• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Irradiation behavior and recovery effect of ferroelectric properties of PZT thin films?

    2021-10-28 07:16:28YuZhao趙瑜WenYueZhao趙文悅DanDanJu琚丹丹YueYueYao姚月月HaoWang王豪ChengYueSun孫承月YaZhouPeng彭亞洲YiYongWu吳宜勇andWeiDongFei費(fèi)維棟
    Chinese Physics B 2021年10期
    關(guān)鍵詞:趙瑜丹丹亞洲

    Yu Zhao(趙瑜) Wen-Yue Zhao(趙文悅) Dan-Dan Ju(琚丹丹)Yue-Yue Yao(姚月月) Hao Wang(王豪) Cheng-Yue Sun(孫承月)Ya-Zhou Peng(彭亞洲) Yi-Yong Wu(吳宜勇) and Wei-Dong Fei(費(fèi)維棟)

    1Laboratory for Space Environment and Physical Sciences,Harbin Institute of Technology,Harbin 150001,China

    2School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China

    3National Defense Science and Technology Key Laboratory for Space Materials Behavior and Evaluation,Harbin 150001,China

    4State Kay Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,Harbin 150001,China

    Keywords: proton irradiation,electron irradiation,ferroelectricity

    1. Introduction

    Lead zirconate titanate(PbZrxTi1?xO3,PZT)has several applications in many high-tech fields, such as storage and memory devices, piezoelectricity, electrical acoustical transducer, pyroelectric infrared detectors, and optical waveguide devices.[1]A previous study[2]has shown that ferroelectric materials have excellent radiation resistance;hence,they have broad application prospects in the field of aerospace. PZT films,as a material with a clear physical mechanism,excellent electrical and optical properties, and radiation resistance, are likely to replace the widely used materials, such as Si, SiO2,and GaAs.

    The space environment, where spacecraft operates, is very complex and harsh. Spacecraft and its electronic components are constantly influenced by interference from various harsh environments and some coupling effects in space.[3]The charged particle radiation environment dominated by proton and electron radiations is one of the main environmental factors in near-Earth space. Space environmental effects,such as ionisation,displacement,and single-event effects,can damage spacecraft materials and severely affect the service life and performance of spacecraft.[4]Therefore, research on the electron and proton radiation effects of lead zirconate titanate ferroelectric thin film materials and the annealing recovery behavior of its electrical properties are of great significance for the application of ferroelectric materials in aerospace field,design,and optimization of materials.

    Louet al.[5]studied the total dose effect of electron irradiation of PZT films and devices. They found that an increase in the electron irradiation dose results in a gradual decrease in the area enclosed by the hysteresis loop,and the residual polarizationPr,saturated polarizationPs,and coercive field strengthEcdecrease. Moreover,there is an approximately linear relationship between the decreasing trend and the radiation dose.In addition,they found that PZT fails when the electron radiation dose reaches 1.5×108rad(Si).[6]This indicates that PZT films can resist radiations with a total dose of 108rad (Si).Yanget al.[7]studied the changes of ferroelectric properties of PbZr0.52Ti0.48O3under the total dose ofγ-rays and found that after 300-kGyγirradiation,theProf the PZT film reduced by 35%. There are several studies on the effect of total dose on the ferroelectric properties of PZT thin films under different radiation sources,such asγ-rays,x-rays,and neutrons.[6,8–10]Although the radiation source used and the values obtained both vary,the reports basically arrive at a common conclusion:the resistance of PZT to total dose radiation is better than that of Si,SiO2,and other materials.

    Yanget al.[7]also studied the changes in the PZT film phase structure and scanning electron microscopy surface morphology byγ-irradiation. There was no significant change in the surface morphology as well as the peak intensity, peak position and full width at half maximum (FWHM) in the xray diffraction (XRD) patterns. Baralaet al.[11]studied the change in the FWHM of the PZT(100)diffraction peak after being irradiated by different doses ofγ-rays, and they found that with an increase in the radiation dose, the FWHM of the(100)diffraction peak gradually increases from 0.148 to 0.168 and the crystallinity of the PZT film decreases.

    In this study, we characterized PbZr0.52Ti0.48O3films,which have good ferroelectric properties, to investigate the damage mechanism of electron and proton irradiation in ferroelectric thin films. The ferroelectricity was characterized before and after electron and proton irradiation. Surprisingly,after electron and proton irradiation, the films recovered to a certain extent after heat treatment, but not to the original level. The polarization intensity of the films after electron irradiation decreased continuously with time, whereas their ferroelectricity after proton irradiation was almost destroyed.Electron irradiation not only caused ionization damage to the PbZr0.52Ti0.48O3film but also destroyed its crystal structure under an instantaneous strong electric field. The proton irradiation caused mainly crystal structural damage to the film.

    2. Experimental methods

    We prepared the PbZr0.52Ti0.48O3precursor by dissolving Pb(CH3COO)2·3H2O, C16H36O4Ti, and C12H20O4Zr in CH3OCH2CH2OH and CH3COOH. A PbZr0.52Ti0.48O3film with good crystallinity was obtained by rapid heat treatment at 650°C after spin coating. Phase and stress analyses were performed using the X’Pert x-ray diffractometer produced by Philips, with CuKαtarget source. An element valence-state analysis was conducted on the film using the ESCLAB 250Xi x-ray photoelectron spectrometer (ThermoFisher,United States).The ferroelectric performance of the PZT film was examined using a Radiant Precision LC-type ferroelectric tester. The energy irradiated by protons in the film is 50 keV, and the energy irradiated by electrons is 50 keV–70 keV using the KNΦK-type space environment simulation equipment at National Defense Science and Technology Key Lab for Space Materials Behavior and Evaluation,Harbin Institute of Technology.

    3. Results and discussion

    3.1. Effect of electron irradiation on time evolution process of ferroelectric properties of PZT thin films

    The XRD image of the film (Fig. 1(a)) shows that the annealed PbZr0.52Ti0.48O3exhibited good crystallinity. Figure 1(b) reveals a change in the electric hysteresis loop of the PZT film before and after electron irradiation. The fluence of the irradiation was 7×1015cm?2and the energy was 170 keV.After the irradiation,the hysteresis loop shifted rightward,the coercive field was basically unchanged and the ferroelectricity was preserved, butPmax,Ps, andPrbecame smaller. An instantaneous strong electric field was formed during the electron irradiation, and the PZT film was polarized under the strong electric field,resulting in a bias electric field. The change in maximum polarization intensity ?Pmax(?Pmax=Pmax,i?Pmax,0, wherePmax,iis the maximum polarization value at each moment after electron irradiation andPmax,0is the maximum polarization value of the PZT film before irradiation)of the PZT film after electron irradiation with different energy is shown in Fig. 1(c). The trend of ?Pmaxat every moment after irradiation shows an exponential change.ThePmaxof the PZT film after irradiation decreased continuously and gradually levelled off after a period. The strong electric field during electron irradiation may not only polarize the PZT film but also damage the crystal structure of the PZT.After irradiation for a period,there was a structural damage in the film and the ferroelectricity could not be recovered. As the irradiation energy increased, ?Pmaxafter stabilization gradually decreased. This implies that the greater the energy of the incident electrons, the more thePmaxafter irradiation is lost relative to thePmaxbefore irradiation,that is,the more severe the PZT film is damaged. Figure 1(d) shows the change in the ?Pmaxof the PZT film with time under different electron fluxes. After irradiation, ?Pmaxchanged exponentially with time and different electron irradiation fluences. As time increased, the value of ?Pmaxcgradually decreased to a stable value. As the electron irradiation fluence increased,?Pmaxdecreased;that is,the loss of maximum polarization after irradiation increased with an increase in the fluence.This is because the lattice damage in the PZT film becomes more severe as the irradiation fluence increases. Extrapolating the fitted curve to the time when irradiation is completed(T=0),we can obtain the change in maximum polarization intensity,?Pmax,0,at the time the irradiation is completed. Observations show that as the fluence increased,?Pmax,0gradually decreased.

    Fig.1.(a)XRD image of the PbZr0.52Ti0.48O3 film;(b)electric hysteresis loop of the PZT film before and after irradiation;(c)the change of polarization intensity of the PZT film after electron irradiation with different energies with time;(d)the change of polarization intensity of the PZT film with time under different electron fluxes.

    3.2. Heat treatment recovery of PZT film after electron irradiation

    Figure 2(a)shows the trend of the maximum polarization intensity of the PZT film after electron irradiation with an energy of 90 keV and fluence of 7×1015cm?2after annealing at different temperatures compared with the non-irradiated PZT film (the value atx=0 represents the ratio of the maximum polarization intensity without annealing but electron irradiation to the maximum polarization intensity without irradiation).At annealing temperatures less than 300°C,Pmax/Pmax,0remained almost unchanged, indicating that the ferroelectric properties were not recovered. At annealing temperatures greater than 300°C,Pmax/Pmax,0increased,and the ferroelectric properties began to recover, reaching the maximum at 500°C. Then,Pmax/Pmax,0cwas about 0.87. After annealing at 500°C, the ferroelectricity recovered by 6.4%. However,when the annealing temperature reached 600°C,Pmax/Pmax,0started decreasing and was only 51%after annealing at 700°C.This may be because the Pt top electrode is damaged due to the high temperature, which affects its performance. Heat treatment cannot fully recover the ferroelectric properties of the PZT film after electron irradiation, because the crystal structural damage caused by the electron irradiation in addition to the main ionization damage makes the PZT film unable to restore the original structure under thermal drive.

    Figure 2(b) shows the hysteresis loop after annealing at 500°C in the air and oxygen atmosphere and the hysteresis loop before and after irradiation without annealing. After annealing,the shape of the hysteresis loop was symmetrical,andPmaxandPrincreased. The position of the hysteresis loop also gradually shifted leftward after irradiation, returning to its state before irradiation. However, the hysteresis loops obtained after annealing in the oxygen and air atmosphere at the same temperature overlap,and there was no significant difference in the ferroelectricity recovery. This proves that the oxygen atmosphere has no obvious effect on ferroelectricity recovery. Thus,it is probably the structural damage rather than oxygen vacancies that affected the ferroelectric properties of the PZT film after irradiation.

    Fig.2. (a)The trend of the polarization intensity difference of the PZT film after electron irradiation after annealing at different temperatures;(b)the hysteresis loop after annealing at 500 °C in the air and oxygen atmosphere and the hysteresis loop before and after irradiation without annealing.

    3.3. Effect of proton irradiation on time evolution process of ferroelectric properties of PZT thin films

    The damage on oxides caused by proton irradiation is often much higher than that caused by electron irradiation.Electron irradiation causes mainly ionization damages, whereas proton irradiation causes mainly structural damages, which have a greater impact on the performance of oxides. Figures 3(a) and 3(b) show the hysteresis loop of the PZT film before and after proton irradiation. The proton irradiation energy was 50 keV, and the fluence was 4×1014cm?2and 1.2×1016cm?2,respectively. The PZT film exhibited a fullshaped hysteresis loop before irradiation, andPrandPmaxwere both large. After proton irradiation with a small fluence(4×1014cm?2),although the PZT film sample was still ferroelectric, the shape of the hysteresis loop became thinner and narrower.Pmax,Ps, andPrall reduced significantly andEcbecame smaller. After proton irradiation with a fluence of 1.2×1016cm?2, the hysteresis loop disappeared, andPmax,PsandPrgreatly changed. The change in the ?Pmaxof the PZT film with proton irradiation fluence before and after proton irradiation is shown in Fig. 3(c). As the irradiation fluence increased,?Pmaxgradually decreased;that is,the loss ofPmaxincreases as the fluence increases. The change in ?Pmaxwith time before and after proton irradiation at a fluence of 4×1015cm?2is shown in Fig.3(d). It shows that ?Pmaxwas less than 0 after irradiation, which implies that after proton irradiation, the ferroelectric properties of the PZT film worsened. Comparing the change in ?Pmaxwith time after electron irradiation with different fluences, we found no significant change in ?Pmaxwith time after proton irradiation. This is probably because electron irradiation is mainly ionizing irradiation, thus, the polarization intensity continues to change for a period after irradiation. However,for proton irradiation,structural damages are induced during irradiation, and there are no major changes after the irradiation.

    Fig. 3. Panels (a) and (b) show the hysteresis loop of the PZT film before and after proton irradiations; (c) the change in the polarization intensity difference of the PZT film with proton irradiation fluence before and after proton irradiations;(d)the change in the polarization intensity difference of the PZT film before and after proton irradiations at a fluence of 4×1015 cm?2.

    3.4. Heat treatment recovery of PZT film after proton irradiation

    The ferroelectric properties of the PZT film irradiated by protons with a fluence of 4×1015cm?2after 2-h heat treatment at different temperatures are depicted in Fig.4(a).

    (i)AtT<200°C,there was no significant change in the shape of the hysteresis loop andPmax,Ps,Pr,Ec, and other parameters that characterize the ferroelectric properties after annealing.

    (ii) AtT=300°C, there was still no obvious change in the shape of the hysteresis loop,but the maximum polarization intensity began to increase.

    (iii) AtT> 300°C, as the annealing temperature increased,the shape of the hysteresis loop gradually became full and then slowly returned to the shape before irradiation. The maximum polarization intensity continued to increase as the annealing temperature increased.

    (iv)AtT=500°C,the maximum value ofPmaxwas obtained,and it returned to the level of 71%before irradiation.

    (v) AtT=600°C, the maximum polarization intensity slightly reduced, which may be caused by the melting of the top electrode.

    Fig.4. (a)and(b)The ferroelectric properties of the PZT film irradiated by protons with a fluence of 4×1015 cm?2 after 2-h heat treatment at different temperatures.

    3.5. Effect of proton irradiation on the phase structure of PZT film

    By fine-scanning the (111) XRD characteristic peaks of the non-irradiated and proton-irradiated PZT films, we found that the intensity of the(111)characteristic peaks sharply decreased after irradiation and the crystallinity of the PZT film decreased significantly. The sin2ψmethod was used to determine the residual stress on the PZT film before and after proton irradiation,and the results were analyzed,as shown in Fig.5(b).

    Residual stress can be calculated by the XRD method using the following equation:

    whereKis a fixed value only related to the material and the selected diffraction surface index. Substituting the relevant values into Eq. (2), we obtain thatK=?79.28.Mis the slope of the 2θ–sin2ψline. The slope of the 2θ–sin2ψline for the PZT film before irradiation was positive but became negative after irradiation. BecauseKis negative, the residual stress of the PZT film was negative before irradiation,which implies compressive stress.After proton irradiation,the residual stress became positive,thus,the residual stress became tensile.

    Fig.5. Panels(a)and(b)show the residual stress on the PZT film before and after proton irradiations;panels(c)and(d)show the XPS spectra of the PZT film before and after proton irradiations.

    Proton irradiation produces ionization and displacement effects, electron–hole pairs, interstitial atom–vacancy pairs,etc., which change the valence state of elements and affect the chemical environment around each element. Figures 5(b)and 5(c) show the XPS spectra of Pb and Ti elements in the PZT film before and after proton irradiations after split peak fitting. Figure 5(c) shows absorption peaks corresponding to the Pb element at binding energies of 143.6 eV and 138.6 eV before irradiation, and these two peaks are both Pb2+peaks.Four absorption peaks appeared after irradiation at the binding energies of 137.9, 138.8, 142.8, and 143.7 eV, respectively.After searching the XPS database, we found that the pair of splitting peaks at 137.9 eV and 142.8 eV are the absorption peaks of Pb4+, indicating that part of Pb2+oxidized to Pb4+after proton irradiation. Figure 5(d)shows the XPS spectrum of Ti before and after irradiations.The two absorption peaks of Ti before irradiation are located at 458.9 eV and 464.6 eV,respectively.After irradiation,the peaks shifted to lower binding energies (458.4 eV and 464.1 eV, respectively). The valence state of the Ti element did not change,but the absorption peak broadened,indicating the presence of defects in the PZT film after proton irradiation.

    4. Conclusion and perspectives

    This paper evaluates the changes in the ferroelectric properties of PbZr0.52Ti0.48O3(PZT) films before and after electron and proton irradiations. It clarifies the spatial environmental effects and physical mechanisms of different types of irradiation in PZT films. Both electron and proton irradiations damage the properties of oxides,but the damage mechanisms differ. The ferroelectric properties of the PZT films could not be restored naturally after electron irradiation, which proves that electron irradiation also causes structural damages,in addition to the ionization damage.The ferroelectric properties of the PZT film almost completely disappeared after proton irradiation. The recovery effect after heat treatment in the air and oxygen atmosphere was almost the same, indicating that the irradiation damage was mainly structural rather than oxygenvacancy damage. XPS also revealed that proton irradiation induced a reduction reaction,and part of Pb2+oxidized to Pb4+.

    猜你喜歡
    趙瑜丹丹亞洲
    亞洲自動售貨機(jī)展
    相距多少米
    高中數(shù)學(xué)之美
    趙瑜的三號小鎮(zhèn)
    西湖(2021年6期)2021-06-24 16:02:27
    澄懷觀道畫為寄
    林丹丹
    海峽姐妹(2020年1期)2020-03-03 13:36:06
    A brief introduction to the English Suffix—ive
    亞洲足球
    足球周刊(2016年14期)2016-11-02 11:42:02
    那些早已紅透VOL.03半邊天的亞洲it gril,你都關(guān)注了嗎?
    Coco薇(2015年12期)2015-12-10 03:11:51
    趙瑜是一個有趣的男人
    人妻 亚洲 视频| 美女脱内裤让男人舔精品视频| 中文字幕久久专区| 亚洲国产精品国产精品| 蜜桃久久精品国产亚洲av| 嘟嘟电影网在线观看| 建设人人有责人人尽责人人享有的| 国产美女午夜福利| 丝袜脚勾引网站| 精品人妻熟女av久视频| 老司机亚洲免费影院| 黑人猛操日本美女一级片| 国产一区二区在线观看av| 日韩一本色道免费dvd| 午夜福利在线观看免费完整高清在| 岛国毛片在线播放| 国产在线视频一区二区| av专区在线播放| 高清在线视频一区二区三区| 免费黄频网站在线观看国产| 又爽又黄a免费视频| 黄色欧美视频在线观看| 蜜桃久久精品国产亚洲av| 日韩在线高清观看一区二区三区| 在线播放无遮挡| 在线观看www视频免费| 搡老乐熟女国产| av又黄又爽大尺度在线免费看| 亚洲精品久久午夜乱码| 国产无遮挡羞羞视频在线观看| 欧美变态另类bdsm刘玥| 久久99精品国语久久久| 美女xxoo啪啪120秒动态图| 欧美xxxx性猛交bbbb| 国产一区有黄有色的免费视频| 女人久久www免费人成看片| 亚洲av国产av综合av卡| 黄色怎么调成土黄色| 天堂俺去俺来也www色官网| 久久99热6这里只有精品| 麻豆成人午夜福利视频| 午夜福利视频精品| 多毛熟女@视频| 国产日韩一区二区三区精品不卡 | 伦理电影大哥的女人| 久久女婷五月综合色啪小说| 欧美xxⅹ黑人| av在线观看视频网站免费| 哪个播放器可以免费观看大片| 亚洲美女视频黄频| 亚洲国产欧美在线一区| 我要看日韩黄色一级片| 秋霞在线观看毛片| 99国产精品免费福利视频| 男人添女人高潮全过程视频| 久久久久久久久久人人人人人人| 99热国产这里只有精品6| 国产精品三级大全| 一级黄片播放器| 成人综合一区亚洲| 亚洲精品乱码久久久久久按摩| 大码成人一级视频| 下体分泌物呈黄色| a级一级毛片免费在线观看| 久久鲁丝午夜福利片| 国产男女超爽视频在线观看| 下体分泌物呈黄色| 我的女老师完整版在线观看| 亚洲伊人久久精品综合| av又黄又爽大尺度在线免费看| 欧美精品国产亚洲| 18禁在线播放成人免费| 91久久精品国产一区二区成人| 一本一本综合久久| 国产乱来视频区| 香蕉精品网在线| 亚洲第一av免费看| 国产精品人妻久久久久久| 99视频精品全部免费 在线| 国产永久视频网站| 国产成人免费观看mmmm| 最近中文字幕高清免费大全6| 欧美 亚洲 国产 日韩一| 晚上一个人看的免费电影| 高清视频免费观看一区二区| 亚洲精品日韩av片在线观看| 18禁在线无遮挡免费观看视频| 国产在线一区二区三区精| 亚洲经典国产精华液单| 97超视频在线观看视频| 日韩 亚洲 欧美在线| 人妻 亚洲 视频| 国产精品国产三级专区第一集| 激情五月婷婷亚洲| 热re99久久精品国产66热6| 高清视频免费观看一区二区| 女人精品久久久久毛片| 水蜜桃什么品种好| 亚洲性久久影院| 91aial.com中文字幕在线观看| 免费大片18禁| 亚洲精品中文字幕在线视频 | 五月伊人婷婷丁香| 国产精品熟女久久久久浪| 免费人成在线观看视频色| av网站免费在线观看视频| 97在线视频观看| 水蜜桃什么品种好| 看免费成人av毛片| 国产成人免费观看mmmm| 99热6这里只有精品| 午夜免费男女啪啪视频观看| 欧美精品一区二区免费开放| 好男人视频免费观看在线| 精品99又大又爽又粗少妇毛片| 成人亚洲欧美一区二区av| 七月丁香在线播放| 水蜜桃什么品种好| 免费看光身美女| 国产伦精品一区二区三区视频9| 国产黄片视频在线免费观看| 日日啪夜夜爽| 纵有疾风起免费观看全集完整版| 综合色丁香网| 国产日韩欧美在线精品| av在线观看视频网站免费| 亚洲色图综合在线观看| 成人美女网站在线观看视频| 只有这里有精品99| 国模一区二区三区四区视频| 久久久久久久亚洲中文字幕| 久久99一区二区三区| 高清av免费在线| 狂野欧美白嫩少妇大欣赏| 国产淫语在线视频| 国产 一区精品| 91久久精品国产一区二区成人| 伊人久久国产一区二区| 亚洲精品乱码久久久久久按摩| 校园人妻丝袜中文字幕| 亚洲图色成人| 日韩欧美 国产精品| 久久久国产一区二区| 在线免费观看不下载黄p国产| 午夜福利,免费看| 一区二区三区精品91| 免费观看性生交大片5| 青春草国产在线视频| 中国美白少妇内射xxxbb| 久久99精品国语久久久| 国产免费一区二区三区四区乱码| 久久久久久久亚洲中文字幕| 亚洲精品日韩在线中文字幕| 久久国产亚洲av麻豆专区| 乱码一卡2卡4卡精品| 大陆偷拍与自拍| 日韩三级伦理在线观看| 国产亚洲一区二区精品| 国产成人freesex在线| 99热国产这里只有精品6| 最后的刺客免费高清国语| 九九爱精品视频在线观看| 国产成人精品福利久久| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美一区二区三区国产| 亚洲中文av在线| 久久久久久久久大av| 啦啦啦视频在线资源免费观看| 亚洲美女搞黄在线观看| 欧美三级亚洲精品| 国产av国产精品国产| 一个人免费看片子| 交换朋友夫妻互换小说| 免费观看无遮挡的男女| 久久久精品免费免费高清| 久久国产乱子免费精品| 夜夜骑夜夜射夜夜干| 两个人免费观看高清视频 | 午夜精品国产一区二区电影| 成人毛片a级毛片在线播放| 青春草亚洲视频在线观看| 国产欧美日韩一区二区三区在线 | 我的女老师完整版在线观看| 麻豆乱淫一区二区| 看十八女毛片水多多多| 成人18禁高潮啪啪吃奶动态图 | 国内精品宾馆在线| 国产一级毛片在线| av.在线天堂| 少妇丰满av| 日本爱情动作片www.在线观看| 97精品久久久久久久久久精品| 久久亚洲国产成人精品v| av免费观看日本| 日本欧美国产在线视频| 欧美激情极品国产一区二区三区 | 精华霜和精华液先用哪个| 少妇猛男粗大的猛烈进出视频| 国产成人精品一,二区| 亚洲激情五月婷婷啪啪| 久久 成人 亚洲| 91成人精品电影| 自拍偷自拍亚洲精品老妇| 最近中文字幕高清免费大全6| 在线观看一区二区三区激情| 欧美亚洲 丝袜 人妻 在线| 国产黄片视频在线免费观看| 国产伦精品一区二区三区四那| 国产欧美日韩综合在线一区二区 | 最近中文字幕2019免费版| √禁漫天堂资源中文www| 亚洲成人一二三区av| 久久久国产精品麻豆| 一级a做视频免费观看| 日本黄色片子视频| 边亲边吃奶的免费视频| 国语对白做爰xxxⅹ性视频网站| 亚洲人成网站在线观看播放| 精品一区二区免费观看| 国产亚洲精品久久久com| 亚洲国产精品999| 69精品国产乱码久久久| 水蜜桃什么品种好| 亚洲成人av在线免费| 国产亚洲最大av| 欧美成人精品欧美一级黄| 精品国产一区二区三区久久久樱花| 夫妻午夜视频| 久久精品国产a三级三级三级| 国产女主播在线喷水免费视频网站| 嫩草影院新地址| 亚洲丝袜综合中文字幕| 少妇丰满av| 久久久久国产精品人妻一区二区| 国产欧美亚洲国产| 久久久精品94久久精品| 99热这里只有是精品50| 国内揄拍国产精品人妻在线| 中文乱码字字幕精品一区二区三区| 十八禁网站网址无遮挡 | 国产精品国产av在线观看| 日韩精品有码人妻一区| 亚洲av免费高清在线观看| 亚洲人成网站在线观看播放| 99热网站在线观看| 欧美日韩av久久| 黄色配什么色好看| 免费av中文字幕在线| 亚洲图色成人| 亚洲欧美精品专区久久| 亚洲欧美中文字幕日韩二区| 成人亚洲欧美一区二区av| 亚洲国产精品一区三区| 男女无遮挡免费网站观看| 免费观看a级毛片全部| 在现免费观看毛片| 最近中文字幕2019免费版| 欧美性感艳星| 国产在线一区二区三区精| 久久久国产精品麻豆| 国产高清国产精品国产三级| 内地一区二区视频在线| 成年美女黄网站色视频大全免费 | 香蕉精品网在线| 欧美精品人与动牲交sv欧美| 人妻人人澡人人爽人人| www.av在线官网国产| 九色成人免费人妻av| 免费看日本二区| 亚洲欧美一区二区三区黑人 | 十八禁网站网址无遮挡 | 免费人成在线观看视频色| 在线观看免费日韩欧美大片 | 中文字幕制服av| 高清黄色对白视频在线免费看 | 大香蕉久久网| 中国国产av一级| 高清在线视频一区二区三区| 亚洲美女黄色视频免费看| 国产精品熟女久久久久浪| 日韩,欧美,国产一区二区三区| 午夜久久久在线观看| 九九爱精品视频在线观看| 国产亚洲5aaaaa淫片| 一级毛片我不卡| av视频免费观看在线观看| 国产一区二区在线观看日韩| 国产精品99久久99久久久不卡 | 国产午夜精品久久久久久一区二区三区| 一本大道久久a久久精品| 日韩电影二区| 一区二区av电影网| 久久人人爽人人片av| 免费看光身美女| av天堂久久9| videos熟女内射| 最新中文字幕久久久久| 嘟嘟电影网在线观看| 日韩人妻高清精品专区| 六月丁香七月| 日韩,欧美,国产一区二区三区| 搡老乐熟女国产| av专区在线播放| 亚洲精品色激情综合| 久久精品国产a三级三级三级| 日本色播在线视频| 另类精品久久| 亚洲av中文av极速乱| 老司机亚洲免费影院| 最近中文字幕2019免费版| 国产免费视频播放在线视频| 国产成人精品福利久久| 一二三四中文在线观看免费高清| 欧美日本中文国产一区发布| 久久精品久久精品一区二区三区| 久久久久久久久久成人| 一本色道久久久久久精品综合| 国产深夜福利视频在线观看| 亚洲欧洲国产日韩| 晚上一个人看的免费电影| 久久99蜜桃精品久久| 乱系列少妇在线播放| 男女免费视频国产| 国产精品熟女久久久久浪| 久久国产精品大桥未久av | 国产欧美日韩精品一区二区| 国产男人的电影天堂91| 国产在线一区二区三区精| 欧美精品一区二区大全| 日本欧美国产在线视频| 成人毛片60女人毛片免费| 亚洲欧美清纯卡通| 一级毛片黄色毛片免费观看视频| 亚洲婷婷狠狠爱综合网| 九九在线视频观看精品| 国模一区二区三区四区视频| 国产毛片在线视频| 亚洲av福利一区| 极品少妇高潮喷水抽搐| 亚洲美女视频黄频| av在线app专区| 亚洲av成人精品一二三区| 在线亚洲精品国产二区图片欧美 | 亚洲内射少妇av| av在线老鸭窝| 日韩中文字幕视频在线看片| 国产在线一区二区三区精| 国产一区二区三区av在线| 韩国av在线不卡| 亚洲精品aⅴ在线观看| av不卡在线播放| 99视频精品全部免费 在线| 在线观看免费高清a一片| 亚洲精品一二三| 美女国产视频在线观看| 亚洲人与动物交配视频| 久久99精品国语久久久| 国产亚洲一区二区精品| av免费观看日本| 亚洲精品456在线播放app| 国产午夜精品久久久久久一区二区三区| 久久99热6这里只有精品| 国产亚洲5aaaaa淫片| 三级国产精品片| 国产黄色免费在线视频| 三级国产精品片| 自拍偷自拍亚洲精品老妇| 青春草国产在线视频| 久久99精品国语久久久| 香蕉精品网在线| 婷婷色综合大香蕉| 中文字幕制服av| 99热国产这里只有精品6| 精品99又大又爽又粗少妇毛片| 久久精品久久久久久噜噜老黄| 中文字幕免费在线视频6| 日韩中字成人| 亚洲av在线观看美女高潮| 少妇人妻久久综合中文| 乱人伦中国视频| 亚洲怡红院男人天堂| 欧美成人午夜免费资源| 丰满人妻一区二区三区视频av| 91成人精品电影| 各种免费的搞黄视频| 丝袜喷水一区| 国产亚洲欧美精品永久| 久久久精品免费免费高清| 男女国产视频网站| 熟女av电影| 色哟哟·www| 国产成人午夜福利电影在线观看| 观看美女的网站| 在线精品无人区一区二区三| 午夜福利视频精品| av.在线天堂| 一本一本综合久久| 亚洲精品自拍成人| 韩国av在线不卡| 亚洲美女黄色视频免费看| 另类精品久久| 一区二区av电影网| 97在线人人人人妻| 中国三级夫妇交换| 日韩视频在线欧美| 在线观看国产h片| kizo精华| 日本爱情动作片www.在线观看| 大香蕉久久网| 国产在视频线精品| 国产永久视频网站| 啦啦啦啦在线视频资源| 国产极品粉嫩免费观看在线| 日本五十路高清| 狂野欧美激情性xxxx| 天天影视国产精品| 欧美国产精品一级二级三级| 黄片小视频在线播放| 久久久久久久久免费视频了| 19禁男女啪啪无遮挡网站| 色播在线永久视频| 性色av乱码一区二区三区2| 我要看黄色一级片免费的| 大型av网站在线播放| 97精品久久久久久久久久精品| 免费人妻精品一区二区三区视频| 免费在线观看影片大全网站| 两人在一起打扑克的视频| 丝袜喷水一区| 久久久精品94久久精品| 十八禁网站免费在线| 91精品伊人久久大香线蕉| 欧美日韩亚洲综合一区二区三区_| 热99国产精品久久久久久7| 天堂中文最新版在线下载| a 毛片基地| 18在线观看网站| 美女视频免费永久观看网站| 国产成人免费观看mmmm| 久久精品aⅴ一区二区三区四区| 亚洲欧洲日产国产| 老汉色av国产亚洲站长工具| 美国免费a级毛片| 精品福利永久在线观看| 欧美日韩黄片免| 免费在线观看黄色视频的| 精品人妻一区二区三区麻豆| 老司机午夜福利在线观看视频 | 国产欧美日韩一区二区三 | 少妇精品久久久久久久| 夫妻午夜视频| 成年人免费黄色播放视频| 欧美日韩国产mv在线观看视频| 狠狠婷婷综合久久久久久88av| 啦啦啦在线免费观看视频4| 亚洲第一青青草原| 国产成人精品久久二区二区免费| 国产福利在线免费观看视频| 欧美日韩精品网址| 日本av免费视频播放| 欧美 日韩 精品 国产| 精品久久久久久电影网| 国产野战对白在线观看| 一级片'在线观看视频| 另类亚洲欧美激情| 国产日韩一区二区三区精品不卡| 国产成人精品在线电影| 欧美日韩av久久| 国产黄频视频在线观看| 日本五十路高清| 亚洲国产中文字幕在线视频| 国产一区二区三区综合在线观看| 又黄又粗又硬又大视频| 国产免费福利视频在线观看| 午夜两性在线视频| 久久这里只有精品19| 国产淫语在线视频| 久久99热这里只频精品6学生| 国产成人精品在线电影| 97人妻天天添夜夜摸| 亚洲天堂av无毛| 国产精品影院久久| 黑人猛操日本美女一级片| 一本一本久久a久久精品综合妖精| av在线播放精品| 午夜福利在线免费观看网站| 亚洲自偷自拍图片 自拍| 久久天躁狠狠躁夜夜2o2o| 美女视频免费永久观看网站| 亚洲免费av在线视频| 久久精品熟女亚洲av麻豆精品| 国产片内射在线| 亚洲中文av在线| 欧美国产精品va在线观看不卡| 桃红色精品国产亚洲av| 99久久人妻综合| 午夜久久久在线观看| 99re6热这里在线精品视频| 一区二区三区乱码不卡18| 69av精品久久久久久 | 老汉色av国产亚洲站长工具| 我要看黄色一级片免费的| 十八禁人妻一区二区| 成年av动漫网址| 精品欧美一区二区三区在线| 99re6热这里在线精品视频| 国产在视频线精品| 黄片大片在线免费观看| 国产亚洲av片在线观看秒播厂| 正在播放国产对白刺激| 久久久水蜜桃国产精品网| 亚洲精品国产av成人精品| 国产成人影院久久av| 久久人人97超碰香蕉20202| 2018国产大陆天天弄谢| 久久久久精品人妻al黑| 欧美精品啪啪一区二区三区 | a级毛片黄视频| 免费观看a级毛片全部| 亚洲第一av免费看| 久久99热这里只频精品6学生| 国产有黄有色有爽视频| 九色亚洲精品在线播放| 欧美日韩视频精品一区| 国产野战对白在线观看| 国产日韩一区二区三区精品不卡| 久久中文字幕一级| 午夜两性在线视频| 国产成人免费观看mmmm| 人妻一区二区av| 国产成人一区二区三区免费视频网站| 欧美黑人精品巨大| 国产成人免费无遮挡视频| 久久精品国产亚洲av高清一级| 亚洲精品中文字幕在线视频| 91麻豆av在线| 国产精品九九99| 老熟妇乱子伦视频在线观看 | 九色亚洲精品在线播放| 美女主播在线视频| 亚洲 国产 在线| 国产97色在线日韩免费| 久久中文看片网| 人妻人人澡人人爽人人| 欧美精品人与动牲交sv欧美| 嫩草影视91久久| 高清在线国产一区| 国产av精品麻豆| 日韩中文字幕欧美一区二区| 少妇的丰满在线观看| 免费在线观看完整版高清| 我要看黄色一级片免费的| 制服诱惑二区| 亚洲成人免费av在线播放| 搡老乐熟女国产| 丝袜美腿诱惑在线| 国产亚洲一区二区精品| 久久久久国产一级毛片高清牌| 老汉色av国产亚洲站长工具| 9热在线视频观看99| 人人妻人人澡人人看| 久久毛片免费看一区二区三区| 国产免费一区二区三区四区乱码| 午夜福利在线观看吧| av在线app专区| 青青草视频在线视频观看| 久久精品国产亚洲av高清一级| 久久久久久久大尺度免费视频| 亚洲综合色网址| 国产精品.久久久| 亚洲欧美日韩另类电影网站| 99久久精品国产亚洲精品| 久久天堂一区二区三区四区| 日韩免费高清中文字幕av| tocl精华| 欧美黑人精品巨大| 丰满少妇做爰视频| 亚洲熟女精品中文字幕| 久久国产精品男人的天堂亚洲| 一级毛片精品| 亚洲av国产av综合av卡| 免费黄频网站在线观看国产| 国产精品一区二区在线不卡| 国产男女超爽视频在线观看| 另类精品久久| 亚洲伊人久久精品综合| 亚洲成av片中文字幕在线观看| a级毛片黄视频| 亚洲国产av影院在线观看| 欧美午夜高清在线| 午夜日韩欧美国产| 免费高清在线观看视频在线观看| 免费少妇av软件| 国产成人a∨麻豆精品| 黄片大片在线免费观看| 美女午夜性视频免费| 中文字幕高清在线视频| 久久精品亚洲av国产电影网| 青春草视频在线免费观看| 久久 成人 亚洲| 汤姆久久久久久久影院中文字幕| 天天影视国产精品| 亚洲中文日韩欧美视频| 国产成人影院久久av| 国产xxxxx性猛交| 亚洲av片天天在线观看| 亚洲色图 男人天堂 中文字幕| 久久精品aⅴ一区二区三区四区| 一区二区三区乱码不卡18| 亚洲天堂av无毛| 另类亚洲欧美激情| 欧美性长视频在线观看| 午夜老司机福利片| 日本精品一区二区三区蜜桃| 欧美日韩精品网址|