• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Ni substitution on multiferroic properties in Bi5FeTi3O15 ceramics

    2021-10-28 07:02:58HuiSun孫慧JiayingNiu鈕佳穎HaiyingCheng成海英
    Chinese Physics B 2021年10期
    關(guān)鍵詞:成海張磊小兵

    Hui Sun(孫慧) Jiaying Niu(鈕佳穎) Haiying Cheng(成海英)

    Yuxi Lu(盧玉溪)1, Zirou Xu(徐紫柔)1, Lei Zhang(張磊)1, and Xiaobing Chen(陳小兵)1

    1College of Physics Science and Technology,Yangzhou University,Yangzhou 225002,China

    2School of Sino-German Engineering,Shanghai Technical Institute of Electronics&Information,Shanghai 201411,China

    3National Laboratory of Solid State Microstructures,Nanjing University,Nanjing 210093,China

    Keywords: layer-perovskited oxides,ferroelectricity,weak ferromagnetism,phase transition

    1. Introduction

    Single-phase multiferroics refer to those oxides simultaneously exhibiting ferroelectric (FE), ferromagnetic (FM),and/or ferroelastic properties,which have been widely investigated owing to their potential application in transducers,digital memories, and data storages.[1–4]Nevertheless, it is still a challenge to pursue room-temperature (RT) multiferroics because there is rare multiferroics in nature due to the exclusion between ferroelectricity and ferromagnetism.[5–7]

    By combining magnetic units with ferroelectric matrices at atomic scale,the single-phase multiferroics can be obtained.Bismuth-based layered perovskite Aurivillius phase is such a kind of compounds with formula (BiFeO3)m-Bi4Ti3O12,which have been regarded as a promising candidate for RT multiferroics.[8–11]In this structure, the perovskite-type slabs (Bi2+mTi3FemO3m+10)2?are sandwiched with fluoritetype layers (Bi2O2)2+alongcaxis in a half unit cell.The magnetic transition temperatures of these oxides were reported to be far below RT, i.e., Bi5FeTi3O15(80 K),Bi6Fe2Ti3O18(160 K), and Bi7Fe3Ti3O18(190 K).[8]Then substitution with magnetic ions for Fe or raising the number of magnetic layers were employed to enhance the magnetic properties.[12–24]For instance,four-layered Bi5FeTi3O15(BFTO) showed good ferroelectricity and a high ferroelectric Curie temperature of 1023 K accompanied by a space group transition fromA21amtoI4/mmm.[6]As was reported, substitution with Co for half content of Fe in BFTO can dramatically enhance the magnetic transition temperature far above RT(~618 K),realizing the coexistence of FE and FM at RT.[12,13]And the Co-substituted BFTO showed strong magnetoelectric and magnetodielectric effects.[14]Similarly, obvious ferromagnetism can also be achieved in fivelayered Bi6FeCoTi3O18[15]and Bi6Fe1?xNixTi3O18;[18]sixlayered Bi7Fe1.5Co1.5Ti3O21[19]and Bi7Fe3?xNixTi3O21;[23]and seven-layered Bi9Fe4.7Me0.3Ti3O27(Me=Ni and Co).[22]These results confirmed that Ni substitution can not only induce ferromagnetism but significantly decrease the leakage current. Moreover, it is worth noting that the content of doped magnetic ions has a great influence on the ferroelectric and magnetic properties. Although the magnetic and dielectric properties of four-layered Bi4NdTi3FeO15were investigated,[25,26]their leaky ferroelectric hysteresis loops exhibited poor ferroelectric property. There is still a lack of detailed research on Ni-doped BFTO, such as ferroelectric and magnetic transitions.

    In this paper, we prepared Bi5Fe1?xNixTi3O15(BFNTx,x=0, 0.1, 0.2, 0.3, 0.4, 0.5) ceramics by a sol-gel autocombustion method, and their microstructures, ferroelectric,dielectric,and magnetic properties were investigated in detail.As observed, the Ni content has a major influence on the microstructures and properties of BFTO,and their corresponding mechanisms were discussed. The work may be beneficial to our designing and exploring single-phase Aurivillius multiferroics.

    2. Experimental details

    Bi5Fe1?xNixTi3O15(BFNT-x,x= 0, 0.1, 0.2, 0.3, 0.4,0.5)ceramics were synthesized by the sol-gel auto-combustion method.[27,28]A detailed process is described as follows. Stoichiometric amounts of Bi(NO3)3·5H2O (5 wt% excess) and Fe(NO3)3·9H2O were dissolved in 4 M nitric acid solution,and citric acid C6H8O7·H2O was added. Dripping aqueous ammonia (28% mass fraction) into the above solution to adjust pH value to 6–7. Here the molar ratio of metal ions to citric acid was 1:1. The solution was transferred to an oil bath with stirring at 80°C to obtain dried xerogel. After that, the xerogel was burned at 400°C for 4 h, followed by ground and pre-sintered at 750°C for 6 h. The obtained powders were ground again,subsequently pressed into pellets,whose diameter and thickness were 10 mm and 1 mm,respectively.Finally,the pellets were calcined at 900°C for 4 h in air.

    The microstructures of all the samples were analyzed by x-ray diffractometer (XRD, XRD-7000, SHK, Japan), scanning electron microscope (SEM, TESCAN VEGA3, Czech),and Raman scattering spectra (Renishaw, USA). The valence states of ions were investigated by an x-ray photoelectron spectroscopy(XPS,ESCALAB 250Xi,Thermo Fisher Scientific, USA). The magnetic properties were measured by a vibrating sample magnetometer (VSM, EV7, ADE, USA). To test the electrical properties, the calcined pellets were polished to a thickness of about 0.2 mm, and Ag electrodes were deposited on both sides. The ferroelectric properties of the samples were characterized by using a Precision LC ferroelectric analyzer (Radiant Technology product, USA).The dielectric constant and loss tangent dependent on temperature were measured with a broadband dielectric spectrometer(Novocontrol Technologies,Germany). The thermomagneto-gravimetry (TMG) measurements were performed using thermo-gravimetric analysis (TGA, Q5000IR, USA)technique to measure the samples’weight dependent on temperatures in an applied magnetic field. The measurements were carried out in nitrogen atmosphere with a 0.02 T magnetic field. The ferroelectric transitions were studied by the differential scanning calorimetry (DSC, STA 449 F3 Jupiter,Netzsch,Germany)in the process of a heating and cooling.

    3. Results and discussion

    Figure 1(a) shows the XRD patterns of the BFNT-xceramic samples. All the diffraction peaks of all samples can be detected according to the standard PDF file of Bi5Fe1Ti3O15(JCPDS No.38-1257,space groupA21am). All BFNT-xsamples have a four-layered perovskite structure without other identifiable impurity phases,[12–14]which suggests that Ni successfully entered into B-site to replace Fe. To confirm this,the Bi5Fe0.8Ni0.2Ti3O15was refined using Topas based on the orthorhombic space groupA21am,as exhibited in Fig.1(b),and good agreement between the experimental and calculated pattern is obtained withRwp=8.11%andRp=6.18%.

    Fig. 1. (a) XRD patterns of Bi5Fe1?xNixTi3O15 (x=0–0.5) ceramics,and(b)XRD pattern of Bi5Fe0.8Ni0.2Ti3O15. Circles represent the experimental data,and the calculated data are the continuous line overlapping them. The middle curve indicates the difference between the experimental and calculated data. The lowest vertical bars show the expected reflection.

    Fig.2. Raman scattering spectra of BFNT-x ceramics.

    Figure 3 displays the surface SEM images of BFCT-xsamples. All samples are homogeneous,dense,and randomly oriented,implying good crystallinity. Meanwhile,all the samples have flaky grains with obvious anisotropy. This is the typical characteristics of layered perovskite Aurivillius oxides due to its preferential growth inabplane.[27,28]With the increase of Ni contentx,the grain size firstly increases and then decrease, revealing that Ni doping has an effect on the grain growth.

    To gain the electronic structure information of elements in the samples, x-ray photoelectron spectroscopy (XPS) of BFNT withx=0,0.1,0.3,and 0.5 was carried out,as shown in Fig. 4. According to the report,[36]the Fe 2p3/2peaks located at 709.3 eV and 710.7 eV are ascribed to Fe2+and Fe3+ions, respectively. The experimental Fe 2p3/2peaks shown in Fig.4(a)are located at 710.5–910.6 eV,which means there are both Fe3+and Fe2+ions in the samples. Using the Lorentzian–Gaussian fitting and calculating, the atomic ratio of elements can be determined quantitatively by the ratio of area below the corresponding peak. The calculated ratio of Fe3+to Fe2+is listed in Table 1. It can be seen that a small amount of Ni doping (x<0.1) can inhibit the valence variation of Fe ions. As for the spectra of the Ni 2p3/2in BFNT-0.3 and BFNT-0.5(exhibited in Fig.4(b)), the peaks at 855.1 eV are close to the binding energy of Ni 2p3/2in Ni2O3, illustrating that the Ni ions are in the ionic state of +3.[37]Normally,the oxygen vacancies may be accompanied with the valence change of cations and affect the electrical and magnetic properties.[38]Therefore,the O 1s core-level spectra were analyzed and presented in Fig. 4(c). The deconvoluted peaks located at 529.7 eV and 531.7 eV are assigned to the lattice oxygen (denoted with O[1]) and oxygen vacancies (denoted with O[2]),[39,40]respectively.Here the peaks marked with O[3]are attributed to the absorbed oxygen species. The relative amount of oxygen vacancies can be qualitatively ascertained byIO[2]/IO[1],as shown in Table 1. It is concluded that Ni substitution can largely improve the stability of oxygen ions and reduce the oxygen vacancy concentration.

    Fig.3. Surface SEM images of BFNT-x samples for(a)x=0,(b)x=0.1,(c)x=0.2,(d)x=0.3,(e)x=0.4,and(f)x=0.5.

    Fig.4. 4 High resolution XPS spectra and fitted curve of(a)Fe 2p,(b)Ni 2p,and(c)O 1s of BFNT-x.

    Table 1. The calculated atomic ratios of Fe2+/Fe3+ and IO[2]/IO[1] dependent on Ni content.

    Figure 5(a)exhibits the magnetic hysteresisM–Hcurves of all samples measured at RT, and their enlarged view of central parts are shown in the inset. Forx= 0, 0.4, and 0.5 samples, the linearM–Hplots imply the feature of antiferromagnetism (AFM) or para-magnetism (PM). The otherM–Hplots exhibit typical hysteresis, which clearly indicate the presence of FM moment. However, the magnetization is not saturated even under the higher magnetic field~1 T, revealing that there also exist AFM interactions in these samples.Figure 5(b)summarizes the dependence of remnant magnetization(2Mr)and saturated magnetization(Ms)on Ni content. With the increase of Ni content, both of them firstly increase (x ≤0.2) and then decrease with further more Ni content. The changing trend of the magnetism with increasing Ni content is consistent with that of Bi7Fe3?xNixTi3O21ceramics.[23]Whenx=0.2, 2MrandMsreach the maximum of 0.24 emu/g and 0.68 emu/g,respectively. In this kind of oxides,the magnetism may be mainly affected by the following factors. Firstly,the Fe(Ni)–O6octahedral tilting and distorted crystal structure would bring about canted spin structure. And spin canting of AFM coupling of Fe–O and Ni–O sublattices based on Dzyaloshinsky–Moriya (DM) interactions leads to the present weak ferromagnetism.[15,16,18–24]Secondly, there exist oxygen vacancies in the samples confirmed in XPS results. The magnetic ions are apt to integrate with oxygen vacancies to form the bound magnetic polarons (BMPs),and the interactions between BMPs are ferromagnetic.[41]As discussed above, the oxygen vacancy concentration was depressed by Ni doping,which would decrease this kind of ferromagnetic interactions. Both the aspects above result in the variation of the magnetic properties dependent on Ni content.

    To clarify the magnetic interactions in BFNT,the dependence of the sample’s weight under a magnetic field on temperature was investigated. Figure 6 gives thermo-magnetogravimetry(TMG)and the corresponding differential thermomagneto-gravimetry(DTMG)curves of BFNT-xsamples withx= 0.1, 0.2, and 0.3. Each sample has only one peak,which corresponds to the FM-to-PM phase transition. This means that there does not exist other magnetic impurity phase,demonstrating that the room-temperature weak FM comes from single-phase BFNT.The peaks of BFNT-0.1,BFNT-0.2,and BFNT-0.3 at approximately 824 K, 796.3 K, and 774 K,respectively, are far above RT, leading to the occurrence of weak ferromagnetism at RT.The magnetic transition temperature decreases as the Ni content increases. Generally,the two main factors affecting magnetic transition temperature include lattice distortion and magnetic interaction. Less Ni substitution (x ≤0.1) can dramatically enhance the magnetic transition temperature from 80 K to 824 K and realize the weak ferromagnetism at RT. More Ni content (x>0.1) decreases the magnetic transition temperature,which may be ascribed to the decreased order of the B-site ions and the relative stability of the magnetic structure.[42]As for the lattice distortion,it is affected by the changes of the bond angle and length between coupling magnetic ions,which is also related to the transition temperature from FE to paraelectric phase transition.[14]As reported,the higher ferroelectric transition temperature means the larger structural distortion. Therefore,we will discuss the temperature dependence of the dielectric properties and DSC curves of all samples below.

    Fig.5. (a)Magnetic hysteresis M–H curves measured at RT of SBNT-x samples. (b)The variation of 2Mr and Ms with Ni doping content.

    Fig.6. Weight loss under a magnetic field and DTMG curves of BFNT samples with x=0.1,0.2,and 0.3.

    Figure 7 shows the temperature dependence of dielectric constantεand loss tanδof all BFNT samples from 370 K to 1080 K at different frequencies. All the samples exhibit a similar behavior, and a set of anomalies are observed around 600 K and marked with rectangle. The set of dielectric peak locations of dielectric constant and loss shift toward higher temperature with the increase of frequency, exhibiting a typical thermal-activated relaxation behavior. Whereas,it is difficult to determine the dielectric peak position due to the wide dielectric loss peak. In order to understand the mechanism of this abnormal dielectric behavior, the temperature dependent imaginary partM′′of dielectric modulus for BFNT was studied, depicted in Fig. S1. According to the point defect relaxation theory,the activation energyEaof relaxation units can be calculated by the Arrhenius lawfr=f∞exp(Ea/kBT), wherefrandf∞are the relaxation frequencies of characteristic peak and at infinite temperature,respectively.Tis the temperature of theM′′-peak, andkBis the Boltzmann constant. As displayed in Fig. S2, the activation energiesEaare evaluated to be 0.85 eV, 0.56 eV, 0.57 eV, 0.56 eV, 0.60 eV, and 0.55 eV for the BFNT samples withx=0, 0.1, 0.2, 0.3, 0.4, and 0.5,respectively. These values are close to the migration energy of oxygen vacancies (0.5–1.1 eV),[43,44]indicating that these dielectric anomalies around 600 K are associated with the hopping process of oxygen vacancies.Unfortunately,the FE Curie temperature is not found in the dielectric spectra dependent on temperature from 370 K to 1080 K due to the limit of the dielectric spectrometer. Then DSC traces of all BFNT samples will be studied as follows.

    Figure 8 shows the DSC curves of all BFNT samples.There are two sets of endothermic peaks on heating and two sets of exothermic peaks on cooling for each sample,indicating reversibility of transitions. Both the sets of peaks exhibit thermal hysteresis.For the BFTO sample,the low-temperature endothermic peak located at 1030 K with its corresponding exothermic peak at 1020 K is in a good agreement with the ferroelectric transition accompanied with structural transition from orthorhombic to tetragonal phase.[45]The other hightemperature endothermic peak at 1126 K with its corresponding exothermic peak at 1083 K originates from the lattice expansion of the tetragonal phase. We summarize the temperature of all endothermic and exothermic peaks in Table 2,and define the transition temperature as the average value of the temperature of endothermic and corresponding exothermic peaks. From Table 2,it can be seen that the ferroelectric transition temperature decreases with the increasing Ni content,implying lessen structural distortion.

    Fig.7. The temperature dependence of dielectric constant ε and loss tan δ of all BFNT samples ranging from 370 K to 1050 K at different frequencies.

    Fig.8. DSC curves of all BFNT samples.

    Table 2. The detected transition temperature of all BFNT samples.

    Fig. 9. (a) Polarization versus electric field (P–E) hysteresis loops of BFNT.(b)The variation of remnant polarization(2Pr)and coercive field(Ec)dependent on Ni content.

    Finally, the ferroelectric hysteresis loops of all samples were measured at RT,as illustrated in Fig.9.For the BFTO,its loop shows round and leaky. After Ni substitution, the ferroelectric remnant polarization as well as the breakdown electric field enhance largely. The values of remnant polarization(2Pr)and coercive field(Ec)firstly increase and then decrease with the increase of Ni content. Whenx=0.2,the 2Prreaches the largest value about 11.6μC/cm2,and the breakdown field also achieves the maximum of 220 kV/cm. As is well known, the ferroelectric property may be related to the following factors:(1)Structural distortion.[46,47]The substitution of Fe by larger radius ions,i.e.,Co and Ni,can reduce the displacement of the B-site ions,decreasing the structural distortion.The decreased structural distortion leads to the reduced FE Curie temperature,which is confirmed in Fig.8. The decrease structural distortion will reduce the larger remnant polarization. (2) Oxygen vacancy.[48]It was reported that oxygen vacancies usually aggregate at the ferroelectric domain walls and pin the domain switching, resulting in deterioration of the remnant polarization. Ni substitution decreases oxygen vacancy concentration discussed above and increases the polarization. (3)Grain size.[49]Larger grain can weaken the aggregation of the defects at the domain walls,lessening the pining of the domain walls and enhancing the remnant polarization. As shown in Fig.2,less Ni substitution increases grain size,which can enhance the remnant polarization. The above three factors bring about the variation of ferroelectricity dependent on Ni content.

    4. Conclusions

    The microstructures, ferroelectric, magnetic, and dielectric properties of BFNT-xceramics were investigated systematically. XRD and Raman spectra confirmed that Ni substitution does not change the four-layered perovskite structure. Ni substitution can improve ferroelectricity as well as magnetic properties. The largest remnant polarization(2Pr~11.6μC/cm2)and the highest remnant magnetization(2Mr~0.244 emu/g)were found in the BFNT-0.2 sample. The weak FM of the doped samples may mainly originate from the spin canting of Fe/Ni-based sublattices via the antisymmetric DM interaction.The enhancement of FE and magnetic properties is related to the structural distortion. Therefore,DSC tests were performed,detecting FE transition and lattice expansion of the tetragonal phase. The dielectric relaxation behaviors were observed in all samples, which may be caused by the migration of oxygen vacancies due to thermal activation. The present work is helpful for design of room-temperature multiferroics based on Aurivillius phase.

    猜你喜歡
    成海張磊小兵
    歡樂小兵將
    歡樂小兵將
    歡樂小兵將
    Temperature and doping dependent flat-band superconductivity on the Lieb-lattice?
    相思成海
    青年歌聲(2020年9期)2020-12-04 04:32:50
    初心入畫
    家長會
    THE GLOBAL ATTRACTOR FOR A VISCOUS WEAKLY DISSIPATIVE GENERALIZED TWO-COMPONENT μ-HUNTER-SAXTON SYSTEM?
    “口”“ㄙ”偏旁混用趣談
    論朝鮮文人成海應(yīng)與楚辭的受容關(guān)系
    名作欣賞(2017年26期)2017-09-16 07:03:09
    精品福利观看| 丝袜美足系列| 国产av国产精品国产| 伊人亚洲综合成人网| 在线观看人妻少妇| 性高湖久久久久久久久免费观看| 日韩av免费高清视频| 18禁观看日本| 久9热在线精品视频| 国产精品香港三级国产av潘金莲 | 国产欧美日韩综合在线一区二区| 欧美人与善性xxx| 在线观看www视频免费| 少妇猛男粗大的猛烈进出视频| 国产亚洲午夜精品一区二区久久| 黑人欧美特级aaaaaa片| 亚洲欧美一区二区三区国产| 成人国语在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 成年人黄色毛片网站| 久久久久国产精品人妻一区二区| 人妻人人澡人人爽人人| 最新的欧美精品一区二区| 国产精品久久久人人做人人爽| 日韩欧美一区视频在线观看| 国产精品国产av在线观看| 巨乳人妻的诱惑在线观看| 极品少妇高潮喷水抽搐| 九色亚洲精品在线播放| 啦啦啦视频在线资源免费观看| 少妇人妻久久综合中文| 母亲3免费完整高清在线观看| 久久久久精品人妻al黑| 日韩电影二区| 精品少妇一区二区三区视频日本电影| 在线 av 中文字幕| 中文精品一卡2卡3卡4更新| 男人操女人黄网站| 日韩一本色道免费dvd| 日韩熟女老妇一区二区性免费视频| 精品亚洲成国产av| 嫩草影视91久久| 国产成人欧美| 麻豆乱淫一区二区| 亚洲欧美清纯卡通| 精品一区在线观看国产| 亚洲国产av新网站| 亚洲五月婷婷丁香| 亚洲久久久国产精品| 国产亚洲精品第一综合不卡| 少妇粗大呻吟视频| 欧美日韩av久久| 老司机亚洲免费影院| 亚洲色图 男人天堂 中文字幕| 亚洲av国产av综合av卡| 国产精品.久久久| 亚洲欧美色中文字幕在线| 日本欧美国产在线视频| 精品久久蜜臀av无| 美女主播在线视频| 亚洲精品久久久久久婷婷小说| 精品久久久久久久毛片微露脸 | 又大又黄又爽视频免费| 大话2 男鬼变身卡| 久久人人97超碰香蕉20202| 高清不卡的av网站| 色精品久久人妻99蜜桃| 亚洲国产精品国产精品| 啦啦啦在线免费观看视频4| 亚洲精品日韩在线中文字幕| 一级毛片黄色毛片免费观看视频| videosex国产| 巨乳人妻的诱惑在线观看| 久久精品亚洲熟妇少妇任你| 亚洲国产欧美在线一区| 观看av在线不卡| 纵有疾风起免费观看全集完整版| 国产精品二区激情视频| 亚洲av成人不卡在线观看播放网 | 如日韩欧美国产精品一区二区三区| 亚洲国产精品一区二区三区在线| 黄色一级大片看看| 欧美老熟妇乱子伦牲交| 午夜福利一区二区在线看| 悠悠久久av| 亚洲成人手机| 精品少妇内射三级| 久久久久久久久免费视频了| 日韩av免费高清视频| 首页视频小说图片口味搜索 | 可以免费在线观看a视频的电影网站| 天天躁夜夜躁狠狠躁躁| 女性被躁到高潮视频| 大香蕉久久成人网| 赤兔流量卡办理| 国产精品香港三级国产av潘金莲 | 精品少妇黑人巨大在线播放| 午夜福利视频在线观看免费| 黄色视频在线播放观看不卡| 亚洲伊人久久精品综合| 欧美日韩一级在线毛片| 欧美日韩福利视频一区二区| 91精品三级在线观看| 国产午夜精品一二区理论片| 1024香蕉在线观看| 在线观看一区二区三区激情| 嫩草影视91久久| 黄色毛片三级朝国网站| 成人三级做爰电影| 男女下面插进去视频免费观看| 女人被躁到高潮嗷嗷叫费观| 亚洲 国产 在线| 99久久综合免费| 亚洲情色 制服丝袜| 中文字幕色久视频| 精品国产一区二区久久| 成人黄色视频免费在线看| 亚洲色图 男人天堂 中文字幕| 丝袜人妻中文字幕| 香蕉丝袜av| 久久精品成人免费网站| 最近最新中文字幕大全免费视频 | 欧美黄色片欧美黄色片| 丝袜喷水一区| 午夜免费成人在线视频| 在线亚洲精品国产二区图片欧美| 久久久久国产精品人妻一区二区| 欧美人与性动交α欧美软件| 脱女人内裤的视频| 久久热在线av| av在线播放精品| www.精华液| 国产男人的电影天堂91| av片东京热男人的天堂| 国产黄频视频在线观看| 日韩av在线免费看完整版不卡| 国产有黄有色有爽视频| 亚洲精品美女久久av网站| 亚洲第一青青草原| 在线观看一区二区三区激情| 美女午夜性视频免费| 日本91视频免费播放| 午夜91福利影院| 女性被躁到高潮视频| 狠狠精品人妻久久久久久综合| 成年动漫av网址| 男女无遮挡免费网站观看| 成人午夜精彩视频在线观看| 亚洲国产精品国产精品| 丁香六月天网| 日日夜夜操网爽| 丰满人妻熟妇乱又伦精品不卡| 男男h啪啪无遮挡| 久久久久国产精品人妻一区二区| 9热在线视频观看99| av在线app专区| 999久久久国产精品视频| 精品国产超薄肉色丝袜足j| 午夜精品国产一区二区电影| 蜜桃在线观看..| 亚洲成人免费av在线播放| 国产欧美日韩一区二区三 | av不卡在线播放| 国产深夜福利视频在线观看| 国产不卡av网站在线观看| 两个人免费观看高清视频| 女性被躁到高潮视频| 亚洲国产精品999| 色94色欧美一区二区| 考比视频在线观看| 久久狼人影院| 肉色欧美久久久久久久蜜桃| 免费观看av网站的网址| 嫁个100分男人电影在线观看 | 999久久久国产精品视频| 亚洲久久久国产精品| 久久精品亚洲av国产电影网| 成人手机av| 亚洲欧美成人综合另类久久久| 国产免费又黄又爽又色| 在线观看免费视频网站a站| 欧美精品一区二区大全| 久久久久视频综合| 国产成人精品久久二区二区免费| 国产成人欧美| 国产一卡二卡三卡精品| 亚洲激情五月婷婷啪啪| 中文字幕人妻丝袜制服| 免费女性裸体啪啪无遮挡网站| 亚洲人成电影免费在线| 亚洲欧洲精品一区二区精品久久久| 丰满饥渴人妻一区二区三| 捣出白浆h1v1| 国产国语露脸激情在线看| 久久热在线av| 日韩中文字幕欧美一区二区 | 大话2 男鬼变身卡| 两人在一起打扑克的视频| 国产免费视频播放在线视频| 国产不卡av网站在线观看| 黄色片一级片一级黄色片| 在线 av 中文字幕| 日韩熟女老妇一区二区性免费视频| 一边亲一边摸免费视频| 新久久久久国产一级毛片| 黄频高清免费视频| 免费在线观看日本一区| 午夜福利乱码中文字幕| 免费不卡黄色视频| 另类精品久久| 肉色欧美久久久久久久蜜桃| 啦啦啦视频在线资源免费观看| av欧美777| bbb黄色大片| 国产精品99久久99久久久不卡| 在线天堂中文资源库| 日本vs欧美在线观看视频| 一本久久精品| 亚洲久久久国产精品| 日韩大片免费观看网站| 亚洲国产欧美日韩在线播放| 高清黄色对白视频在线免费看| 啦啦啦中文免费视频观看日本| 精品视频人人做人人爽| 首页视频小说图片口味搜索 | 亚洲中文av在线| 中文字幕色久视频| 侵犯人妻中文字幕一二三四区| 亚洲国产毛片av蜜桃av| 在线观看免费午夜福利视频| 韩国高清视频一区二区三区| 日韩人妻精品一区2区三区| 99久久综合免费| 1024香蕉在线观看| 国产激情久久老熟女| 亚洲国产欧美日韩在线播放| 久久天躁狠狠躁夜夜2o2o | 1024视频免费在线观看| 一本综合久久免费| 搡老岳熟女国产| 伊人亚洲综合成人网| 一级毛片电影观看| 一本大道久久a久久精品| 久久精品亚洲熟妇少妇任你| 男女无遮挡免费网站观看| 亚洲av国产av综合av卡| 久久久久久久精品精品| 伊人久久大香线蕉亚洲五| 宅男免费午夜| 最近最新中文字幕大全免费视频 | 国产深夜福利视频在线观看| 久久人妻熟女aⅴ| 极品人妻少妇av视频| 99国产精品99久久久久| 久久国产精品影院| 亚洲男人天堂网一区| 精品国产乱码久久久久久小说| 欧美日韩国产mv在线观看视频| 亚洲第一av免费看| 日韩熟女老妇一区二区性免费视频| 国产一区二区在线观看av| 免费在线观看视频国产中文字幕亚洲 | 女性生殖器流出的白浆| 成人黄色视频免费在线看| 国产免费视频播放在线视频| 涩涩av久久男人的天堂| 男女床上黄色一级片免费看| 婷婷色麻豆天堂久久| av在线播放精品| 精品人妻1区二区| 国产精品国产三级专区第一集| 黄色怎么调成土黄色| 亚洲国产欧美日韩在线播放| 午夜影院在线不卡| 一二三四社区在线视频社区8| 1024香蕉在线观看| kizo精华| 欧美成狂野欧美在线观看| 大片免费播放器 马上看| 人人妻,人人澡人人爽秒播 | 晚上一个人看的免费电影| 在线观看人妻少妇| 老熟女久久久| 1024香蕉在线观看| 国产一卡二卡三卡精品| 久久久久网色| 一级a爱视频在线免费观看| 亚洲国产精品一区三区| 亚洲 欧美一区二区三区| 一本大道久久a久久精品| 久久免费观看电影| 天天操日日干夜夜撸| 夫妻性生交免费视频一级片| 亚洲精品自拍成人| e午夜精品久久久久久久| 91麻豆av在线| 老司机亚洲免费影院| av欧美777| 欧美精品一区二区免费开放| av在线播放精品| av在线老鸭窝| 日韩人妻精品一区2区三区| 国产成人av激情在线播放| av在线app专区| 亚洲av日韩在线播放| 国产精品三级大全| 国产精品熟女久久久久浪| av天堂在线播放| 欧美激情高清一区二区三区| 美女扒开内裤让男人捅视频| 性色av一级| 国产在线视频一区二区| 香蕉国产在线看| 两个人看的免费小视频| 中文字幕亚洲精品专区| 少妇被粗大的猛进出69影院| 日韩,欧美,国产一区二区三区| 亚洲第一青青草原| 国产欧美亚洲国产| 亚洲七黄色美女视频| 久久人妻熟女aⅴ| 丝袜美腿诱惑在线| 男女下面插进去视频免费观看| 欧美成狂野欧美在线观看| 成人影院久久| 精品卡一卡二卡四卡免费| 国产亚洲av高清不卡| 亚洲第一av免费看| 大陆偷拍与自拍| 免费观看人在逋| 日韩伦理黄色片| 亚洲国产av新网站| 七月丁香在线播放| xxx大片免费视频| 又黄又粗又硬又大视频| 91字幕亚洲| 国产一区二区三区综合在线观看| 精品国产一区二区久久| 老司机深夜福利视频在线观看 | 欧美精品高潮呻吟av久久| 丝袜人妻中文字幕| 丰满少妇做爰视频| 在线精品无人区一区二区三| 一本色道久久久久久精品综合| 亚洲欧美精品综合一区二区三区| av有码第一页| 2018国产大陆天天弄谢| 欧美成人精品欧美一级黄| 叶爱在线成人免费视频播放| 成人18禁高潮啪啪吃奶动态图| av在线app专区| 亚洲精品自拍成人| 亚洲自偷自拍图片 自拍| 欧美人与善性xxx| 大码成人一级视频| 老司机靠b影院| 天堂中文最新版在线下载| 男女边吃奶边做爰视频| 午夜视频精品福利| 视频在线观看一区二区三区| 高清不卡的av网站| 国产又爽黄色视频| 人人妻人人澡人人看| 九色亚洲精品在线播放| 99精国产麻豆久久婷婷| 啦啦啦在线观看免费高清www| 天堂俺去俺来也www色官网| 国产高清不卡午夜福利| 久久久久精品国产欧美久久久 | 99精国产麻豆久久婷婷| av在线老鸭窝| 性色av一级| 午夜精品国产一区二区电影| 老司机在亚洲福利影院| 亚洲精品在线美女| 国产在线免费精品| 91精品伊人久久大香线蕉| 欧美少妇被猛烈插入视频| a级毛片黄视频| 国产淫语在线视频| 后天国语完整版免费观看| 热re99久久国产66热| 考比视频在线观看| 亚洲伊人久久精品综合| 国产亚洲av高清不卡| 国产成人精品久久久久久| www.熟女人妻精品国产| 午夜免费成人在线视频| 在线观看免费日韩欧美大片| 一区二区三区乱码不卡18| 亚洲成av片中文字幕在线观看| 大片电影免费在线观看免费| 午夜精品国产一区二区电影| 麻豆av在线久日| 啦啦啦视频在线资源免费观看| 久久毛片免费看一区二区三区| 成年女人毛片免费观看观看9 | 国产亚洲av高清不卡| 亚洲人成77777在线视频| 9色porny在线观看| 精品一品国产午夜福利视频| 亚洲国产av新网站| 国产亚洲一区二区精品| 久久精品国产亚洲av高清一级| 少妇猛男粗大的猛烈进出视频| 精品人妻在线不人妻| 欧美国产精品一级二级三级| 老司机靠b影院| 成人午夜精彩视频在线观看| 黄色一级大片看看| av福利片在线| 高清欧美精品videossex| 欧美激情 高清一区二区三区| 午夜老司机福利片| 我要看黄色一级片免费的| 80岁老熟妇乱子伦牲交| 日本一区二区免费在线视频| 亚洲欧美一区二区三区久久| 久久精品aⅴ一区二区三区四区| 中文字幕人妻熟女乱码| 天天躁日日躁夜夜躁夜夜| 欧美在线黄色| 亚洲天堂av无毛| 一本综合久久免费| 久久av网站| 国产三级黄色录像| 嫁个100分男人电影在线观看 | 欧美日韩亚洲高清精品| 在线观看免费视频网站a站| 99热国产这里只有精品6| 欧美 亚洲 国产 日韩一| 热99久久久久精品小说推荐| 久久精品亚洲av国产电影网| 精品少妇内射三级| 80岁老熟妇乱子伦牲交| 亚洲美女黄色视频免费看| 一本久久精品| 十八禁网站网址无遮挡| 国产精品人妻久久久影院| 亚洲五月色婷婷综合| 国产精品一区二区在线观看99| 大片电影免费在线观看免费| 久久久精品区二区三区| 亚洲九九香蕉| av网站在线播放免费| 好男人电影高清在线观看| 久久精品成人免费网站| 国产1区2区3区精品| 日韩视频在线欧美| 国产精品熟女久久久久浪| 午夜激情久久久久久久| 丝袜脚勾引网站| 日本黄色日本黄色录像| 久久99精品国语久久久| 啦啦啦在线免费观看视频4| tube8黄色片| 婷婷色综合大香蕉| 国产老妇伦熟女老妇高清| 欧美日本中文国产一区发布| 亚洲精品国产一区二区精华液| 亚洲av综合色区一区| 欧美在线一区亚洲| 婷婷色综合www| 国产精品二区激情视频| 激情五月婷婷亚洲| 亚洲欧美色中文字幕在线| 色婷婷av一区二区三区视频| 纯流量卡能插随身wifi吗| 91国产中文字幕| 一二三四在线观看免费中文在| 免费高清在线观看日韩| www.精华液| 巨乳人妻的诱惑在线观看| 七月丁香在线播放| 纯流量卡能插随身wifi吗| 日本av免费视频播放| 亚洲欧美中文字幕日韩二区| 日本a在线网址| 99九九在线精品视频| 久久精品人人爽人人爽视色| 亚洲精品av麻豆狂野| 国产在线视频一区二区| 黄片播放在线免费| 成年动漫av网址| 国产成人啪精品午夜网站| 国产淫语在线视频| 国产激情久久老熟女| videos熟女内射| 七月丁香在线播放| 丁香六月天网| av又黄又爽大尺度在线免费看| tube8黄色片| 免费不卡黄色视频| 午夜免费成人在线视频| 亚洲免费av在线视频| 亚洲 国产 在线| 99精品久久久久人妻精品| 老司机影院成人| 亚洲人成77777在线视频| 午夜激情久久久久久久| 久久久久久久国产电影| 99精国产麻豆久久婷婷| 国产精品一区二区免费欧美 | 亚洲色图综合在线观看| 欧美av亚洲av综合av国产av| 久久精品久久久久久噜噜老黄| 精品福利观看| 亚洲男人天堂网一区| www.精华液| 乱人伦中国视频| 久久天躁狠狠躁夜夜2o2o | 中文字幕人妻丝袜一区二区| 少妇人妻久久综合中文| 美女国产高潮福利片在线看| 国产精品二区激情视频| 久久久久精品国产欧美久久久 | 国产成人av激情在线播放| 日本91视频免费播放| 观看av在线不卡| 国产精品国产三级国产专区5o| 国产成人精品久久久久久| 精品久久久精品久久久| 国产三级黄色录像| 精品一区二区三区av网在线观看 | 少妇人妻久久综合中文| 精品人妻1区二区| 一级毛片 在线播放| 欧美av亚洲av综合av国产av| 日韩大片免费观看网站| 丝瓜视频免费看黄片| 少妇人妻 视频| 亚洲国产精品国产精品| 精品一区二区三区四区五区乱码 | 在线看a的网站| www日本在线高清视频| 天天操日日干夜夜撸| 水蜜桃什么品种好| 最新的欧美精品一区二区| 又紧又爽又黄一区二区| 在线观看免费日韩欧美大片| 国产成人欧美| 18禁黄网站禁片午夜丰满| 韩国精品一区二区三区| 99久久精品国产亚洲精品| 晚上一个人看的免费电影| 一区二区av电影网| 91成人精品电影| 91麻豆av在线| 青春草视频在线免费观看| 大码成人一级视频| 男女午夜视频在线观看| 麻豆国产av国片精品| 国产日韩欧美视频二区| 欧美在线一区亚洲| 国产精品久久久久成人av| 免费高清在线观看日韩| 久久青草综合色| 久久毛片免费看一区二区三区| 精品欧美一区二区三区在线| 亚洲伊人色综图| bbb黄色大片| 国产精品一区二区在线不卡| 国产xxxxx性猛交| 黄色片一级片一级黄色片| 国产成人欧美| 中文字幕人妻熟女乱码| 亚洲国产欧美日韩在线播放| 免费高清在线观看视频在线观看| 老司机影院成人| 天堂中文最新版在线下载| 亚洲自偷自拍图片 自拍| 精品国产一区二区三区久久久樱花| 国产成人免费无遮挡视频| 99re6热这里在线精品视频| 亚洲国产精品一区三区| 人妻一区二区av| 国产精品 欧美亚洲| 日韩 欧美 亚洲 中文字幕| 亚洲综合色网址| 一区二区日韩欧美中文字幕| www.精华液| 蜜桃在线观看..| 久久久久久久精品精品| 国产免费现黄频在线看| 一区二区三区乱码不卡18| 丝袜美腿诱惑在线| 亚洲一区中文字幕在线| 国产有黄有色有爽视频| 水蜜桃什么品种好| 亚洲天堂av无毛| 精品亚洲成a人片在线观看| 日本猛色少妇xxxxx猛交久久| 尾随美女入室| 热re99久久国产66热| 亚洲国产精品一区二区三区在线| 国产视频一区二区在线看| 亚洲一卡2卡3卡4卡5卡精品中文| 极品少妇高潮喷水抽搐| 国产片内射在线| 免费高清在线观看日韩| 国产黄色视频一区二区在线观看| 成人黄色视频免费在线看| av在线app专区| 夫妻午夜视频| 欧美日本中文国产一区发布| 国语对白做爰xxxⅹ性视频网站| 亚洲黑人精品在线| 婷婷成人精品国产| 成人国产av品久久久| 久久性视频一级片| 人人妻,人人澡人人爽秒播 | 午夜两性在线视频| 午夜老司机福利片| 日韩精品免费视频一区二区三区| 黄片播放在线免费|