaction. Specifically,α=1.35 for a noninteracting pore,andα=1.22 for strong attraction pores.[45]For the exponentβ,it was predicted thatβ~1 for small driving forces andβ~0.8 for large driving forces.[46–48]

    The translocation time is also influenced by the confinement of thecisspace and thetransspace. For polymers in a confinedcisspace, the confinement of thecisside is conducive to the translocation process, and the polymer can escape from thecisside spontaneously by the so-called entropic force.[31]Park and Sung have first studied the escape of an ideal polymer from a spherical cavity through a small hole via the mean first passage time, and found that the confinement gives rise to the asymmetries of the entropic free energy landscape and then drives the polymer to the outside of the sphere.[32]It was found that there is a simple scaling relation between the translocation time(τ)and the polymer length(N),i.e.,τ~N2,for small spheres.[32]However,when the excluded volume interaction between polymer segments is taken into account,the confinement effect of the sphere on the polymer is strengthened,and several different scaling relations between the translocation time,the polymer length,and the initial volume fraction were found.[49,50]Recently, Huang and Hsiao performed an elaborate simulation study on the ejection of polymer from a spherical cavity, and showed clearly that the ejection process comprises mainly three stages: the prior stage,the confined stage,and the nonconfined stage.[37]In the confined stage and the nonconfined stage,the ejection velocity shows different scaling relations on the number of monomer in the sphere,respectively.[37]

    On the contrary, when a polymer moves into a confinedtransspace,it will lose lots of accessible configurations,leading to a large reduction of the conformation entropy. Therefore, the confinement of thetransside will produce an effective resistive force on the polymer during the translocation process,and the successful translocation can be achieved only under large external driving forces.[5–8]By using the stochastic rotation dynamics algorithm, Aliet al.have investigated the packaging of flexible polymers into a capsid.[51]It was found that there are several pauses during the packaging process due to the motor losing grip of the monomers and the capsid’s resistive force, and the packaging rate shows an approximately linear decrease with the number of packed monomers, which is in consistence with the experimental findings.[5]Moreover,the force needed to pack the chain was found to increases sharply near the full packaging.[51]Zhang and Luo have studied the driven translocation of a polymer into a circular confinement through a small pore, and found that the scaling exponent of the translocation time with the polymer length is dependent on the driving force and the monomer density of the whole polymer in the circular confinement.[52]Other studies indicated that the packaging of polymers into a cavity is a complex dynamical process, which is affected by many other factors, such as the attractive interaction between the polymer and the inner wall of the cavity,[30]the geometry of the cavity,[53–55]the flexibility of the polymer,[51,56]the temperature of the solvent,[57]the topology of the polymer,[58]etc.

    Though the injection of polymer into a small spherical cavity has been studied by several groups, most of the works are based on an assumption that the polymer can be injected into the confinement completely under the driving force. In fact,under a constant driving force,whether the complete injection occurs or not is dependent on the polymer length and the radius of the cavity. In our recent work, we have studied the spontaneous injection of a flexible polymer into a spherical cavity from a long channel.[59]It was found that there is an obvious transition for polymer from the partial injection to the complete injection with increasing the radius of the cavity.However,the transition is not clear yet for forced cases.

    In this work, the driven injection of a polymer into a spherical cavity is studied by using Langevin dynamics simulation.The transition radius of the cavity,at which the polymer changes from a partial injection state to a complete injection state, is defined based on the variation of the complete injection probability with the radius of the cavity. The dependence of the transition radius as well as the complete injection time on the polymer length and the driving force are mainly investigated. Several scaling relations are found and further confirmed by the free energy analysis and a simple kinetic model.

    2. Simulation model and method

    Simulations are carried out in three-dimensional (3D)space. Figure 1 shows a sketch of the model system. A half infinite space (thecisside) and a spherical cavity (thetransside)with radiusRare connected by a short cylindrical channel with radiusRpand lengthL. The boundary of the model system(the wall,the channel and the cavity)is continuous.

    Fig.1. A sketch of the simulation model system. The cis side(a half infinite space)and the trans side(a spherical cavity with radius R)are connected by a short cylindrical channel with radius Rp and length L. Inside the channel,each monomer of the polymer is driven by a constant force f in the direction of the x axis.

    In our simulations,the polymer is modelled by a coarsegrained off-lattice bead spring model, in which the polymer with lengthNis composed ofNidentical monomers connected by bonds sequentially. The interaction between monomers is described by the repulsive Weeks–Chandler–Andersen(WCA)potential,

    wherekis the spring constant,randR0represent the bond length and the maximum bond length,respectively.

    The interactions between monomers and the boundary of the simulation system (the wall, the channel, and the cavity)are also described by the WCA potential(Eq.(1)),whererrepresents the nearest distance between monomers and the boundary of the system.Besides,any monomer inside the cylindrical channel experiences a driving forcefdr=f?x. Here,fis the driving force strength,and ?xis a unit vector in the direction of thexaxis. Therefore, the polymer is driven to inject into the spherical cavity.

    The motion of each monomer is described by the Langevin equation

    wheremis mass of the monomer,ηis the friction coefficient, andFTis the random force with〈FT(t)〉= 0 and〈FT(t)·FT(t′)〉= 6ηkBTδ(t ?t′), wherekBis the Boltzmann constant andTis the temperature. For the numerical integration of Eq. (3), we use the velocity Verlet algorithm with a time step ?t=0.005.

    At the beginning of the simulation,the polymer is generated at thecisside with the head monomer in the middle of the cylindrical channel. We at first setf=0 and run a long time (>106) of Brownian motion to equilibrate the polymer under the constraint that the head monomer is fixed. Once the polymer is at the equilibrium state, we switch on the driving force and release the head monomer, and let the polymer run a long enough time (te>107) to reach the final steady-state,at which the number of packed monomers will no longer increase. We then counter the number of monomers(min)in the cavity. Ifmin

    In this work,σ,m, andkBTare chosen as the units of length, mass, and energy, respectively. So, the time scale and the force scale are given bytLJ= (mσ2/kBT)1/2andf0=kBT/σ, respectively. In the simulation, we fixε0=1,k=15,R0=2,η=1. Besides,to ensure the monomers of the polymer move across the channel one by one,we adopt a narrow and short cylindrical channel withRp=1.5 andL=2. In our model,the short-range repulsive interaction between polymer and the spherical cavity is WCA potential (Eq. (1)) withrcutoff=21/6σ, so the distribution of monomers in the cavity with radiusRis roughly confined in a spherical space with radiusR ?rcutoff/2≈R ?0.56,i.e., the effective radius of the spherical cavity isRe≈R ?0.56. This correction becomes important for the calculation of the monomer density in the cavity and the theoretical analysis in our work.

    3. Results and discussion

    3.1. Complete injection probability and transition radius of the cavity

    Though the polymer is driven by a driving force in our work,it is not necessary that the polymer can be injected into the cavity completely. For the given polymer length and driving force,whether the complete injection could occur or not is dependent on the radius of the cavityR. Qualitatively, whenRis small, there is no enough space for the cavity to accommodate the whole polymer,so it is difficult for the polymer to enter into the cavity completely. Only whenRis large enough,can the whole polymer be driven into the cavity.

    Figure 2 shows the dependence of the complete injection probabilityPinon the radius of the sphereRfor different polymer lengthsNatf=0.5. We can see two polymer states: a partial injection state withPinroughly zero at smallRand a complete injection state withPinroughly 1 at largeR. There is an obvious sharp transition from the partial injection state to the complete injection state at a specialR. To give approximately the radius of the spherical cavity where the transition occurs,we here define the transition radiusRCat whichPin=0.5,[59]as shown in Fig.2,and the corresponding effective transition radius isReC=RC?0.56.

    Fig. 2. The dependence of the complete injection probability Pin on the radius of the sphere R for different polymer lengths N,where the driving force f =0.5. The radius where Pin=0.5 is defined as the transition radius RC.

    The effective transition radius of the cavityReCincreases withNincreasing,because long polymers need large cavities to accommodate all the monomers. The monotonous increase ofReCwithNis presented in Fig. 3 for differentf. We find thatReCas a function ofNcan be specifically expressed by a simple scaling relationReC∝N0.34. This is different from the well known relation between the average radius of gyration(Rg)and the polymer lengthRg~Nν,with the Flory exponentν=0.6 for self-avoiding polymer and 0.5 for ideal polymer.The value ofνis related to the excluded-volume interactions between different monomers and also the configurations of the polymer.In our study,when the whole polymer is injected into the spherical cavity with radiusRec, the polymer is squeezed and then the excluded-volume interaction between monomers will be partially screened,meanwhile,the polymer configurations withRglarger than the radius of the sphere will be forbidden, which results thatRecis smaller thanRgand the scaling exponent (0.34) forRecwithNis smaller thanν. Quantitatively,the scaling relation betweenRecandNcan be obtained from the free energy landscape based on the blob theory which will be shown below.

    Fig.3.The log–log plot of the effective transition radius ReC versus the polymer length N for different driving forces f.

    ReCis also dependent on the driving forcef. Figure 4 shows the dependence ofReConffor differentN. Withfincreasing,ReCdecreases and saturates gradually at largef. In our study,due to the confinement of the cavity,the number of the configuration of polymer inside the cavity decreases,leading to an entropic force.The entropic force plays a role as a resisted force for the injection process,so the external force must be bigger than the entropic force to drive the whole polymer into the spherical cavity. Qualitatively, the entropic force is related to the radius of the spherical cavity. For large cavities,the entropic force is small,and then a relatively small driving force can driven the whole polymer into the cavity. While for small cavities,the entropic force is big,and then a large driving force is needed to complete the injection. Therefore, we find that the transition radius of the cavity decreases with the driving force increasing,i.e.,larger force leads to smaller transition radius for a given polymer. Specially,ReCas a function offcan be expressed asReC∝f?δin both small and moderatefregions. In the smallfregion (f<0.15),δ~0.27,while in the moderatefregion(0.15

    For any givenNandf, we have also calculated the monomer densityφC=Nσ3/8R3eCwhen the whole polymer is in the spherical cavity with the corresponding effective radiusReC.φCis nearly independent ofN,but it increases withfincreasing and saturates gradually at largef,as shown in the inset of Fig.4. This indicates that the polymer in the cavity is compressed gradually withfincreasing. Whenfis large,φCis big,and then the polymer can not be compressed further,resulting thatφCandReCsaturate gradually at largef,as shown in Fig.4. In small and moderatefregions,φCas a function offcan also be expressed by a scaling relationφC∝fκ. Specifically,κ~0.8 in the smallfregion(f<0.15)andκ~0.5 in the moderatefregion(0.15

    Fig.4. The log–log plot of the effective transition radius ReC versus the driving force f for different polymer lengths N. The inset shows the log–log plot of the monomer density φC versus the driving force f for different polymer lengths N.

    whereC0is a constant andνis the Flory exponent (ν=0.6 for self-avoiding polymer, and 0.5 for ideal polymer). In Eq. (4), the first term represents the increase in free energy due to the cost of confiningmmonomers in the spherical cavity with effective radiusRe,[60]and the second term is the decrease in free energy due to the work of the driving force. For any givenN,R, andf, the free energyFreaches its minimum at the final steady-state, and the corresponding number of monomers (min) in the spherical cavity is determined by(?F/?m)m=min=0,i.e.,

    Obviously, the polymer can be completely injected only whenRe≥ReC.

    3.2. Complete injection time

    Based on the results ofRCin Subsection 3.1, we next study the complete injection timeτfor polymer injecting into spherical cavity with radiusR>RC. To check our simulation results, we at first calculate the complete injection time (τ0)for the extreme caseR →∞,which corresponds to the driven translocation of a polymer through a small pore connecting two half-infinite spaces. As an example, figure 5 shows the dependence ofτ0on the polymer lengthNfor different driving forcesfand a very largeR=10000. We can see thatτ0is dependent onNandf, and it as a function ofNandfcan be specifically expressed asτ0∝N1.36f?1, which is in good agreement with the simulation results of Luoet al.[44]

    Fig. 5. The dependence of the product fτ0 on polymer length N for different driving forces f, where τ0 represents the injection time for very large R=10000.

    Figure 6 shows the dependence of the injection timeτon the radius of the cavityRfor different polymer lengthsN. We can see thatτdecreases monotonously with increasingR,due to the decrease of the confinement effect of the sphere on the polymer withRincreasing. For givenfandR,τincreases monotonously with increasingN,because long polymers have more monomers to be injected into the cavity. In addition,τdecreases with increasingf(results not shown),i.e.,the polymer moves faster and faster with the driving force increasing.

    Fig.6. The dependence of the injection time τ on the radius of the cavity R for different polymer lengths N, where the driving force f =0.5. The inset shows the product (1 ?τ0/τ)f as a function of the monomer density in the cavity φ.

    The dependence ofτonR,N, andfcan be roughly understood by the following kinetic model. From Eq. (4), the increase of the free energy (?F) when the whole polymer is injected into the cavity can be expressed as

    Substitutingν=0.6 into Eq.(12),we have(1?τ0/τ)f∝φ1.25, which is in good agreement with the simulation result at smallφ(< 0.1), as shown in the inset of Fig. 6. Whenφis big,the excluded-volume interaction between monomers is screened, and the value ofνshould be 0.5,[34]leading to(1?τ0/τ)f∝φ2, which is also in good agreement with the simulation result at bigφ(>0.1), as shown in the inset of Fig.6.

    4. Conclusion

    Using Langevin dynamics simulation,we investigate the injection of a self-avoiding polymer into a spherical cavity under a driving force.With increasing the radius of the cavity,the polymer undergoes a sharp transition from the partial injection to the complete injection at the transition radius (ReC). The dependence ofReCon the polymer length(N)and the driving force(f)can be described by a scaling relationReC∝N1/3f?δwithδ~4/15 for smallfandδ~1/6 for moderatef. In addition, the monomer density (φC) of the whole polymer in the cavity with radiusReCis nearly independent ofN,but increases with increasingf,which can be specifically expressed asφC∝fκwithκ~4/5 for smallfandκ~1/2 for moderatef. The scaling relations can be understood by using the free energy landscape, and the changes of values ofδandκwithfare found to be attributed to the screening of the excludedvolume interaction between monomers. The complete injection time(τ)is also calculated and found to show monotonous dependence on the polymer length, the driving force, and the radius of the cavity, which can be interpreted by a simple kinetic model.

    猜你喜歡
    王超英才
    王超美術作品
    電影文學(2022年16期)2022-09-26 03:38:52
    誠聘英才
    防爆電機(2022年4期)2022-08-17 06:00:02
    峨眉武術傳承人王超的堅守
    招攬英才
    招攬英才
    招攬英才
    延伸小游戲
    Three-Dimensional Planning of Arrival and Departure Route Network Based on Improved Ant-Colony Algorithm
    今天我請客
    東方娃娃(2011年12期)2012-01-18 05:03:12
    跳繩
    東方娃娃(2011年12期)2012-01-18 05:03:12
    亚洲国产高清在线一区二区三| 久久久久久久久大av| 午夜精品国产一区二区电影 | 蜜桃久久精品国产亚洲av| 深爱激情五月婷婷| 99久久精品热视频| 99久久九九国产精品国产免费| 欧美xxxx性猛交bbbb| 国产一区亚洲一区在线观看| 久久热精品热| 色综合色国产| 亚洲美女搞黄在线观看| 国精品久久久久久国模美| 搡女人真爽免费视频火全软件| 亚洲最大成人中文| 少妇人妻精品综合一区二区| 青春草亚洲视频在线观看| 国产av码专区亚洲av| 亚洲在线观看片| a级毛色黄片| 男男h啪啪无遮挡| 在线观看美女被高潮喷水网站| 五月玫瑰六月丁香| 午夜福利在线在线| .国产精品久久| 亚洲性久久影院| 国产在线一区二区三区精| 亚洲人与动物交配视频| 国产淫片久久久久久久久| 久久午夜福利片| 91在线精品国自产拍蜜月| 2018国产大陆天天弄谢| 久久久成人免费电影| av在线观看视频网站免费| 岛国毛片在线播放| 久久这里有精品视频免费| av在线app专区| 青春草国产在线视频| 亚洲精品日本国产第一区| 性插视频无遮挡在线免费观看| 国产视频首页在线观看| 五月玫瑰六月丁香| 又大又黄又爽视频免费| 91午夜精品亚洲一区二区三区| 夫妻性生交免费视频一级片| 特级一级黄色大片| 欧美潮喷喷水| 精品一区二区三卡| 免费看av在线观看网站| 亚洲欧美中文字幕日韩二区| 69人妻影院| 成人特级av手机在线观看| 精品久久国产蜜桃| 亚洲欧美成人综合另类久久久| 亚洲av中文av极速乱| 亚洲av日韩在线播放| 亚洲成人av在线免费| 国产成人一区二区在线| 高清毛片免费看| 亚洲精品日本国产第一区| 各种免费的搞黄视频| av国产免费在线观看| 日韩人妻高清精品专区| 亚洲av二区三区四区| 成人一区二区视频在线观看| 亚洲av在线观看美女高潮| 亚洲av免费高清在线观看| 狂野欧美激情性xxxx在线观看| 国产成人91sexporn| 成人毛片a级毛片在线播放| 免费人成在线观看视频色| 久久精品国产亚洲av天美| 久久久久国产精品人妻一区二区| av国产精品久久久久影院| 中文精品一卡2卡3卡4更新| 一级毛片 在线播放| 日本色播在线视频| 汤姆久久久久久久影院中文字幕| 免费观看av网站的网址| 网址你懂的国产日韩在线| 国产高清三级在线| 成年免费大片在线观看| 国产淫片久久久久久久久| 精品久久久久久久末码| 啦啦啦在线观看免费高清www| 97人妻精品一区二区三区麻豆| 91久久精品电影网| 国产一区二区在线观看日韩| 欧美亚洲 丝袜 人妻 在线| 欧美区成人在线视频| 国产一区有黄有色的免费视频| 青春草国产在线视频| 久久久色成人| 一区二区三区四区激情视频| 麻豆国产97在线/欧美| 国产精品av视频在线免费观看| 中文字幕av成人在线电影| 你懂的网址亚洲精品在线观看| 精品人妻一区二区三区麻豆| 婷婷色av中文字幕| 大香蕉97超碰在线| 精品午夜福利在线看| 又大又黄又爽视频免费| 午夜福利在线在线| 国产乱人视频| 制服丝袜香蕉在线| 看十八女毛片水多多多| 亚洲色图av天堂| 国产精品不卡视频一区二区| 在线观看人妻少妇| 丝瓜视频免费看黄片| 亚洲成人一二三区av| 亚洲一级一片aⅴ在线观看| 自拍偷自拍亚洲精品老妇| 自拍偷自拍亚洲精品老妇| 2021天堂中文幕一二区在线观| 国产永久视频网站| av网站免费在线观看视频| 日本黄大片高清| 纵有疾风起免费观看全集完整版| 国产午夜福利久久久久久| 国产免费福利视频在线观看| 大陆偷拍与自拍| 白带黄色成豆腐渣| 五月开心婷婷网| 人人妻人人爽人人添夜夜欢视频 | 80岁老熟妇乱子伦牲交| 亚洲国产成人一精品久久久| 一级av片app| 啦啦啦啦在线视频资源| 日韩一区二区三区影片| 六月丁香七月| 国产探花在线观看一区二区| 国语对白做爰xxxⅹ性视频网站| 国产男女内射视频| 久久亚洲国产成人精品v| 天堂网av新在线| 成人美女网站在线观看视频| 国产日韩欧美在线精品| 国产免费又黄又爽又色| 男女那种视频在线观看| 伊人久久国产一区二区| 国产 一区 欧美 日韩| 免费看不卡的av| 国产爱豆传媒在线观看| 亚洲一区二区三区欧美精品 | 色播亚洲综合网| av国产精品久久久久影院| 91久久精品国产一区二区成人| 精品少妇久久久久久888优播| 亚洲av一区综合| 国产精品爽爽va在线观看网站| 欧美国产精品一级二级三级 | 一级黄片播放器| 亚洲欧美一区二区三区国产| 亚洲国产精品成人久久小说| 99久国产av精品国产电影| 久久午夜福利片| 婷婷色综合www| 亚洲精品国产av成人精品| 亚洲四区av| 亚洲四区av| 国产成人aa在线观看| 国产精品国产三级国产专区5o| 秋霞在线观看毛片| 黄色视频在线播放观看不卡| 一本一本综合久久| 简卡轻食公司| 国产亚洲一区二区精品| 香蕉精品网在线| 国产精品蜜桃在线观看| 又爽又黄无遮挡网站| av黄色大香蕉| 亚洲成人av在线免费| 日韩伦理黄色片| 亚洲欧美成人综合另类久久久| 伊人久久精品亚洲午夜| 国产伦在线观看视频一区| 一个人看视频在线观看www免费| 国产91av在线免费观看| 一级黄片播放器| 2021少妇久久久久久久久久久| 大片免费播放器 马上看| 成人无遮挡网站| 午夜福利视频1000在线观看| 国产精品嫩草影院av在线观看| 亚洲国产精品成人久久小说| 青春草国产在线视频| 久久久久久久国产电影| 亚洲精品乱码久久久v下载方式| 97在线人人人人妻| 新久久久久国产一级毛片| 亚洲在线观看片| 中文资源天堂在线| 免费看光身美女| 精品国产一区二区三区久久久樱花 | 在线亚洲精品国产二区图片欧美 | 国产69精品久久久久777片| 中文字幕制服av| videos熟女内射| 国产免费又黄又爽又色| 80岁老熟妇乱子伦牲交| 赤兔流量卡办理| www.av在线官网国产| 九九在线视频观看精品| 成年女人看的毛片在线观看| 亚洲电影在线观看av| 寂寞人妻少妇视频99o| 永久免费av网站大全| 纵有疾风起免费观看全集完整版| 免费高清在线观看视频在线观看| 亚洲自拍偷在线| 久久99热这里只有精品18| 国产av不卡久久| 少妇裸体淫交视频免费看高清| 日本av手机在线免费观看| 亚洲国产最新在线播放| 99久久精品国产国产毛片| 2021少妇久久久久久久久久久| 国产精品嫩草影院av在线观看| 日本黄色片子视频| 嘟嘟电影网在线观看| 精品人妻一区二区三区麻豆| 赤兔流量卡办理| h日本视频在线播放| 中文天堂在线官网| 久久99热这里只有精品18| 久久久久久国产a免费观看| 午夜亚洲福利在线播放| 美女内射精品一级片tv| 一本一本综合久久| 欧美3d第一页| 国产成人精品一,二区| 亚洲,欧美,日韩| 99视频精品全部免费 在线| 天天躁夜夜躁狠狠久久av| 日韩中字成人| 精品久久久久久久久av| 免费观看无遮挡的男女| 黄色视频在线播放观看不卡| 欧美成人一区二区免费高清观看| 麻豆成人午夜福利视频| 国产久久久一区二区三区| 久久久精品免费免费高清| 黄色日韩在线| 久久久久久九九精品二区国产| 亚洲精品,欧美精品| 亚洲av男天堂| 国产综合精华液| 大香蕉97超碰在线| 人妻系列 视频| 久久精品国产亚洲av天美| 国产在线男女| 国产一区二区三区综合在线观看 | 天美传媒精品一区二区| 插阴视频在线观看视频| 超碰97精品在线观看| 又爽又黄无遮挡网站| av黄色大香蕉| 老师上课跳d突然被开到最大视频| 一级av片app| 国产探花在线观看一区二区| 人人妻人人看人人澡| 精品国产露脸久久av麻豆| 在线观看av片永久免费下载| 国产一区二区三区av在线| 亚洲精品色激情综合| 欧美日韩视频高清一区二区三区二| 18禁裸乳无遮挡免费网站照片| 日本黄色片子视频| 中文在线观看免费www的网站| 免费人成在线观看视频色| 亚洲精品亚洲一区二区| 国产成年人精品一区二区| 午夜亚洲福利在线播放| 亚洲综合精品二区| 特大巨黑吊av在线直播| 97在线人人人人妻| 欧美老熟妇乱子伦牲交| 精品国产露脸久久av麻豆| 在线观看av片永久免费下载| av播播在线观看一区| 国产伦精品一区二区三区视频9| 麻豆国产97在线/欧美| 大片免费播放器 马上看| 干丝袜人妻中文字幕| 熟女av电影| 99精国产麻豆久久婷婷| 精品久久久久久久久亚洲| 久久久精品94久久精品| videossex国产| 性色av一级| 国产淫语在线视频| 国产毛片a区久久久久| 婷婷色麻豆天堂久久| av又黄又爽大尺度在线免费看| 亚洲aⅴ乱码一区二区在线播放| 建设人人有责人人尽责人人享有的 | 国产极品天堂在线| 五月玫瑰六月丁香| 一级毛片我不卡| 一级av片app| 久久久欧美国产精品| 两个人的视频大全免费| www.色视频.com| 久久97久久精品| 香蕉精品网在线| 中国美白少妇内射xxxbb| 成人毛片a级毛片在线播放| 亚洲美女视频黄频| 听说在线观看完整版免费高清| av女优亚洲男人天堂| 九九爱精品视频在线观看| 伊人久久精品亚洲午夜| 免费高清在线观看视频在线观看| 丰满人妻一区二区三区视频av| 久久97久久精品| 欧美3d第一页| 日韩,欧美,国产一区二区三区| 汤姆久久久久久久影院中文字幕| 亚洲欧洲日产国产| 亚洲最大成人手机在线| 老女人水多毛片| 欧美区成人在线视频| 国产精品久久久久久精品电影| 卡戴珊不雅视频在线播放| 如何舔出高潮| 中文资源天堂在线| 日产精品乱码卡一卡2卡三| 精品一区在线观看国产| 午夜爱爱视频在线播放| 国产成人精品一,二区| 亚洲国产高清在线一区二区三| 亚洲怡红院男人天堂| 综合色丁香网| 51国产日韩欧美| 久久这里有精品视频免费| 欧美精品一区二区大全| 2018国产大陆天天弄谢| 国产精品熟女久久久久浪| 国产一区有黄有色的免费视频| 三级经典国产精品| 欧美bdsm另类| 日日摸夜夜添夜夜爱| 特大巨黑吊av在线直播| 日韩国内少妇激情av| 亚洲av国产av综合av卡| 男女边吃奶边做爰视频| 久久久色成人| 中文字幕人妻熟人妻熟丝袜美| 欧美人与善性xxx| 黄片无遮挡物在线观看| 夫妻午夜视频| 欧美日韩一区二区视频在线观看视频在线 | 可以在线观看毛片的网站| 色网站视频免费| 国产精品秋霞免费鲁丝片| 久久精品久久精品一区二区三区| 久久精品夜色国产| 秋霞伦理黄片| 国内少妇人妻偷人精品xxx网站| 黑人高潮一二区| 欧美日韩国产mv在线观看视频 | 久久久色成人| 亚洲av在线观看美女高潮| 伊人久久精品亚洲午夜| 深夜a级毛片| 亚洲aⅴ乱码一区二区在线播放| 在线亚洲精品国产二区图片欧美 | 欧美一级a爱片免费观看看| 国产男女超爽视频在线观看| 一区二区av电影网| 欧美成人一区二区免费高清观看| 尤物成人国产欧美一区二区三区| 国产高清不卡午夜福利| 少妇人妻一区二区三区视频| 国产精品av视频在线免费观看| 校园人妻丝袜中文字幕| 国产精品伦人一区二区| 夜夜爽夜夜爽视频| 色5月婷婷丁香| 日产精品乱码卡一卡2卡三| 精品人妻偷拍中文字幕| 婷婷色综合大香蕉| 久久久久久久精品精品| 欧美 日韩 精品 国产| 岛国毛片在线播放| 国产黄频视频在线观看| 亚洲av男天堂| 午夜老司机福利剧场| 狂野欧美激情性bbbbbb| 亚洲美女搞黄在线观看| 能在线免费看毛片的网站| av免费在线看不卡| 制服丝袜香蕉在线| 国产色爽女视频免费观看| 新久久久久国产一级毛片| 国产欧美亚洲国产| 日韩制服骚丝袜av| 国产免费一区二区三区四区乱码| 国产成人a区在线观看| 永久免费av网站大全| 一级a做视频免费观看| 99久久精品国产国产毛片| 天堂网av新在线| 纵有疾风起免费观看全集完整版| 国产高清国产精品国产三级 | a级毛色黄片| 国产成人freesex在线| 看非洲黑人一级黄片| av国产久精品久网站免费入址| videos熟女内射| 午夜福利网站1000一区二区三区| 国产一区二区亚洲精品在线观看| 人妻系列 视频| 亚洲最大成人中文| 国产伦精品一区二区三区视频9| 国语对白做爰xxxⅹ性视频网站| 成年女人在线观看亚洲视频 | 国产亚洲精品久久久com| 亚洲人成网站高清观看| 人妻夜夜爽99麻豆av| 免费大片18禁| 欧美高清性xxxxhd video| 大话2 男鬼变身卡| 成人漫画全彩无遮挡| 色视频www国产| 黄色日韩在线| 亚洲av免费在线观看| 最近2019中文字幕mv第一页| 内射极品少妇av片p| 久久99热这里只有精品18| 亚洲精品日本国产第一区| 亚洲国产精品999| 七月丁香在线播放| 乱系列少妇在线播放| 日本熟妇午夜| 亚洲av免费在线观看| 水蜜桃什么品种好| 免费大片黄手机在线观看| 爱豆传媒免费全集在线观看| 午夜激情福利司机影院| 国产一区二区三区综合在线观看 | 97在线人人人人妻| 亚洲精品aⅴ在线观看| 国产精品精品国产色婷婷| 丝瓜视频免费看黄片| 天天躁夜夜躁狠狠久久av| 日本爱情动作片www.在线观看| 免费黄频网站在线观看国产| 国产精品国产三级专区第一集| 六月丁香七月| 小蜜桃在线观看免费完整版高清| 99热国产这里只有精品6| 中文乱码字字幕精品一区二区三区| 国产淫语在线视频| 亚洲欧美中文字幕日韩二区| 国产色婷婷99| 亚洲熟女精品中文字幕| 亚洲精品国产av成人精品| 在线播放无遮挡| 99热网站在线观看| 久久精品国产亚洲网站| 国产白丝娇喘喷水9色精品| 精品一区二区免费观看| 国产亚洲av嫩草精品影院| 人妻 亚洲 视频| 亚洲成人中文字幕在线播放| 欧美zozozo另类| 日韩电影二区| 3wmmmm亚洲av在线观看| 毛片女人毛片| 国产精品99久久久久久久久| 一级片'在线观看视频| 久热久热在线精品观看| 夫妻性生交免费视频一级片| 国产精品爽爽va在线观看网站| 亚洲国产精品国产精品| 国内少妇人妻偷人精品xxx网站| 青青草视频在线视频观看| 99热这里只有是精品50| av免费观看日本| 麻豆成人午夜福利视频| 18+在线观看网站| 国产一区二区在线观看日韩| 精品一区二区三区视频在线| 亚洲最大成人中文| 2018国产大陆天天弄谢| 国产91av在线免费观看| 欧美xxⅹ黑人| 亚洲av电影在线观看一区二区三区 | 亚洲成人久久爱视频| 亚洲最大成人中文| 夫妻午夜视频| 欧美日韩亚洲高清精品| 大话2 男鬼变身卡| 91久久精品国产一区二区成人| 久热这里只有精品99| 国产精品秋霞免费鲁丝片| 啦啦啦啦在线视频资源| 国内精品美女久久久久久| 亚洲aⅴ乱码一区二区在线播放| 大又大粗又爽又黄少妇毛片口| 少妇人妻 视频| 亚洲不卡免费看| 亚洲经典国产精华液单| 国产高清国产精品国产三级 | 久久久久国产精品人妻一区二区| 国产精品一区二区在线观看99| 国产综合精华液| 欧美一级a爱片免费观看看| 日韩精品有码人妻一区| 天堂俺去俺来也www色官网| 亚洲成人av在线免费| av在线播放精品| 在线播放无遮挡| 亚洲内射少妇av| 国产亚洲av片在线观看秒播厂| 亚洲真实伦在线观看| 国产亚洲精品久久久com| 一个人看的www免费观看视频| 青青草视频在线视频观看| 联通29元200g的流量卡| 久久久久久久久大av| 在线亚洲精品国产二区图片欧美 | av专区在线播放| 各种免费的搞黄视频| 午夜精品国产一区二区电影 | 精品午夜福利在线看| 高清毛片免费看| 街头女战士在线观看网站| 久久久久性生活片| av.在线天堂| 六月丁香七月| 黄色一级大片看看| 青青草视频在线视频观看| 国产精品人妻久久久久久| 少妇的逼好多水| 久久久a久久爽久久v久久| 少妇人妻 视频| 啦啦啦啦在线视频资源| 交换朋友夫妻互换小说| 亚洲色图综合在线观看| 80岁老熟妇乱子伦牲交| 国产成人精品婷婷| 最近最新中文字幕大全电影3| 精品国产三级普通话版| 欧美3d第一页| 日本与韩国留学比较| 亚洲欧美日韩另类电影网站 | 夜夜爽夜夜爽视频| 久久99热这里只有精品18| 精品99又大又爽又粗少妇毛片| 亚洲成人精品中文字幕电影| 99热全是精品| 久久久久久九九精品二区国产| 国内精品宾馆在线| 全区人妻精品视频| 在线观看免费高清a一片| 一个人看视频在线观看www免费| 亚洲精品国产色婷婷电影| 国产免费又黄又爽又色| 中国三级夫妇交换| 极品少妇高潮喷水抽搐| 亚洲欧洲国产日韩| 国产爽快片一区二区三区| 婷婷色综合大香蕉| 如何舔出高潮| 97人妻精品一区二区三区麻豆| 性色av一级| av播播在线观看一区| 最近的中文字幕免费完整| 免费观看av网站的网址| 精品久久久精品久久久| 久久女婷五月综合色啪小说 | 香蕉精品网在线| 亚洲熟女精品中文字幕| 国产69精品久久久久777片| av播播在线观看一区| 欧美丝袜亚洲另类| 日本黄大片高清| 一本一本综合久久| 国产女主播在线喷水免费视频网站| 国产精品嫩草影院av在线观看| av在线蜜桃| 日本欧美国产在线视频| av在线蜜桃| 国产黄色视频一区二区在线观看| 精品人妻偷拍中文字幕| 熟女人妻精品中文字幕| 日韩一本色道免费dvd| 人妻系列 视频| 亚洲av中文av极速乱| 建设人人有责人人尽责人人享有的 | 日本爱情动作片www.在线观看| 亚洲,欧美,日韩| 亚洲精品久久午夜乱码| 欧美老熟妇乱子伦牲交| 青青草视频在线视频观看| 不卡视频在线观看欧美| 视频中文字幕在线观看| 国产成人精品福利久久| 王馨瑶露胸无遮挡在线观看| 亚洲国产高清在线一区二区三| 在现免费观看毛片| 国产乱人视频| 国产老妇伦熟女老妇高清| 网址你懂的国产日韩在线| 亚洲国产精品成人综合色| 伊人久久精品亚洲午夜| 国产av国产精品国产| h日本视频在线播放| 欧美成人一区二区免费高清观看| 免费av不卡在线播放| 免费观看的影片在线观看|