• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Ni substitution on multiferroic properties in Bi5FeTi3O15 ceramics

    2021-10-28 07:02:58HuiSun孫慧JiayingNiu鈕佳穎HaiyingCheng成海英
    Chinese Physics B 2021年10期
    關(guān)鍵詞:成海張磊小兵

    Hui Sun(孫慧) Jiaying Niu(鈕佳穎) Haiying Cheng(成海英)

    Yuxi Lu(盧玉溪)1, Zirou Xu(徐紫柔)1, Lei Zhang(張磊)1, and Xiaobing Chen(陳小兵)1

    1College of Physics Science and Technology,Yangzhou University,Yangzhou 225002,China

    2School of Sino-German Engineering,Shanghai Technical Institute of Electronics&Information,Shanghai 201411,China

    3National Laboratory of Solid State Microstructures,Nanjing University,Nanjing 210093,China

    Keywords: layer-perovskited oxides,ferroelectricity,weak ferromagnetism,phase transition

    1. Introduction

    Single-phase multiferroics refer to those oxides simultaneously exhibiting ferroelectric (FE), ferromagnetic (FM),and/or ferroelastic properties,which have been widely investigated owing to their potential application in transducers,digital memories, and data storages.[1–4]Nevertheless, it is still a challenge to pursue room-temperature (RT) multiferroics because there is rare multiferroics in nature due to the exclusion between ferroelectricity and ferromagnetism.[5–7]

    By combining magnetic units with ferroelectric matrices at atomic scale,the single-phase multiferroics can be obtained.Bismuth-based layered perovskite Aurivillius phase is such a kind of compounds with formula (BiFeO3)m-Bi4Ti3O12,which have been regarded as a promising candidate for RT multiferroics.[8–11]In this structure, the perovskite-type slabs (Bi2+mTi3FemO3m+10)2?are sandwiched with fluoritetype layers (Bi2O2)2+alongcaxis in a half unit cell.The magnetic transition temperatures of these oxides were reported to be far below RT, i.e., Bi5FeTi3O15(80 K),Bi6Fe2Ti3O18(160 K), and Bi7Fe3Ti3O18(190 K).[8]Then substitution with magnetic ions for Fe or raising the number of magnetic layers were employed to enhance the magnetic properties.[12–24]For instance,four-layered Bi5FeTi3O15(BFTO) showed good ferroelectricity and a high ferroelectric Curie temperature of 1023 K accompanied by a space group transition fromA21amtoI4/mmm.[6]As was reported, substitution with Co for half content of Fe in BFTO can dramatically enhance the magnetic transition temperature far above RT(~618 K),realizing the coexistence of FE and FM at RT.[12,13]And the Co-substituted BFTO showed strong magnetoelectric and magnetodielectric effects.[14]Similarly, obvious ferromagnetism can also be achieved in fivelayered Bi6FeCoTi3O18[15]and Bi6Fe1?xNixTi3O18;[18]sixlayered Bi7Fe1.5Co1.5Ti3O21[19]and Bi7Fe3?xNixTi3O21;[23]and seven-layered Bi9Fe4.7Me0.3Ti3O27(Me=Ni and Co).[22]These results confirmed that Ni substitution can not only induce ferromagnetism but significantly decrease the leakage current. Moreover, it is worth noting that the content of doped magnetic ions has a great influence on the ferroelectric and magnetic properties. Although the magnetic and dielectric properties of four-layered Bi4NdTi3FeO15were investigated,[25,26]their leaky ferroelectric hysteresis loops exhibited poor ferroelectric property. There is still a lack of detailed research on Ni-doped BFTO, such as ferroelectric and magnetic transitions.

    In this paper, we prepared Bi5Fe1?xNixTi3O15(BFNTx,x=0, 0.1, 0.2, 0.3, 0.4, 0.5) ceramics by a sol-gel autocombustion method, and their microstructures, ferroelectric,dielectric,and magnetic properties were investigated in detail.As observed, the Ni content has a major influence on the microstructures and properties of BFTO,and their corresponding mechanisms were discussed. The work may be beneficial to our designing and exploring single-phase Aurivillius multiferroics.

    2. Experimental details

    Bi5Fe1?xNixTi3O15(BFNT-x,x= 0, 0.1, 0.2, 0.3, 0.4,0.5)ceramics were synthesized by the sol-gel auto-combustion method.[27,28]A detailed process is described as follows. Stoichiometric amounts of Bi(NO3)3·5H2O (5 wt% excess) and Fe(NO3)3·9H2O were dissolved in 4 M nitric acid solution,and citric acid C6H8O7·H2O was added. Dripping aqueous ammonia (28% mass fraction) into the above solution to adjust pH value to 6–7. Here the molar ratio of metal ions to citric acid was 1:1. The solution was transferred to an oil bath with stirring at 80°C to obtain dried xerogel. After that, the xerogel was burned at 400°C for 4 h, followed by ground and pre-sintered at 750°C for 6 h. The obtained powders were ground again,subsequently pressed into pellets,whose diameter and thickness were 10 mm and 1 mm,respectively.Finally,the pellets were calcined at 900°C for 4 h in air.

    The microstructures of all the samples were analyzed by x-ray diffractometer (XRD, XRD-7000, SHK, Japan), scanning electron microscope (SEM, TESCAN VEGA3, Czech),and Raman scattering spectra (Renishaw, USA). The valence states of ions were investigated by an x-ray photoelectron spectroscopy(XPS,ESCALAB 250Xi,Thermo Fisher Scientific, USA). The magnetic properties were measured by a vibrating sample magnetometer (VSM, EV7, ADE, USA). To test the electrical properties, the calcined pellets were polished to a thickness of about 0.2 mm, and Ag electrodes were deposited on both sides. The ferroelectric properties of the samples were characterized by using a Precision LC ferroelectric analyzer (Radiant Technology product, USA).The dielectric constant and loss tangent dependent on temperature were measured with a broadband dielectric spectrometer(Novocontrol Technologies,Germany). The thermomagneto-gravimetry (TMG) measurements were performed using thermo-gravimetric analysis (TGA, Q5000IR, USA)technique to measure the samples’weight dependent on temperatures in an applied magnetic field. The measurements were carried out in nitrogen atmosphere with a 0.02 T magnetic field. The ferroelectric transitions were studied by the differential scanning calorimetry (DSC, STA 449 F3 Jupiter,Netzsch,Germany)in the process of a heating and cooling.

    3. Results and discussion

    Figure 1(a) shows the XRD patterns of the BFNT-xceramic samples. All the diffraction peaks of all samples can be detected according to the standard PDF file of Bi5Fe1Ti3O15(JCPDS No.38-1257,space groupA21am). All BFNT-xsamples have a four-layered perovskite structure without other identifiable impurity phases,[12–14]which suggests that Ni successfully entered into B-site to replace Fe. To confirm this,the Bi5Fe0.8Ni0.2Ti3O15was refined using Topas based on the orthorhombic space groupA21am,as exhibited in Fig.1(b),and good agreement between the experimental and calculated pattern is obtained withRwp=8.11%andRp=6.18%.

    Fig. 1. (a) XRD patterns of Bi5Fe1?xNixTi3O15 (x=0–0.5) ceramics,and(b)XRD pattern of Bi5Fe0.8Ni0.2Ti3O15. Circles represent the experimental data,and the calculated data are the continuous line overlapping them. The middle curve indicates the difference between the experimental and calculated data. The lowest vertical bars show the expected reflection.

    Fig.2. Raman scattering spectra of BFNT-x ceramics.

    Figure 3 displays the surface SEM images of BFCT-xsamples. All samples are homogeneous,dense,and randomly oriented,implying good crystallinity. Meanwhile,all the samples have flaky grains with obvious anisotropy. This is the typical characteristics of layered perovskite Aurivillius oxides due to its preferential growth inabplane.[27,28]With the increase of Ni contentx,the grain size firstly increases and then decrease, revealing that Ni doping has an effect on the grain growth.

    To gain the electronic structure information of elements in the samples, x-ray photoelectron spectroscopy (XPS) of BFNT withx=0,0.1,0.3,and 0.5 was carried out,as shown in Fig. 4. According to the report,[36]the Fe 2p3/2peaks located at 709.3 eV and 710.7 eV are ascribed to Fe2+and Fe3+ions, respectively. The experimental Fe 2p3/2peaks shown in Fig.4(a)are located at 710.5–910.6 eV,which means there are both Fe3+and Fe2+ions in the samples. Using the Lorentzian–Gaussian fitting and calculating, the atomic ratio of elements can be determined quantitatively by the ratio of area below the corresponding peak. The calculated ratio of Fe3+to Fe2+is listed in Table 1. It can be seen that a small amount of Ni doping (x<0.1) can inhibit the valence variation of Fe ions. As for the spectra of the Ni 2p3/2in BFNT-0.3 and BFNT-0.5(exhibited in Fig.4(b)), the peaks at 855.1 eV are close to the binding energy of Ni 2p3/2in Ni2O3, illustrating that the Ni ions are in the ionic state of +3.[37]Normally,the oxygen vacancies may be accompanied with the valence change of cations and affect the electrical and magnetic properties.[38]Therefore,the O 1s core-level spectra were analyzed and presented in Fig. 4(c). The deconvoluted peaks located at 529.7 eV and 531.7 eV are assigned to the lattice oxygen (denoted with O[1]) and oxygen vacancies (denoted with O[2]),[39,40]respectively.Here the peaks marked with O[3]are attributed to the absorbed oxygen species. The relative amount of oxygen vacancies can be qualitatively ascertained byIO[2]/IO[1],as shown in Table 1. It is concluded that Ni substitution can largely improve the stability of oxygen ions and reduce the oxygen vacancy concentration.

    Fig.3. Surface SEM images of BFNT-x samples for(a)x=0,(b)x=0.1,(c)x=0.2,(d)x=0.3,(e)x=0.4,and(f)x=0.5.

    Fig.4. 4 High resolution XPS spectra and fitted curve of(a)Fe 2p,(b)Ni 2p,and(c)O 1s of BFNT-x.

    Table 1. The calculated atomic ratios of Fe2+/Fe3+ and IO[2]/IO[1] dependent on Ni content.

    Figure 5(a)exhibits the magnetic hysteresisM–Hcurves of all samples measured at RT, and their enlarged view of central parts are shown in the inset. Forx= 0, 0.4, and 0.5 samples, the linearM–Hplots imply the feature of antiferromagnetism (AFM) or para-magnetism (PM). The otherM–Hplots exhibit typical hysteresis, which clearly indicate the presence of FM moment. However, the magnetization is not saturated even under the higher magnetic field~1 T, revealing that there also exist AFM interactions in these samples.Figure 5(b)summarizes the dependence of remnant magnetization(2Mr)and saturated magnetization(Ms)on Ni content. With the increase of Ni content, both of them firstly increase (x ≤0.2) and then decrease with further more Ni content. The changing trend of the magnetism with increasing Ni content is consistent with that of Bi7Fe3?xNixTi3O21ceramics.[23]Whenx=0.2, 2MrandMsreach the maximum of 0.24 emu/g and 0.68 emu/g,respectively. In this kind of oxides,the magnetism may be mainly affected by the following factors. Firstly,the Fe(Ni)–O6octahedral tilting and distorted crystal structure would bring about canted spin structure. And spin canting of AFM coupling of Fe–O and Ni–O sublattices based on Dzyaloshinsky–Moriya (DM) interactions leads to the present weak ferromagnetism.[15,16,18–24]Secondly, there exist oxygen vacancies in the samples confirmed in XPS results. The magnetic ions are apt to integrate with oxygen vacancies to form the bound magnetic polarons (BMPs),and the interactions between BMPs are ferromagnetic.[41]As discussed above, the oxygen vacancy concentration was depressed by Ni doping,which would decrease this kind of ferromagnetic interactions. Both the aspects above result in the variation of the magnetic properties dependent on Ni content.

    To clarify the magnetic interactions in BFNT,the dependence of the sample’s weight under a magnetic field on temperature was investigated. Figure 6 gives thermo-magnetogravimetry(TMG)and the corresponding differential thermomagneto-gravimetry(DTMG)curves of BFNT-xsamples withx= 0.1, 0.2, and 0.3. Each sample has only one peak,which corresponds to the FM-to-PM phase transition. This means that there does not exist other magnetic impurity phase,demonstrating that the room-temperature weak FM comes from single-phase BFNT.The peaks of BFNT-0.1,BFNT-0.2,and BFNT-0.3 at approximately 824 K, 796.3 K, and 774 K,respectively, are far above RT, leading to the occurrence of weak ferromagnetism at RT.The magnetic transition temperature decreases as the Ni content increases. Generally,the two main factors affecting magnetic transition temperature include lattice distortion and magnetic interaction. Less Ni substitution (x ≤0.1) can dramatically enhance the magnetic transition temperature from 80 K to 824 K and realize the weak ferromagnetism at RT. More Ni content (x>0.1) decreases the magnetic transition temperature,which may be ascribed to the decreased order of the B-site ions and the relative stability of the magnetic structure.[42]As for the lattice distortion,it is affected by the changes of the bond angle and length between coupling magnetic ions,which is also related to the transition temperature from FE to paraelectric phase transition.[14]As reported,the higher ferroelectric transition temperature means the larger structural distortion. Therefore,we will discuss the temperature dependence of the dielectric properties and DSC curves of all samples below.

    Fig.5. (a)Magnetic hysteresis M–H curves measured at RT of SBNT-x samples. (b)The variation of 2Mr and Ms with Ni doping content.

    Fig.6. Weight loss under a magnetic field and DTMG curves of BFNT samples with x=0.1,0.2,and 0.3.

    Figure 7 shows the temperature dependence of dielectric constantεand loss tanδof all BFNT samples from 370 K to 1080 K at different frequencies. All the samples exhibit a similar behavior, and a set of anomalies are observed around 600 K and marked with rectangle. The set of dielectric peak locations of dielectric constant and loss shift toward higher temperature with the increase of frequency, exhibiting a typical thermal-activated relaxation behavior. Whereas,it is difficult to determine the dielectric peak position due to the wide dielectric loss peak. In order to understand the mechanism of this abnormal dielectric behavior, the temperature dependent imaginary partM′′of dielectric modulus for BFNT was studied, depicted in Fig. S1. According to the point defect relaxation theory,the activation energyEaof relaxation units can be calculated by the Arrhenius lawfr=f∞exp(Ea/kBT), wherefrandf∞are the relaxation frequencies of characteristic peak and at infinite temperature,respectively.Tis the temperature of theM′′-peak, andkBis the Boltzmann constant. As displayed in Fig. S2, the activation energiesEaare evaluated to be 0.85 eV, 0.56 eV, 0.57 eV, 0.56 eV, 0.60 eV, and 0.55 eV for the BFNT samples withx=0, 0.1, 0.2, 0.3, 0.4, and 0.5,respectively. These values are close to the migration energy of oxygen vacancies (0.5–1.1 eV),[43,44]indicating that these dielectric anomalies around 600 K are associated with the hopping process of oxygen vacancies.Unfortunately,the FE Curie temperature is not found in the dielectric spectra dependent on temperature from 370 K to 1080 K due to the limit of the dielectric spectrometer. Then DSC traces of all BFNT samples will be studied as follows.

    Figure 8 shows the DSC curves of all BFNT samples.There are two sets of endothermic peaks on heating and two sets of exothermic peaks on cooling for each sample,indicating reversibility of transitions. Both the sets of peaks exhibit thermal hysteresis.For the BFTO sample,the low-temperature endothermic peak located at 1030 K with its corresponding exothermic peak at 1020 K is in a good agreement with the ferroelectric transition accompanied with structural transition from orthorhombic to tetragonal phase.[45]The other hightemperature endothermic peak at 1126 K with its corresponding exothermic peak at 1083 K originates from the lattice expansion of the tetragonal phase. We summarize the temperature of all endothermic and exothermic peaks in Table 2,and define the transition temperature as the average value of the temperature of endothermic and corresponding exothermic peaks. From Table 2,it can be seen that the ferroelectric transition temperature decreases with the increasing Ni content,implying lessen structural distortion.

    Fig.7. The temperature dependence of dielectric constant ε and loss tan δ of all BFNT samples ranging from 370 K to 1050 K at different frequencies.

    Fig.8. DSC curves of all BFNT samples.

    Table 2. The detected transition temperature of all BFNT samples.

    Fig. 9. (a) Polarization versus electric field (P–E) hysteresis loops of BFNT.(b)The variation of remnant polarization(2Pr)and coercive field(Ec)dependent on Ni content.

    Finally, the ferroelectric hysteresis loops of all samples were measured at RT,as illustrated in Fig.9.For the BFTO,its loop shows round and leaky. After Ni substitution, the ferroelectric remnant polarization as well as the breakdown electric field enhance largely. The values of remnant polarization(2Pr)and coercive field(Ec)firstly increase and then decrease with the increase of Ni content. Whenx=0.2,the 2Prreaches the largest value about 11.6μC/cm2,and the breakdown field also achieves the maximum of 220 kV/cm. As is well known, the ferroelectric property may be related to the following factors:(1)Structural distortion.[46,47]The substitution of Fe by larger radius ions,i.e.,Co and Ni,can reduce the displacement of the B-site ions,decreasing the structural distortion.The decreased structural distortion leads to the reduced FE Curie temperature,which is confirmed in Fig.8. The decrease structural distortion will reduce the larger remnant polarization. (2) Oxygen vacancy.[48]It was reported that oxygen vacancies usually aggregate at the ferroelectric domain walls and pin the domain switching, resulting in deterioration of the remnant polarization. Ni substitution decreases oxygen vacancy concentration discussed above and increases the polarization. (3)Grain size.[49]Larger grain can weaken the aggregation of the defects at the domain walls,lessening the pining of the domain walls and enhancing the remnant polarization. As shown in Fig.2,less Ni substitution increases grain size,which can enhance the remnant polarization. The above three factors bring about the variation of ferroelectricity dependent on Ni content.

    4. Conclusions

    The microstructures, ferroelectric, magnetic, and dielectric properties of BFNT-xceramics were investigated systematically. XRD and Raman spectra confirmed that Ni substitution does not change the four-layered perovskite structure. Ni substitution can improve ferroelectricity as well as magnetic properties. The largest remnant polarization(2Pr~11.6μC/cm2)and the highest remnant magnetization(2Mr~0.244 emu/g)were found in the BFNT-0.2 sample. The weak FM of the doped samples may mainly originate from the spin canting of Fe/Ni-based sublattices via the antisymmetric DM interaction.The enhancement of FE and magnetic properties is related to the structural distortion. Therefore,DSC tests were performed,detecting FE transition and lattice expansion of the tetragonal phase. The dielectric relaxation behaviors were observed in all samples, which may be caused by the migration of oxygen vacancies due to thermal activation. The present work is helpful for design of room-temperature multiferroics based on Aurivillius phase.

    猜你喜歡
    成海張磊小兵
    歡樂小兵將
    歡樂小兵將
    歡樂小兵將
    Temperature and doping dependent flat-band superconductivity on the Lieb-lattice?
    相思成海
    青年歌聲(2020年9期)2020-12-04 04:32:50
    初心入畫
    家長會
    THE GLOBAL ATTRACTOR FOR A VISCOUS WEAKLY DISSIPATIVE GENERALIZED TWO-COMPONENT μ-HUNTER-SAXTON SYSTEM?
    “口”“ㄙ”偏旁混用趣談
    論朝鮮文人成海應(yīng)與楚辭的受容關(guān)系
    名作欣賞(2017年26期)2017-09-16 07:03:09
    av黄色大香蕉| 亚洲国产日韩欧美精品在线观看| 国产伦理片在线播放av一区 | 偷拍熟女少妇极品色| 男插女下体视频免费在线播放| 男人狂女人下面高潮的视频| 人人妻人人看人人澡| 插逼视频在线观看| 国产精品人妻久久久影院| 99国产精品一区二区蜜桃av| 中出人妻视频一区二区| 亚洲欧美日韩东京热| 蜜臀久久99精品久久宅男| 国产国拍精品亚洲av在线观看| 午夜老司机福利剧场| 亚洲欧美精品综合久久99| 在线播放无遮挡| 悠悠久久av| 亚洲自偷自拍三级| 好男人在线观看高清免费视频| av黄色大香蕉| 人人妻人人澡人人爽人人夜夜 | 熟妇人妻久久中文字幕3abv| 日韩av不卡免费在线播放| av又黄又爽大尺度在线免费看 | 秋霞在线观看毛片| 国产又黄又爽又无遮挡在线| 国产激情偷乱视频一区二区| 麻豆成人av视频| 免费无遮挡裸体视频| 国产午夜精品一二区理论片| 久久亚洲国产成人精品v| 天堂av国产一区二区熟女人妻| 午夜精品一区二区三区免费看| 晚上一个人看的免费电影| 毛片女人毛片| 99国产精品一区二区蜜桃av| 在线观看美女被高潮喷水网站| 亚洲精品色激情综合| 婷婷色综合大香蕉| 亚洲精品乱码久久久久久按摩| 婷婷亚洲欧美| 九草在线视频观看| 国产老妇女一区| 久久久久久九九精品二区国产| 久久欧美精品欧美久久欧美| 久久99蜜桃精品久久| 免费av毛片视频| 18禁黄网站禁片免费观看直播| 欧美+亚洲+日韩+国产| 欧美不卡视频在线免费观看| 国产日韩欧美在线精品| 91精品国产九色| 国产精品美女特级片免费视频播放器| 成人午夜高清在线视频| 又粗又硬又长又爽又黄的视频 | 日韩精品青青久久久久久| 大香蕉久久网| 国产精品人妻久久久久久| 国产在视频线在精品| 麻豆精品久久久久久蜜桃| 亚洲精品影视一区二区三区av| 亚洲欧洲日产国产| 综合色av麻豆| 国产国拍精品亚洲av在线观看| 九色成人免费人妻av| 18禁在线播放成人免费| 亚洲婷婷狠狠爱综合网| 夜夜爽天天搞| av在线播放精品| 精品久久久久久久久亚洲| 老熟妇乱子伦视频在线观看| 99热这里只有是精品50| 99热6这里只有精品| 国产精品人妻久久久影院| 精品人妻视频免费看| 久久久久久久久久久免费av| 尤物成人国产欧美一区二区三区| 91久久精品国产一区二区成人| 黑人高潮一二区| 1000部很黄的大片| 国产伦理片在线播放av一区 | 桃色一区二区三区在线观看| 乱人视频在线观看| 中文字幕av成人在线电影| 国产探花在线观看一区二区| 亚洲国产色片| av又黄又爽大尺度在线免费看 | 欧美日韩乱码在线| 国产一区二区在线观看日韩| 亚洲国产精品合色在线| 中文在线观看免费www的网站| 免费人成视频x8x8入口观看| 热99在线观看视频| 12—13女人毛片做爰片一| 日韩成人伦理影院| 亚洲在线观看片| 亚洲av电影不卡..在线观看| 亚洲av不卡在线观看| 亚洲天堂国产精品一区在线| 成人一区二区视频在线观看| 一个人看的www免费观看视频| 熟女电影av网| 欧美三级亚洲精品| 插逼视频在线观看| 在线天堂最新版资源| 一级黄色大片毛片| 国产精品一区二区在线观看99 | 一个人看的www免费观看视频| 国产精品乱码一区二三区的特点| 欧美日韩国产亚洲二区| 亚洲欧美成人精品一区二区| a级一级毛片免费在线观看| 国产色婷婷99| 国产成人a区在线观看| 精品久久久久久久人妻蜜臀av| 一级毛片aaaaaa免费看小| 天堂网av新在线| 亚洲在线自拍视频| 亚洲人成网站高清观看| 久久精品国产亚洲av涩爱 | 日日摸夜夜添夜夜爱| 久久久国产成人免费| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美在线乱码| 国产毛片a区久久久久| 少妇高潮的动态图| 精品人妻偷拍中文字幕| 哪个播放器可以免费观看大片| 国产精品一区二区三区四区久久| 国产精品精品国产色婷婷| 99九九线精品视频在线观看视频| 免费大片18禁| 天天躁日日操中文字幕| 免费搜索国产男女视频| 午夜老司机福利剧场| 99久国产av精品| 99热精品在线国产| 日日摸夜夜添夜夜添av毛片| 国产白丝娇喘喷水9色精品| 精品人妻偷拍中文字幕| 久久精品久久久久久噜噜老黄 | 亚洲精品日韩av片在线观看| av国产免费在线观看| 99热网站在线观看| 色噜噜av男人的天堂激情| 精品人妻偷拍中文字幕| 亚洲精品久久久久久婷婷小说 | 少妇的逼水好多| 精品少妇黑人巨大在线播放 | 高清午夜精品一区二区三区 | 日韩一区二区三区影片| 久久99热6这里只有精品| 午夜激情欧美在线| 午夜精品国产一区二区电影 | 国产精品精品国产色婷婷| 乱人视频在线观看| 一夜夜www| 岛国在线免费视频观看| 99riav亚洲国产免费| 天堂av国产一区二区熟女人妻| 久久久国产成人免费| 欧美色欧美亚洲另类二区| 亚洲欧美精品综合久久99| 九九爱精品视频在线观看| 尤物成人国产欧美一区二区三区| 亚洲国产精品久久男人天堂| 真实男女啪啪啪动态图| 波多野结衣巨乳人妻| 欧美人与善性xxx| 三级经典国产精品| 精品熟女少妇av免费看| 此物有八面人人有两片| 日本与韩国留学比较| 你懂的网址亚洲精品在线观看 | 国产亚洲精品av在线| 国内精品一区二区在线观看| 插逼视频在线观看| 大型黄色视频在线免费观看| 日产精品乱码卡一卡2卡三| 久久久久久伊人网av| 久久精品国产亚洲av香蕉五月| 欧美bdsm另类| 波多野结衣高清无吗| 只有这里有精品99| 成年版毛片免费区| 欧美区成人在线视频| 中文字幕av成人在线电影| 婷婷六月久久综合丁香| а√天堂www在线а√下载| 久久精品夜色国产| 99热精品在线国产| 看十八女毛片水多多多| 国产极品天堂在线| 日韩欧美三级三区| 国模一区二区三区四区视频| 晚上一个人看的免费电影| 91狼人影院| 深夜a级毛片| 18禁在线播放成人免费| 秋霞在线观看毛片| 午夜福利成人在线免费观看| kizo精华| 国产免费一级a男人的天堂| 精品午夜福利在线看| 好男人在线观看高清免费视频| 99久久成人亚洲精品观看| 久久久久久久亚洲中文字幕| 亚洲在线自拍视频| 一个人看的www免费观看视频| 成人三级黄色视频| 精品午夜福利在线看| 日本一二三区视频观看| 中文字幕人妻熟人妻熟丝袜美| 欧美三级亚洲精品| 国产成人福利小说| 午夜爱爱视频在线播放| 美女被艹到高潮喷水动态| 三级国产精品欧美在线观看| 久久久久久九九精品二区国产| 欧美+亚洲+日韩+国产| 黄片无遮挡物在线观看| 亚洲熟妇中文字幕五十中出| 能在线免费看毛片的网站| 亚洲av不卡在线观看| 色5月婷婷丁香| av在线蜜桃| 日日撸夜夜添| 久久午夜福利片| 久久精品国产亚洲网站| 色尼玛亚洲综合影院| 成人一区二区视频在线观看| 欧美日韩国产亚洲二区| 欧美区成人在线视频| 美女大奶头视频| 国产黄片视频在线免费观看| 亚洲国产色片| 亚洲国产精品久久男人天堂| 白带黄色成豆腐渣| 欧美日韩在线观看h| 偷拍熟女少妇极品色| 成人亚洲精品av一区二区| 婷婷亚洲欧美| 男女下面进入的视频免费午夜| www.色视频.com| or卡值多少钱| 卡戴珊不雅视频在线播放| 99久久精品国产国产毛片| 亚洲欧美精品综合久久99| 成人一区二区视频在线观看| 在线观看免费视频日本深夜| av国产免费在线观看| 九色成人免费人妻av| 成人性生交大片免费视频hd| 亚洲人成网站高清观看| av.在线天堂| 美女大奶头视频| 亚洲av第一区精品v没综合| 能在线免费观看的黄片| 亚洲国产精品国产精品| 国产亚洲av片在线观看秒播厂 | 内地一区二区视频在线| 蜜桃久久精品国产亚洲av| 亚洲在久久综合| 国产免费一级a男人的天堂| 成人三级黄色视频| 亚洲av.av天堂| 国产精品日韩av在线免费观看| 国产精品精品国产色婷婷| 两个人视频免费观看高清| 一区二区三区免费毛片| 日韩高清综合在线| 嫩草影院精品99| 亚洲七黄色美女视频| 少妇猛男粗大的猛烈进出视频 | 精品久久久久久久末码| 精品久久久久久成人av| 国产亚洲精品久久久久久毛片| 久久精品人妻少妇| 一区福利在线观看| 亚洲熟妇中文字幕五十中出| 日韩欧美精品免费久久| 青春草国产在线视频 | 伊人久久精品亚洲午夜| 日本黄色视频三级网站网址| 一区福利在线观看| 欧美性猛交╳xxx乱大交人| 男人和女人高潮做爰伦理| 十八禁国产超污无遮挡网站| 亚洲在久久综合| 伦理电影大哥的女人| 悠悠久久av| 国产精品人妻久久久影院| 午夜福利在线观看吧| 成人鲁丝片一二三区免费| 亚洲三级黄色毛片| 99久久九九国产精品国产免费| 亚洲av中文av极速乱| 国产国拍精品亚洲av在线观看| 99久国产av精品国产电影| 久久精品国产亚洲av天美| .国产精品久久| 免费电影在线观看免费观看| 97热精品久久久久久| 蜜桃亚洲精品一区二区三区| 国产白丝娇喘喷水9色精品| 久久精品国产自在天天线| 在线观看午夜福利视频| 老师上课跳d突然被开到最大视频| 我的老师免费观看完整版| 91久久精品国产一区二区三区| 成年免费大片在线观看| 欧美不卡视频在线免费观看| 菩萨蛮人人尽说江南好唐韦庄 | 国产成人91sexporn| 日韩亚洲欧美综合| 麻豆一二三区av精品| 日本色播在线视频| 嫩草影院新地址| 亚洲图色成人| av福利片在线观看| 国产午夜精品久久久久久一区二区三区| 久久久久久久久大av| 天天躁日日操中文字幕| 国产又黄又爽又无遮挡在线| 成人毛片a级毛片在线播放| 中文字幕熟女人妻在线| 桃色一区二区三区在线观看| 大香蕉久久网| 99久久中文字幕三级久久日本| 最近手机中文字幕大全| 国产精品永久免费网站| 身体一侧抽搐| 亚洲精品国产成人久久av| 国产淫片久久久久久久久| 亚洲av成人精品一区久久| 国产精品久久久久久久电影| 色综合亚洲欧美另类图片| 六月丁香七月| 日本三级黄在线观看| 全区人妻精品视频| 丰满人妻一区二区三区视频av| 美女内射精品一级片tv| 内地一区二区视频在线| h日本视频在线播放| 日本色播在线视频| 18禁在线播放成人免费| 日韩一区二区三区影片| 久久久久免费精品人妻一区二区| 精品一区二区免费观看| 国产精品美女特级片免费视频播放器| 99热这里只有是精品50| 亚洲欧美精品自产自拍| 丰满的人妻完整版| 久久午夜福利片| 亚洲欧美日韩高清在线视频| 国产精品久久久久久久电影| 国内少妇人妻偷人精品xxx网站| 亚洲国产欧美在线一区| 亚洲国产精品成人综合色| 老司机福利观看| 国产精品国产高清国产av| 日韩中字成人| av在线播放精品| 极品教师在线视频| 亚洲一区二区三区色噜噜| 少妇的逼好多水| 欧美丝袜亚洲另类| 欧美日韩国产亚洲二区| 丰满人妻一区二区三区视频av| 麻豆乱淫一区二区| 看片在线看免费视频| 午夜福利在线在线| 一个人免费在线观看电影| 欧美丝袜亚洲另类| 成人永久免费在线观看视频| 亚洲自拍偷在线| 一区二区三区四区激情视频 | 精品熟女少妇av免费看| 天堂√8在线中文| 简卡轻食公司| 97超碰精品成人国产| 91aial.com中文字幕在线观看| 偷拍熟女少妇极品色| 国产精品久久电影中文字幕| 变态另类成人亚洲欧美熟女| 高清日韩中文字幕在线| 日韩亚洲欧美综合| 国产精品野战在线观看| 欧美+亚洲+日韩+国产| 亚洲av一区综合| 亚洲av电影不卡..在线观看| .国产精品久久| 亚州av有码| 99热全是精品| 国产精品国产高清国产av| 黄色视频,在线免费观看| 国产一级毛片在线| 岛国毛片在线播放| 色综合亚洲欧美另类图片| 午夜福利视频1000在线观看| 青春草视频在线免费观看| 男人舔奶头视频| 深爱激情五月婷婷| 欧美成人免费av一区二区三区| 成年女人看的毛片在线观看| 久久人人爽人人爽人人片va| 精品人妻熟女av久视频| 国产亚洲精品av在线| av免费观看日本| 好男人视频免费观看在线| 男女那种视频在线观看| 此物有八面人人有两片| 一个人免费在线观看电影| 亚洲国产精品久久男人天堂| 午夜福利在线观看免费完整高清在 | 神马国产精品三级电影在线观看| 日本av手机在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 人体艺术视频欧美日本| 亚洲精品粉嫩美女一区| 女人被狂操c到高潮| 婷婷亚洲欧美| 国产高清视频在线观看网站| 久久久久性生活片| 在线观看66精品国产| 亚洲av免费在线观看| 午夜激情福利司机影院| 少妇高潮的动态图| 亚洲国产欧美在线一区| 久久精品国产亚洲网站| 伦理电影大哥的女人| 波多野结衣高清作品| 免费黄网站久久成人精品| 丰满人妻一区二区三区视频av| 国产黄片视频在线免费观看| 别揉我奶头 嗯啊视频| av在线蜜桃| 青青草视频在线视频观看| 欧美高清性xxxxhd video| 人体艺术视频欧美日本| 亚洲精品国产成人久久av| 精品99又大又爽又粗少妇毛片| 亚洲成人久久性| 国产黄片视频在线免费观看| 国产色爽女视频免费观看| av天堂在线播放| 欧美zozozo另类| 国产成人a区在线观看| 人人妻人人澡欧美一区二区| 在线观看午夜福利视频| 日韩视频在线欧美| 成人三级黄色视频| 免费观看的影片在线观看| 中文资源天堂在线| 免费电影在线观看免费观看| 欧美色欧美亚洲另类二区| 亚洲色图av天堂| 国产国拍精品亚洲av在线观看| 女人被狂操c到高潮| 亚洲人成网站在线播放欧美日韩| 国产一区二区亚洲精品在线观看| 成人二区视频| 国产极品精品免费视频能看的| 免费看美女性在线毛片视频| 日韩欧美国产在线观看| 久久热精品热| 欧美xxxx黑人xx丫x性爽| 国产av麻豆久久久久久久| av国产免费在线观看| 成人av在线播放网站| 黄色一级大片看看| 亚洲国产欧美在线一区| 女人被狂操c到高潮| 全区人妻精品视频| 深爱激情五月婷婷| 国产在线精品亚洲第一网站| 久久人人精品亚洲av| 一本久久精品| 内射极品少妇av片p| 长腿黑丝高跟| 内地一区二区视频在线| 久久欧美精品欧美久久欧美| 99国产精品一区二区蜜桃av| 国产激情偷乱视频一区二区| 少妇丰满av| 非洲黑人性xxxx精品又粗又长| 国产精品.久久久| 日韩强制内射视频| 国产 一区 欧美 日韩| 国产精品无大码| 欧美色视频一区免费| 久久久久国产网址| 精品久久久久久久久av| 亚洲图色成人| 村上凉子中文字幕在线| 男人和女人高潮做爰伦理| 婷婷亚洲欧美| 中国国产av一级| 精品久久久噜噜| 国产一区二区在线观看日韩| 国产精品美女特级片免费视频播放器| .国产精品久久| 午夜亚洲福利在线播放| 少妇的逼水好多| 欧美性猛交黑人性爽| 乱码一卡2卡4卡精品| 精品久久久久久久久亚洲| 三级毛片av免费| 亚洲中文字幕一区二区三区有码在线看| 亚洲av一区综合| 国产精品电影一区二区三区| 国产高清激情床上av| 国产视频内射| 12—13女人毛片做爰片一| 精品久久久久久久末码| 欧美激情国产日韩精品一区| 精品久久国产蜜桃| 国产 一区 欧美 日韩| 国产精品久久久久久精品电影| 午夜福利成人在线免费观看| 男人舔奶头视频| 久久久国产成人免费| 婷婷亚洲欧美| 免费观看人在逋| 少妇的逼水好多| 国产男人的电影天堂91| 亚洲第一电影网av| av免费观看日本| 狂野欧美白嫩少妇大欣赏| 在线a可以看的网站| 综合色丁香网| 亚洲人成网站在线观看播放| 国产亚洲91精品色在线| 亚洲天堂国产精品一区在线| 国产一区二区在线观看日韩| 夜夜夜夜夜久久久久| 国产女主播在线喷水免费视频网站 | 男人舔女人下体高潮全视频| 日本撒尿小便嘘嘘汇集6| 成人毛片a级毛片在线播放| 18禁裸乳无遮挡免费网站照片| 看免费成人av毛片| 18禁在线播放成人免费| 国产在线男女| 哪里可以看免费的av片| 国产色婷婷99| 天堂√8在线中文| 亚洲人成网站高清观看| 国产成人91sexporn| 亚洲久久久久久中文字幕| 亚洲精品日韩av片在线观看| 少妇熟女欧美另类| 精品人妻偷拍中文字幕| 男人和女人高潮做爰伦理| 国产精品久久久久久久电影| 美女内射精品一级片tv| 国内精品一区二区在线观看| 综合色丁香网| 久久久久免费精品人妻一区二区| 亚洲国产欧美人成| av专区在线播放| 欧美精品国产亚洲| 亚洲人成网站高清观看| 国产精品一及| 一本精品99久久精品77| 日韩制服骚丝袜av| 亚洲国产精品久久男人天堂| 五月伊人婷婷丁香| 女的被弄到高潮叫床怎么办| 日韩欧美精品v在线| 成年免费大片在线观看| 2022亚洲国产成人精品| 最近2019中文字幕mv第一页| 国产爱豆传媒在线观看| 麻豆成人午夜福利视频| 边亲边吃奶的免费视频| 亚洲国产色片| 亚洲成人久久性| 国产精品久久久久久精品电影小说 | 婷婷六月久久综合丁香| 内地一区二区视频在线| 久久亚洲精品不卡| 欧美高清性xxxxhd video| 色噜噜av男人的天堂激情| 成人亚洲精品av一区二区| 国产一区二区在线观看日韩| 欧美高清性xxxxhd video| 久久亚洲精品不卡| 日本在线视频免费播放| 亚洲美女视频黄频| 国产乱人偷精品视频| 国产精品久久久久久精品电影| 久久久久久久久久久丰满| 久久久成人免费电影| 99久久成人亚洲精品观看| 在线免费观看的www视频| 国产色爽女视频免费观看| 日韩欧美三级三区| 国产成人a区在线观看| 长腿黑丝高跟| 赤兔流量卡办理| 青春草亚洲视频在线观看| 日韩国内少妇激情av| 嫩草影院新地址| 黄色配什么色好看| 夜夜爽天天搞| 亚洲人成网站在线播放欧美日韩| 午夜免费激情av| 国产极品精品免费视频能看的| 1024手机看黄色片| 日韩一本色道免费dvd| 久久精品国产亚洲网站| 亚洲国产精品sss在线观看| 极品教师在线视频|