譚 娟,吳建強(qiáng),陳 春,郭晉川,王耀祖,王潤(rùn)中,黃沈發(fā)*
復(fù)配材料鈍化重金屬污泥試驗(yàn)及工程應(yīng)用研究
譚 娟1,吳建強(qiáng)1,陳 春2,郭晉川2,王耀祖3,王潤(rùn)中3,黃沈發(fā)1*
(1.上海市環(huán)境科學(xué)研究院,上海 200233;2.廣西水工程材料與結(jié)構(gòu)重點(diǎn)實(shí)驗(yàn)室,廣西 南寧 530023;3.上海申榕環(huán)保設(shè)備有限公司,上海 200032)
利用多組分新型高效材料與普通硅酸鹽水泥制得復(fù)配材料,開展箱涵清淤重金屬(Cd、Cr、Cu、Ni、 Pb和Zn)污染底泥鈍化試驗(yàn)及工程應(yīng)用研究,采用無(wú)側(cè)限抗壓強(qiáng)度和毒性浸出濃度評(píng)價(jià)鈍化效果,進(jìn)一步分析重金屬賦存形態(tài)變化探討鈍化機(jī)制.結(jié)果表明,底泥:復(fù)配材料:黃沙質(zhì)量配比為5:4:1時(shí),鈍化效果最佳.實(shí)際工程應(yīng)用中,H型和O型固化磚抗壓強(qiáng)度分別達(dá)10.82和10.11MPa,毒性浸出濃度遠(yuǎn)低于鑒別標(biāo)準(zhǔn)值(GB5085.3-2007),滿足資源化應(yīng)用要求.重金屬浸出濃度與離子交換態(tài)和有機(jī)結(jié)合態(tài)占比呈正相關(guān),有機(jī)結(jié)合態(tài)和鐵錳氧化態(tài)分別為底泥和固化磚中重金屬的主要賦存形態(tài),二者占比在固化前后呈現(xiàn)完全相反的變化趨勢(shì),該變化對(duì)固化穩(wěn)定化重金屬起重要作用.除H型Cr外,其他固化磚中重金屬殘?jiān)鼞B(tài)占比均有所增加.該復(fù)配材料基于多組分物質(zhì)間相互協(xié)同作用實(shí)現(xiàn)重金屬鈍化具有實(shí)際應(yīng)用前景.
底泥;重金屬;固化穩(wěn)定化;化學(xué)形態(tài);工程應(yīng)用
重金屬是黑臭水體底泥主要污染物之一[1],污染底泥無(wú)害化處置是基本要求,而重金屬的穩(wěn)定性是限制因素[2].固化穩(wěn)定化技術(shù)具有操作簡(jiǎn)單、成本低、處理效果好等優(yōu)點(diǎn)而備受關(guān)注[3],鈍化材料的選擇是關(guān)鍵.常用鈍化材料包括水泥[4]、石灰[5]、蒙脫土[6]、粉煤灰[7]、有機(jī)質(zhì)[8]、生物碳[9]等.這些材料通過(guò)與重金屬發(fā)生吸附、沉淀、氧化還原和離子交換等物理化學(xué)反應(yīng),降低重金屬的可遷移性及生物有效性[10].大量研究表明復(fù)合型鈍化劑修復(fù)效果優(yōu)于單一鈍化劑.茹淑華等[11]指出有機(jī)-無(wú)機(jī)復(fù)合鈍化劑對(duì)土壤中Cd和Pb的鈍化效果優(yōu)于兩種材料單獨(dú)使用.高瑞麗等[12]發(fā)現(xiàn)將生物炭和蒙脫石復(fù)配組合可提高對(duì)污泥重金屬的穩(wěn)定效率.Raja等[13]指出利用粉煤灰、生石灰和高爐礦渣制成的復(fù)合材料可以有效鈍化污染土壤中的重金屬.綜上可以看出,現(xiàn)有復(fù)合材料通常只選用了常用鈍化材料中的2種或3種進(jìn)行復(fù)配,并且修復(fù)對(duì)象多為單一重金屬,而對(duì)更多種類材料進(jìn)行復(fù)配以實(shí)現(xiàn)對(duì)重金屬?gòu)?fù)合污染協(xié)同修復(fù)的相關(guān)研究還鮮有報(bào)道.因此,對(duì)多種材料進(jìn)行復(fù)配形成高效復(fù)合鈍化材料極具應(yīng)用前景.
閆淑蘭等[14]基于文獻(xiàn)計(jì)量分析了當(dāng)前重金屬固化穩(wěn)定化修復(fù)技術(shù)發(fā)展動(dòng)態(tài),表明目前國(guó)內(nèi)外學(xué)者的研究重點(diǎn)仍側(cè)重于修復(fù)材料;其次是修復(fù)效果評(píng)估方法;再次是固化穩(wěn)定化機(jī)理研究;而關(guān)于實(shí)際處置設(shè)備或工藝流程研究的報(bào)道很少.箱涵疏浚底泥有機(jī)碳含量高[15],重金屬污染嚴(yán)重[16],在固化穩(wěn)定化后只有被實(shí)際利用才能真正實(shí)現(xiàn)“減污降碳”協(xié)同增效.因此,對(duì)可應(yīng)用于實(shí)際修復(fù)工程的處置裝備及工藝流程的需求十分迫切.
綜上所述,本研究將對(duì)多種鈍化材料進(jìn)行復(fù)配制成復(fù)合材料,評(píng)估其對(duì)復(fù)合重金屬污染底泥的固化穩(wěn)定化效果,基于重金屬形態(tài)變化分析鈍化機(jī)理,并采用研究團(tuán)隊(duì)研發(fā)的成套底泥自動(dòng)固化穩(wěn)定化制磚裝置生產(chǎn)固化磚,開展實(shí)際應(yīng)用,真正形成從修復(fù)材料研發(fā)到固化穩(wěn)定化效果評(píng)估到鈍化機(jī)理分析到實(shí)際工程應(yīng)用的一體化科學(xué)高效的處置途徑,切實(shí)實(shí)現(xiàn)污染底泥修復(fù)減污降碳協(xié)同效應(yīng).
污染底泥來(lái)源于某箱涵清淤底泥,箱涵底部、中間層和上層沉積底泥含水率分別約為60%、70%和80%左右.底泥清淤量約為3100m3,主要存在黑臭、有機(jī)質(zhì)含量高、重金屬污染等環(huán)境問(wèn)題.
復(fù)配材料采用高效材料(主要成分為二氧化硅微粉、消石灰、氯化鎂、氯化鈣、木質(zhì)磺酸鈉、蒙脫土、二氧化鋯等)與普通硅酸鹽水泥按固定質(zhì)量比(15:85)混合均勻制得,具體制備方法為:先加入85重量份的硅酸鹽水泥,開始攪拌后再加15重量份的高效材料,繼續(xù)攪拌,在20℃下混勻150min.
1.2.1 室內(nèi)試驗(yàn)方案 根據(jù)箱涵長(zhǎng)度,確定3個(gè)采樣點(diǎn)位采集底泥,每個(gè)點(diǎn)位采上、中和底層底泥3個(gè),將3個(gè)底泥樣品進(jìn)行充分混合后(記為A組)檢測(cè)重金屬含量和浸出濃度.將混勻后的底泥去除雜質(zhì)后靜置脫水,過(guò)程中測(cè)定含水率,待含水率處于60%左右時(shí),按照底泥:復(fù)配材料:黃沙為5:4:1、5:3:2、5:2:3和5:1:4(分別記為A-40%、A-30%、A-20%和A-10%)添加黃沙和復(fù)配材料,攪拌30min使其緩慢達(dá)到混勻狀態(tài),然后于振蕩條件下將其倒入三聯(lián)式立方體模具(71mm×71mm×71mm)中,靜置72h脫模,常溫遮陰條件下養(yǎng)護(hù)28d,每個(gè)比例梯度設(shè)置3個(gè)重復(fù).
1.2.2 工程方案 取3個(gè)清淤底泥樣品(記為B組)檢測(cè)重金屬含量和浸出濃度.根據(jù)室內(nèi)試驗(yàn)結(jié)果確定的最佳底泥:復(fù)配材料:黃沙配比比例,將清淤底泥調(diào)整至含水率60%左右時(shí),采用成套底泥自動(dòng)固化穩(wěn)定化制磚裝置進(jìn)行處置(圖1) ,預(yù)計(jì)制得固化磚共計(jì)12萬(wàn)塊,根據(jù)形狀這些固化磚可分為H型和O型,制得的固化磚主要用于公園步道及河道生態(tài)護(hù)坡鋪設(shè).
圖1 施工工藝流程
測(cè)試方法參照固體廢物測(cè)試相關(guān)標(biāo)準(zhǔn)執(zhí)行,其中,底泥pH采用NY/T 1121.2-2006方法測(cè)定[17],底泥中Pb、Cd、Cr、Cu、Ni和Zn濃度采用電感耦合等離子體發(fā)射光譜法(HJ781-2016)測(cè)定[18].
再生磚抗壓強(qiáng)度參照ASTM D4219-2002標(biāo)準(zhǔn)[19]進(jìn)行測(cè)試.測(cè)試后立即取破碎磚塊進(jìn)行重金屬浸出濃度測(cè)試.重金屬浸出采用HJ/T 299-2007[20]方法進(jìn)行.獲取的浸出液按GB 5085.3-2007[21]標(biāo)準(zhǔn)檢測(cè)Pb、Cd、Cr、Cu、Ni和Zn濃度.試驗(yàn)組和工程組每種固化磚均取3塊作為重復(fù).
針對(duì)工程組,采用改進(jìn)的Tessier方法來(lái)對(duì)底泥和固化磚重金屬賦存形態(tài)進(jìn)行分析,將自然風(fēng)干的底泥和固化磚研磨過(guò)0.15mm篩,準(zhǔn)確稱1.00g樣品于50mL聚丙烯塑料離心管中,分別用8mL 1mol/L的MgCl2(pH=7.0)、16mL 1mol/L的NaAc(pH=5.0)、16mL 0.04mol/L 的NH2OH·HCl(25%Hac溶液)、3mL 0.01mol/L的HNO3和5mL 30%H2O2(pH=2.0)、以及HNO3+HF+HClO4連續(xù)提取重金屬的5種形態(tài):離子交換態(tài)、碳酸鹽結(jié)合態(tài)、鐵錳氧化態(tài)、有機(jī)結(jié)合態(tài)和殘?jiān)鼞B(tài)[22].各形態(tài)提取液均采用等離子體原子發(fā)射光譜儀(ICP儀)進(jìn)行測(cè)定,所測(cè)試樣品均做平行樣.
由表1可見,底泥中Pb、Cd、Cr、Cu、Ni和Zn 均存在污染,以Cd、Cu、Ni和Zn污染較為嚴(yán)重;從浸出濃度來(lái)看,Pb、Cd、Cr、Cu、Ni和Zn均超出《污水綜合排放標(biāo)準(zhǔn)》(GB8978-1996)[23]最大排放濃度限值,Cd和工程組Ni超出《浸出毒性鑒別標(biāo)準(zhǔn)》(GB5085.3-2007)[21]標(biāo)準(zhǔn)值.
表1 底泥重金屬檢測(cè)結(jié)果分析
圖2 試驗(yàn)組固化磚無(wú)側(cè)限抗壓強(qiáng)度
a、b、c表示其兩兩之間的差異達(dá)顯著水平(<0.05)
圖3 試驗(yàn)組固化磚重金屬浸出濃度
a、b、c表示其兩兩之間的差異達(dá)顯著水平(<0.01)
2.2.1 抗壓強(qiáng)度 由圖2可見,A-40%試驗(yàn)組抗壓強(qiáng)度最高,均值為3.88MPa,其次為A-30%、A-20%和A-10%組,其均值分別為2.86、2.57和1.69Mpa, A-40%試驗(yàn)組和其它3組之間差異顯著(<0.05), A-30%和A-20%試驗(yàn)組之間無(wú)明顯差異,A-10%試驗(yàn)組和其他3組之間差異顯著(<0.05).
2.2.2 浸出毒性 由圖3可見,除Ni外,其他重金屬均以A-40%試驗(yàn)組浸出濃度最低,A-40%試驗(yàn)組Cu、Cd和Ni浸出濃度與其他試驗(yàn)組之間差異不顯著,Pb與其他試驗(yàn)組之間均存在顯著性差異(< 0.05).與底泥浸出濃度相比,試驗(yàn)組各項(xiàng)重金屬浸出濃度均明顯降低,其中,Pb、Cd、Cr、Cu和Zn均以A-40%試驗(yàn)組降低最多,分別降至原底泥浸出濃度的1.23%、0.27%、1.98%、2.38%、和13.32%,Pb、Cu、Ni和Zn以A-10%試驗(yàn)組降低最少,分別降低至原底泥浸出濃度的2.50%、36.46%、16.50%和24.40%.總體而言,A-40%試驗(yàn)組各項(xiàng)重金屬穩(wěn)定性較好.從抗壓強(qiáng)度和浸出毒性綜合來(lái)看, A-40%試驗(yàn)組固化穩(wěn)定化效果最優(yōu).
根據(jù)室內(nèi)試驗(yàn)結(jié)果,選擇底泥:復(fù)配材料:黃沙比例為5:4:1為最佳質(zhì)量配比方案應(yīng)用于實(shí)際工程中.
2.3.1 抗壓強(qiáng)度 由圖4可見,H型抗壓強(qiáng)度值高于O型,均值分別為10.82和10.11Mpa ,滿足資源化利用要求,二者之間存在顯著性差異(<0.05);與室內(nèi)A-40%試驗(yàn)組相比,工程組再生磚抗壓強(qiáng)度顯著提高(<0.01).
圖4 工程組固化磚無(wú)側(cè)限抗壓強(qiáng)度
a、b、c表示其兩兩之間的差異達(dá)顯著水平(<0.01)
2.3.2 浸出濃度 由圖5可見,除Cd外,其他重金屬均以H型低于O型;除Ni外,其他重金屬H型和O型之間無(wú)顯著差異;H型和O型Pb、Cr、Cu、Zn均低于試驗(yàn)組,而Ni以工程組高于試驗(yàn)組,Cd則以O(shè)型略低于試驗(yàn)組,而H型則高于試驗(yàn)組.總體而言,工程組重金屬穩(wěn)定化效果優(yōu)于試驗(yàn)組,且以H型效果優(yōu)于O型.
圖5 工程組固化磚重金屬浸出濃度
a、b表示其兩兩之間的差異達(dá)顯著水平(<0.05)
以水泥為主劑添加適量輔劑形成復(fù)合材料是處置重金屬污泥的有效途徑[24],本研究選用普通硅酸鹽水泥作為主劑,新型高效固化材料作為輔劑,其鈍化機(jī)理一方面表現(xiàn)為水泥水化產(chǎn)物C-H-S凝膠和鈣礬石的作用[25],同時(shí),高效材料中的二氧化硅、消石灰、蒙脫土、木質(zhì)磺酸鈉和二氧化鋯等物質(zhì)通過(guò)自身及其與水泥水化產(chǎn)物協(xié)同作用進(jìn)一步加強(qiáng)鈍化效果.首先,消石灰可促進(jìn)鈣礬石的形成[26],同時(shí)與二氧化硅粉反應(yīng)生成C-H-S凝膠[27],進(jìn)而增強(qiáng)鈍化效果;其次,木質(zhì)素磺酸鈉苯環(huán)和側(cè)鏈上所含的活性基團(tuán)能和金屬離子形成配位鍵而生成木質(zhì)素磺酸鹽-金屬離子螯合物,進(jìn)而實(shí)現(xiàn)對(duì)金屬離子的吸附絡(luò)合[28],還可作為減水劑提高固化體強(qiáng)度[29];再次,蒙脫土具有納米級(jí)平面片層狀結(jié)構(gòu),被廣泛應(yīng)用于重金屬吸附治理[30],研究表明改性后的蒙脫土吸附性能更佳[31],高效材料中的氯化鎂和蘇打灰成分可以實(shí)現(xiàn)蒙脫土改性,Mg2+與蒙脫土層間的可交換陽(yáng)離子進(jìn)行交換使蒙脫土剝離分散成更薄且具有更大比表面積的單晶片,蘇打灰中的Na2CO3成分可對(duì)鈣基蒙脫土進(jìn)行鈉化改性,使其陽(yáng)離子交換性和熱穩(wěn)定性更佳.另外,改性后的蒙脫土還可以和木質(zhì)素磺酸鈉通過(guò)插層-剝離復(fù)合法形成木質(zhì)纖維素/蒙脫土納米復(fù)合材料,進(jìn)一步提升熱穩(wěn)定和吸附性能[32].此外,二氧化鋯具有良好的熱穩(wěn)定性及化學(xué)穩(wěn)定性,可用于增強(qiáng)固化體的抗壓強(qiáng)度,同時(shí)納米氧化鋯對(duì)金屬離子具有良好的吸附作用[33],二氧化鋯是否會(huì)在鈍化過(guò)程中形成納米氧化鋯材料進(jìn)而在強(qiáng)化固化體的同時(shí)增強(qiáng)穩(wěn)定性能還有待探討.工程組由于采用的是全自動(dòng)化裝置,整個(gè)物料輸送、混勻攪拌、震蕩平整等操作動(dòng)力更足,均勻性更好.因此,工程組鈍化效果優(yōu)于試驗(yàn)組.
2.4.1 重金屬賦存形態(tài)占比變化 由圖6所示,底泥中重金屬均以有機(jī)結(jié)合態(tài)存在為主,Cd、Cr、Cu、Ni、 Pb和Zn占比分別為68.34%、44.60%、67.70%、46.11%、36.08%和40.36%,可能與底泥理化性質(zhì)有關(guān),已有研究表明土壤中有機(jī)質(zhì)含量與有機(jī)結(jié)合態(tài)重金屬之間呈正相關(guān)[34-35],箱涵底泥有機(jī)質(zhì)含量高,在20%~30%左右,其表面由于帶有大量COO-、OH-、C=O等電性基團(tuán)可以和金屬離子形成多種絡(luò)合物,而底泥pH在7.9左右,呈弱堿性,進(jìn)一步導(dǎo)致這些基團(tuán)負(fù)電性增加,對(duì)金屬離子的絡(luò)合能力也增強(qiáng).經(jīng)過(guò)鈍化后,離子交換態(tài)、碳酸鹽結(jié)合態(tài)和有機(jī)結(jié)合態(tài)占比均下降,鐵錳氧化態(tài)占比均升高,增加量在22.30%~57.02%之間,成為主要賦存形態(tài),除H型中的Cr殘?jiān)鼞B(tài)占比小幅下降外,其它固化磚中各重金屬殘?jiān)鼞B(tài)占比均上升,增加量在2.3%~28.69%,除Cu外,其余5項(xiàng)重金屬殘?jiān)鼞B(tài)成為僅次于鐵錳氧化態(tài)的賦存形態(tài),表明固化過(guò)程中底泥重金屬形態(tài)逐步向最穩(wěn)定的殘?jiān)鼞B(tài)轉(zhuǎn)變,這與已有研究結(jié)論一致[36-37].值得探討的是不穩(wěn)定態(tài)占比的下降并非大部分轉(zhuǎn)換為殘?jiān)鼞B(tài)而是轉(zhuǎn)化為鐵錳氧化態(tài).鐵錳氧化態(tài)是指由比表面積較大的活性鐵錳氧化物吸附以及被其包裹的部分重金屬,專屬吸附作用強(qiáng)[38].箱涵底泥中Mn含量在1000mg/ kg左右,Fe含量在3.5%左右,為鈍化過(guò)程中鐵錳氧化物對(duì)重金屬離子的吸附優(yōu)勢(shì)奠定了基礎(chǔ).同時(shí),水泥、消石灰、木質(zhì)磺酸鈉和蘇打灰等物質(zhì)的添加可提高反應(yīng)pH和Ca2+、Mg2+和Na+的濃度,進(jìn)而促進(jìn)鐵錳氧化物的形成[39].而錳氧化物也是一種強(qiáng)氧化劑,能夠與底泥中的有機(jī)物反應(yīng)進(jìn)而降低有機(jī)結(jié)合態(tài)重金屬含量[40].
圖6 工程組底泥和固化磚中重金屬賦存形態(tài)分布
2.4.2 重金屬賦存形態(tài)與浸出濃度相關(guān)性 由表2可知,底泥和2種固化磚重金屬浸出濃度均與離子交換態(tài)占比呈極顯著(<0.01)和顯著正相關(guān)(< 0.05);底泥重金屬浸出濃度與鐵錳氧化態(tài)占比呈極顯著負(fù)相關(guān)(<0.01);2種固化體重金屬浸出濃度均與有機(jī)結(jié)合態(tài)占比呈極顯著正相關(guān)(<0.01),H型固化體重金屬浸出濃度與殘?jiān)鼞B(tài)占比呈極顯著負(fù)相關(guān)(<0.01).可以看出,離子交換態(tài)和有機(jī)結(jié)合態(tài)占比是影響重金屬浸出的關(guān)鍵形態(tài).為了進(jìn)一步分析鈍化過(guò)程中不同形態(tài)變化情況對(duì)浸出濃度的影響,將不同形態(tài)占比變化率絕對(duì)值與浸出濃度進(jìn)行相關(guān)性分析,如表3所示,H型和O型浸出濃度與鐵錳氧化態(tài)占比變化率呈顯著(<0.05)和極顯著正相關(guān)(<0.01),而與有機(jī)結(jié)合態(tài)占比變化率呈顯著(< 0.05)和極顯著負(fù)相關(guān)(<0.01).表明固化前后有機(jī)結(jié)合態(tài)的降低和鐵錳氧化態(tài)的升高對(duì)重金屬浸出產(chǎn)生主要影響.
表2 重金屬浸出濃度與不同形態(tài)占比相關(guān)性分析
注:**<0.01;*<0.05;=18.
表3 重金屬浸出濃度與不同形態(tài)占比變化率相關(guān)性分析
注:**<0.01;*<0.05;=18.
3.1 底泥:復(fù)配材料:黃沙質(zhì)量配比為5:4:1時(shí)固化磚抗壓強(qiáng)度和毒性浸出濃度最優(yōu).實(shí)際工程應(yīng)用效果優(yōu)于試驗(yàn)組,且以H型優(yōu)于O型.
3.2 固化后,重金屬鐵錳氧化態(tài)占比大幅增加(增加量22.30%~57.02%),其次是殘?jiān)鼞B(tài)(增加量2.3%~ 28.69%),其他3種形態(tài)占比均下降;重金屬浸出濃度與離子交換態(tài)和有機(jī)結(jié)合態(tài)占比呈正相關(guān),固化前后有機(jī)結(jié)合態(tài)的降低和鐵錳氧化態(tài)的升高對(duì)浸出濃度產(chǎn)生主要影響.
3.3 該復(fù)配材料鈍化機(jī)理主要表現(xiàn)為高效材料中的二氧化硅、消石灰、蒙脫土、木質(zhì)磺酸鈉和二氧化鋯等物質(zhì)通過(guò)自身及其與水泥水化產(chǎn)物C-H-S凝膠和鈣礬石的協(xié)同促進(jìn)作用實(shí)現(xiàn)重金屬固化穩(wěn)定化.工程應(yīng)用結(jié)果表明該復(fù)配材料在鈍化重金屬污染底泥中具有較好的應(yīng)用前景.
[1] 熊鴻斌,周 鋼.巢湖市城區(qū)黑臭水體綜合水質(zhì)與底泥重金屬污染研究[J]. 合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2020,43(9):1256-1262.
Xiong H B, Zhou G. Studies on comprehensive water quality and heavy and metal pollution in sediment of black and odorous waters in urban area of Chaohu [J]. J. Hefei Univer. Technol. (Natural Science), 2020,43(9):1256-1262.
[2] Mohammad A M S, Mahfuzur R, Shahriar M A R, et al. Assessment of heavy metal contamination in the surficial sediments from the lower Meghna River estuary, Noakhali coast, Bangladesh [J]. International Journal of Sediment Research, 2021,36(3):384-391.
[3] Ma Y, Liu Z, Xu Y, et al. Remediating potentially toxic metal and organic Co-Contamination of soil by combining in situ solidification/stabilization and chemical oxidation: Efficacy, mechanism, and evaluation [J]. International Journal of Environmental Research & Public Health, 2018,15(11):2595-2613.
[4] Pu H, Mastoi A K, Chen X, et al. An integrated method for the rapid dewatering and solidification/stabilization of dredged contaminated sediment with a high water content [J]. Frontiers of Environmental Science & Engineering, 2021,15(4):67-78.
[5] Eisa H M, Vaezi I, Ardakani A M. Evaluation of solidification/ stabilization in arsenic-contaminated soils using lime dust and cement kiln dust [J]. Bull. Engi. Geol. Environ., 2020,79(4):1683-1692.
[6] Vroa B, Rny C, Md A. Enhancement of cement-based solidification/ stabilization of a lead-contaminate smectite clay [J]. Journal of Hazardous Materials, 2021,403(2):1-13.
[7] 趙述華,張?zhí)?陳志良,等.穩(wěn)定化處理砷污染土壤對(duì)3種修復(fù)植物的生態(tài)效應(yīng)[J]. 中國(guó)環(huán)境科學(xué), 2019,39(9):3925-3932.
Zhao S H, Zhang T P, Chen Z L, et al. Ecological effects of stabilization treatment of As contaminated soils on three remediation plants [J]. China Environmental Science, 2019,39(9):3925-3932.
[8] 譚錦濤,吳 新,李軍輝,等.稻殼灰中溫?zé)崽幚矸€(wěn)固化垃圾飛灰重金屬[J]. 中國(guó)環(huán)境科學(xué), 2020,40(7):3054-3060.
Tan J T, Wu X, Li J H, et al. Stabilization of heavy metals in MSWI fly ash by thermal treatment at intermediate temperatures with rice husk ash [J]. China Environmental Science, 2020,40(7):3054-3060.
[9] 陳顥明,胡亦舒,李 真.溶磷微生物改性生物炭吸附重金屬的機(jī)理研究[J]. 中國(guó)環(huán)境科學(xué), 2021,41(2):684-692.
Chen H M, Hu Y S, Li Z. Adsorption mechanism of heavy metals by phosphate-solubilizing microorganism modified biochar [J]. China Environmental Science, 2020,40(1):312-319.
[10] Kumpiene J, Lagerkvist A, Maurice C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments-a review [J]. Waste Management (New York, N.Y.), 2008,28:215-225.
[11] 茹淑華,耿 暖,徐萬(wàn)強(qiáng),等.有機(jī)-無(wú)機(jī)復(fù)合鈍化劑對(duì)污染土壤中Cd和Pb有效性的影響[J]. 河北農(nóng)業(yè)科學(xué), 2017,21(1):85-90.
Ru S H, Geng N, Xu W Q, et al. Effects of organic and inorganic compound amendments and culture times on contents of available Cd and Pb in contaminated soils [J]. J. Hebei Agri. Sci., 2017,21(1):85-90.
[12] 高瑞麗,唐 茂,付慶靈,等.生物炭、蒙脫石及其混合添加對(duì)復(fù)合污染土壤中重金屬形態(tài)的影響[J]. 環(huán)境科學(xué), 2017,38(1):361-367.
Gao R L, Tang M, Fu Q L, et al. Fractions transformation of heavy metals in compound contaminated soil treated with biochar, montmorillonite and mixed addition [J]. Environmental Science, 2017, 38(1):361-367.
[13] Raja R, Pal S. Remediation of heavy metal contaminated soils by solidification/stabilization with fly ash, quick lime and blast furnace slag [J]. Journal of the Indian Chemical Society, 2019,96(4):481-486.
[14] 閆淑蘭,趙秀紅,羅啟仕.基于文獻(xiàn)計(jì)量的重金屬固化穩(wěn)定化修復(fù)技術(shù)發(fā)展動(dòng)態(tài)研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2020,39(2):229-238.
Yan S L, Zhao X H, Luo Q S. Bibliometrics-based development trends of solidification/stabilization technology for remediation of sites contaminated by heavy metals [J]. Journal of Agro- Environment Science, 2020,39(2):229-238.
[15] 黃翔峰,王 志,葉廣宇,等.疏浚底泥改良土壤理化性質(zhì)促進(jìn)蘆葦快速定植研究[J]. 環(huán)境科學(xué)學(xué)報(bào), 2019,39(12):4261-4268.
Huang X F, Wang Z, Ye G Y, et al. Improvement of soil physico- chemical properties by dredged sediments to promote the rapid colonization of Phragmites [J]. Acta Scientiae Circumstantiae, 2019, 39(12):4261-4268.
[16] Ren J, Dai L, Tao L. Stabilization of heavy metals in sewage sludge by attapulgite [J]. Journal of the Air & Waste Management Association, 2021,71(3):392-399.
[17] NY/T 1121.2-2006 土壤檢測(cè).第2部分:土壤pH的測(cè)定[S].
NY/T 1121.2-2006 Soil testing part 2: method for determination of soil pH [S].
[18] HJ 781-2016 固體廢物22種金屬元素的測(cè)定電感耦合等離子體發(fā)射光譜法[S].
HJ 781-2016 Solid waste-determination of 22 metal elements- inductively coupled plasma optical emission spectrometry [S].
[19] ASTM D4219-08-2002 化學(xué)灌漿土壤無(wú)側(cè)限抗壓強(qiáng)度指數(shù)的標(biāo)準(zhǔn)試驗(yàn)方法[S].
ASTM D4219-08-2002 Standard test method for unconfined compressive strength index of chemical-grouted soils [S].
[20] HJ/T 299-2007 固體廢物浸出毒性浸出方法硫酸硝酸法[S].
HJ/T 299-2007 Solid waste-extraction procedure for leaching toxicity-sulphuric acid & nitric acid method [S].
[21] GB 5085.3-2007 危險(xiǎn)廢物鑒別標(biāo)準(zhǔn)浸出毒性鑒別[S].
GB 5085.3-2007 Identification standard for hazardous wastes -Identification for extraction procednre inxicity [S].
[22] 張永利,劉曉文,陳啟敏,等.Tessier法和改進(jìn)BCR法提取施加熟污泥后黃土中Cd的對(duì)比研究[J]. 環(huán)境工程, 2019,37(5):34-38,81.
Zhang Y L, Liu X W, Chen Q M, et al. Comparative study of tessier method and modified Bcr method for extracting Cd in loess amended by composted sludge [J]. Environmental Endineering, 2019,37(5): 34-38,81.
[23] GB8978-1996 污水綜合排放標(biāo)準(zhǔn)[S].
GB8978-1996 Integrated wastewater discharge standard [S].
[24] 楊愛武,胡 垚,楊少坤.城市污泥新型固化技術(shù)及其力學(xué)特性[J]. 巖土力學(xué), 2019,40(11):4439-4449.
Yang A W, Hu G, Yang S K. New soildification technology and mechanical properties of municipal sludge [J]. Rock and Soil Mechanics, 2019,40(11):4439-4449.
[25] Zhen G, Lu X, Cheng X, et al. Hydration process of the aluminate 12 CaO 7Al2O3-assisted portland cementbased solidification/ stabilization of sewage sludge [J]. Construction and Building Materials, 2012,30:675.
[26] 李 晨,張正甫,劉松玉,等.水泥石灰固化軟土中的鈣礬石形成研究[J]. 巖土工程學(xué)報(bào), 2013,35(S2):662-665.
Li C, Zhang Z F, Liu S Y, et al. Ettringite formation in lime and cement-stabilized clay [J]. Chinese Journal of Geotechnical Engineering, 2013,35(S2):662-665.
[27] Rafael Z, Manuel L, Luis M C, et al. Producing C-S-H gel by reaction between silica oligomers and portlandite: A promising approach to repair cementitious materials [J]. Cement and Concrete Research, 2020,130(5):1-15.
[28] 王 瑩.木質(zhì)素基水凝膠制備及其吸附重金屬研究[D]. 重慶:重慶工商大學(xué), 2020.
Wang Y. Preparation of lignin-based hydrogels and their adsorption to heavy metals [D]. Chongqing: Chongqing Technology and Business University, 2020.
[29] 岳 燦,王 芳.木質(zhì)素磺酸鹽減水劑對(duì)防止混凝土水泥顆粒分散的作用分析[J]. 當(dāng)代化工, 2019,48(11):2529-2532.
Yue C, Wang F. Effect of lignosulfonate water reducer on preventing the dispersion of concrete cement particles [J]. Contemporary Chemical Industry, 2019,48(11):2529-2532.
[30] 王祖波,何天榮.不同硒化修復(fù)劑對(duì)稻田汞污染修復(fù)效果研究[J]. 中國(guó)環(huán)境科學(xué), 2019,39(10):4254-4261.
Wang Z B, He T R. Effect of different selenization remediation agents on remediation of mercury pollution in paddyfieldst [J]. China Environmental Science, 2019,39(10):4254-4261.
[31] 梁亞琴,張淑萍,李 慧,等.改性蒙脫土去除水中重金屬離子研究新進(jìn)展[J]. 化工進(jìn)展, 2018,37(8):3179-3187.
Liang Y Q, Zhang S P, Li H, et al. Progress in development of modified montmorillonite for adsorption of heavy metal ions [J]. Chemical Industry and Engineering Progress, 2018,37(8):3179-3187.
[32] 張曉濤,王喜明.木質(zhì)纖維素/納米蒙脫土復(fù)合材料對(duì)廢水中Cu(Ⅱ)的吸附及解吸[J]. 復(fù)合材料學(xué)報(bào), 2015,32(2):385-394.
Zhang X T, Wang X M. Adsorption and desorption of Cu(Ⅱ) in wastewater by lignocellulose/nano-montmorillonite composites [J]. Acta Materiae Compositae Sinica, 2019,40(4):70-77.
[33] 吳 邊.載鋯納米復(fù)合吸附劑去除水中Cr(Ⅲ)性能研究[D]. 南京:南京大學(xué), 2014.
Wu B. Enhanced Cr(Ⅲ) removal from water by A novel hydrous zirconium oxide loaded nanocomposite [D]. Nanjing:Nanjing University, 2014.
[34] 韓春梅,王林山,鞏宗強(qiáng),等.土壤中重金屬形態(tài)分析及其環(huán)境學(xué)意義[J]. 生態(tài)學(xué)雜志, 2005,(12):1499-1502.
Han C M, Wang L S, Gong Z Q, et al. Chemical forms of soil heavy metals and their environmental significance [J]. Chinese Journal of Ecology, 2005,(12):1499-1502.
[35] 蔣夢(mèng)瑩,吳純城,陳俊伊,等.底泥性質(zhì)對(duì)重金屬生物淋濾效果的影響[J]. 環(huán)境污染與防治, 2020,42(2):238-243.
Jiang M Y, Wu C C, Chen J Y, et al. Effects of sediment properties on bioleaching of heavy metals [J]. Environmental Pollution & Control, 2020,42(2):238-243.
[36] 吳秋梅,劉 剛,王慧峰,等.水鋁鈣石對(duì)不同鎘污染農(nóng)田重金屬的鈍化效果及機(jī)制[J]. 環(huán)境科學(xué), 2019,40(12):5540-5549.
Wu Q M, Liu G, Wang H F, et al. Hydrocalumite passivation effect and mechanism on heavy metals in different Cd-contaminated farmland soils [J]. Environmental Science, 2019,40(12):5540-5549.
[37] 王 開,吳 新,梁 財(cái),等.基于二次鋁灰的地聚反應(yīng)穩(wěn)固化垃圾飛灰[J]. 中國(guó)環(huán)境科學(xué), 2020,40(10):4421-4428.
Wang K, Wu X, Liang C, et al. Experimental study on the stabilization/solidification of MSWIFA by geopolymerization based on secondary aluminum dross [J]. China Environmental Science, 2020, 40(10):4421-4428.
[38] 向語(yǔ)兮,王 曉,單保慶,等.白洋淀表層沉積物重金屬形態(tài)分布特征及生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)[J]. 環(huán)境科學(xué)學(xué)報(bào), 2020,40(6):2237-2246.
Xiang Y X, Wang X, Shan B Q, et al. Spatial distribution, fractionation and ecological risk of heavy metals in surface Sediments from Baiyangdian Lake [J]. Acta Scientiae Circumstantiae, 2020,40(6): 2237-2246.
[39] 周海燕,鄧一榮,林龍勇,等.鐵錳氧化物在不同水分條件下對(duì)土壤As的穩(wěn)定化作用[J]. 環(huán)境科學(xué), 2019,40(8):3792-3798.
Zhou H Y, Deng Y R, Lin L Y, et al. Stabilization of arsenic- contaminated soils using Fe-Mn oxide under different water conditions [J]. Environmental Science, 2019,40(8):3792-3798.
[40] Zhou Q, Liao B, Lin L, et al. Adsorption of Cu(Ⅱ) and Cd(Ⅱ) from aqueous solutions by ferromanganese binary oxide-biochar composites [J]. Science of the Total Environment, 2018,615 (FEB.15): 115-122.
Experiments and engineering application research on passivation of heavy metal contaminated sediment by compound material.
TAN Juan1, WU Jian-qiang1, CHEN Chun2, GUO Jin-chuan2, WANG Yao-zu3, WANG Run-zhong3, HUANG Shen-fa1*
(1.Shanghai Academy of Environmental Sciences, Shanghai 200233, China;2.Guangxi Key Laboratory of Water Engineering Materials and Structures, Nanning 530023, China;3.Shanghai Shenrong Environmental Protection Equipment Co., Ltd, Shanghai 200032, China)., 2021,41(10):4857~4863
Experiments and engineering application study on passivation of heavy metal (Cd, Cr, Cu, Ni, Pb and Zn) contaminated sediment in box culvert had been carried out, the passivating agents was consist of multi-component new high-efficiency materials and ordinary silicate mud. Unconfined compressive strength and toxic leaching concentration were studied to evaluate the stabilization effect, and the changes in the forms of heavy metals were further analyzed to explore the passivation mechanism. The results indicated that when mass ratio of sediments, compound materials and sand was 5:4:1, the passivation effect was the best. In practical engineering applications, the compressive strength of H-type and O-type cured bricks reached 10.82 and 10.11MPa respectively, and toxic leaching concentration of heavy metals was far lower than the identification standard value (GB5085.3-2007), which met the requirements of resource application. The leaching concentration of heavy metals was positively correlated with the proportions of ion exchange state and organic bond state proportions. Organic bond state and iron-manganese oxidation state were the main forms of heavy metals in sediments and solidified bricks respectively, which showed a completely opposite trend after solidification. This change played an important role in passivating heavy metals. Except for H-type Cr, the proportion of residual state in other cured bricks had all increased. This kind of compound material which based on multi-component interaction had a application prospect in passivation of heavy metals.
sediment;heavy metal;solidification and stabilization;compound material;engineering application
X52
A
1000-6923(2021)10-4857-07
譚 娟(1987-),女,湖北十堰人,高級(jí)工程師,碩士,主要從事生態(tài)環(huán)境調(diào)查監(jiān)測(cè)與評(píng)價(jià)、環(huán)境風(fēng)險(xiǎn)管理與評(píng)估等方面的研究.發(fā)表論文20余篇.
2021-03-04
廣西水工程材料與結(jié)構(gòu)重點(diǎn)實(shí)驗(yàn)室開放研究課題(GXHRI- WEMS-2020-09);上海市”科技創(chuàng)新行動(dòng)計(jì)劃”社會(huì)發(fā)展科技攻關(guān)項(xiàng)目(20dz1204300);上海市生態(tài)環(huán)境局科研項(xiàng)目(滬環(huán)科[2021]第11號(hào))
* 責(zé)任作者, 教授級(jí)高級(jí)工程師, sfhuang67@163.com