王 斌,黃廷林*,陳 凡,楊鵬程,葉焰中,翟振起,周碧雯
亞熱帶水庫(kù)水質(zhì)特征及沉積物內(nèi)源污染研究
王 斌1,2,黃廷林1,2*,陳 凡1,2,楊鵬程1,2,葉焰中3,翟振起3,周碧雯4
(1.西安建筑科技大學(xué)環(huán)境與市政工程學(xué)院,西北水資源與環(huán)境生態(tài)教育部重點(diǎn)實(shí)驗(yàn)室,陜西 西安 710055;2.西安建筑科技大學(xué)環(huán)境與市政工程學(xué)院,陜西省環(huán)境工程重點(diǎn)實(shí)驗(yàn)室,陜西 西安 710055;3.深圳市北部水源工程管理處茜坑水庫(kù)管理所,廣東 深圳 518110;4.深圳市楠柏環(huán)境科技有限公司,廣東 深圳 518110)
為探究沉積物內(nèi)源污染對(duì)亞熱帶分層型水源水庫(kù)(茜坑水庫(kù))夏季水質(zhì)的影響,采用現(xiàn)場(chǎng)監(jiān)測(cè)和室內(nèi)模擬相結(jié)合的研究手段,于2020年5~9月對(duì)茜坑水庫(kù)深水區(qū)水溫、溶解氧、氮磷等進(jìn)行了監(jiān)測(cè),并采用靜態(tài)實(shí)驗(yàn)?zāi)M法分析了茜坑水庫(kù)沉積物的耗氧速率及沉積物中氮磷的釋放通量.原位監(jiān)測(cè)結(jié)果表明,5~9月,茜坑水庫(kù)水溫和溶解氧均處于分層狀態(tài),該時(shí)期水庫(kù)底層水體溶解氧含量較低,為沉積物內(nèi)源污染物的厭氧釋放提供了條件;分層期底層水體氨氮和總磷濃度顯著高于表層和中層(<0.01),相應(yīng)的表層水體氨氮和總磷平均濃度分別為0.062mg/L和0.033mg/L,中層為0.058mg/L和0.037mg/L,底層為0.242mg/L和0.052mg/L.靜態(tài)模擬實(shí)驗(yàn)結(jié)果表明,水體及沉積物耗氧均符合零級(jí)反應(yīng)動(dòng)力學(xué)模型(R分別為0.987,0.989),其中沉積物的耗氧速率處于較高水平,為1.03g/(m2·d),約為水體的1.45倍;沉積物耗氧誘發(fā)等溫層溶解氧降低并伴隨沉積物內(nèi)源污染釋放,其中氨氮的釋放極值為0.261mg/L,平均釋放通量為7.36mg/(m2·d),總磷的釋放極值為0.108mg/L,平均釋放通量為2.20mg/(m2·d).內(nèi)源氨氮和總磷的釋放對(duì)水體貢獻(xiàn)率分別可達(dá)27.98%和38.92%,沉積物氮磷釋放對(duì)水庫(kù)水質(zhì)影響顯著.
水庫(kù);熱分層;水質(zhì)特征;沉積物;內(nèi)源污染
水庫(kù)是城市的重要水資源,但我國(guó)多數(shù)水庫(kù)正遭遇不同程度污染問題[1-2].沉積物是水庫(kù)污染物的主要積蓄場(chǎng)所,在整個(gè)水體系統(tǒng)的物質(zhì)循環(huán)過程中既充當(dāng)“匯”,也充當(dāng)“源”的角色[3].已有研究表明,在外源污染得到有效控制的情況下,沉積物內(nèi)源氮磷的釋放依舊會(huì)導(dǎo)致嚴(yán)重的水質(zhì)污染[4].尤其對(duì)于分層型水庫(kù),分層期底層水體溶解氧被水體和沉積物中的還原物質(zhì)及底棲生物呼吸作用耗盡,底層水體呈厭氧狀態(tài),沉積物開始向上覆水體釋放氨氮、正磷酸鹽等內(nèi)源污染物,造成水體富營(yíng)養(yǎng)化與藻類高發(fā)[5-6].因此,沉積物內(nèi)源污染特征及其對(duì)水庫(kù)水質(zhì)影響的相關(guān)研究,對(duì)于水庫(kù)水生態(tài)保護(hù)和供水安全保障,具有重要意義.
近年來對(duì)水庫(kù)沉積物內(nèi)源污染的研究主要集中在沉積物上覆水氮磷質(zhì)量濃度、沉積物-水界面氮磷交換通量等方面[7].沉積物-水界面污染物交換通量大小與方向作為判斷沉積物“匯”或“源”作用的重要指標(biāo),對(duì)于評(píng)估污染物生物地球化學(xué)循環(huán)速率和水生態(tài)系統(tǒng)生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)至關(guān)重要[8].目前對(duì)沉積物污染物交換通量的研究方法主要有原位箱式法[9]、質(zhì)量平衡法[10]、間隙水濃度擴(kuò)散模型估算法[11]和實(shí)驗(yàn)室培養(yǎng)法[12].實(shí)驗(yàn)室培養(yǎng)法操作簡(jiǎn)單、方便,測(cè)定結(jié)果比較準(zhǔn)確,被廣泛用于沉積物氮磷釋放相關(guān)研究.如文獻(xiàn)[13-14]通過室內(nèi)沉積物釋放模擬實(shí)驗(yàn),探究沉積物內(nèi)源污染影響因素,量化沉積物-水界面氮磷交換通量,描述其釋放風(fēng)險(xiǎn).
隨著粵港澳大灣區(qū)建設(shè),支持深圳先行示范區(qū)等重大國(guó)家戰(zhàn)略深入推進(jìn),水安全問題已成為影響經(jīng)濟(jì)增長(zhǎng)與可持續(xù)發(fā)展的關(guān)鍵性瓶頸制約[15].茜坑水庫(kù)作為深圳市西北部片區(qū)最重要的供水水庫(kù),近年常有局部藍(lán)藻水華爆發(fā),引起水庫(kù)管理單位高度重視.夏季沉積物氮磷營(yíng)養(yǎng)鹽的釋放可能是藻類爆發(fā)的重要誘因,但目前對(duì)于茜坑水庫(kù)中下層水體及沉積物監(jiān)測(cè)較少,沉積物內(nèi)源釋放對(duì)水體的影響尚不明確.本研究針對(duì)上述研究不足且為揭示茜坑水庫(kù)沉積物內(nèi)源污染特征,采用現(xiàn)場(chǎng)監(jiān)測(cè)和室內(nèi)模擬相結(jié)合的研究手段,于2020年夏季,對(duì)茜坑水庫(kù)主庫(kù)區(qū)深水區(qū)水質(zhì)進(jìn)行連續(xù)監(jiān)測(cè),并采用靜態(tài)實(shí)驗(yàn)?zāi)M法對(duì)沉積物耗氧速率及沉積物氮磷釋放通量進(jìn)行分析,以期為水庫(kù)內(nèi)源污染治理和水質(zhì)原位改善研究提供有效數(shù)據(jù)基礎(chǔ).
茜坑水庫(kù)(113.994~114.022°E,22.690~22.711°N)位于深圳市龍華區(qū)福城街道,始建于1993年4月,于2002年5月完成擴(kuò)建.茜坑水庫(kù)地處北回歸線以南,屬于南亞熱帶海洋性季風(fēng)氣候.夏季氣溫22~35℃,冬季氣溫10~22℃,年平均氣溫22℃.水庫(kù)正常庫(kù)容1857萬(wàn)m3,總庫(kù)容1917萬(wàn)m3,最大水深為20m.水庫(kù)水域面積1.6km2,集雨面積4.79km2,無入庫(kù)河流,水源主要來自市外引水.目前整個(gè)水庫(kù)集雨區(qū)內(nèi)均沒有較為明顯的點(diǎn)源和面源的人為污染源[16-17].沉積物的內(nèi)源污染可能是目前水庫(kù)污染物的主要來源.
圖1 茜坑水庫(kù)平面圖及采樣點(diǎn)分布示意
沉積物樣品:在壩前深水區(qū)采用彼得森抓泥斗采集沉積物3次,現(xiàn)場(chǎng)充分混勻后裝入聚乙烯自封袋(排出空氣),5℃密封保存帶回實(shí)驗(yàn)室.
水體樣品:于2020年5~9月在壩前深水區(qū)進(jìn)行取樣監(jiān)測(cè),頻率每月2~4次.采用2L有機(jī)玻璃采水器對(duì)取樣點(diǎn)表層(水下0.5m),中層(溫躍層中部),底層(沉積物上方0.5m)三個(gè)不同深度水樣進(jìn)行采集,分別置于聚乙烯取樣瓶后立即運(yùn)回實(shí)驗(yàn)室,24h內(nèi)完成總氮(TN)、總磷(TP)、氨氮(NH4+-N)和硝酸鹽氮(NO3--N)的測(cè)定.在采集水樣同時(shí),對(duì)點(diǎn)位水溫(T)和溶解氧(DO)等參數(shù)選用HACH Hydrolab DS5型多參數(shù)水質(zhì)測(cè)定儀(美國(guó)哈希公司)垂向間隔為1m進(jìn)行原位監(jiān)測(cè).
以體積為32L的PVC圓柱作為靜態(tài)實(shí)驗(yàn)裝置,裝置高1000mm,內(nèi)徑為200mm(圖2).將混合均勻的沉積物平鋪于裝置B底層,沉積物厚度約為50mm,靜置完全后,抽走上覆水,用虹吸法再重新向裝置B中裝入深度約為950mm的上覆水水樣;裝置A中裝入深度約為1000mm高上覆水.裝置頂部密封有黑色柔性可變形塑料薄膜用以避光和平衡因取水而造成的裝置內(nèi)外壓力差.裝置中的DO濃度用熒光法測(cè)量(HQ30d便攜式分析儀),每小時(shí)監(jiān)測(cè)一次.每?jī)商烊?00ml水樣,用于裝置B中TP和NH4+-N等指標(biāo)的測(cè)定.
圖2 靜態(tài)實(shí)驗(yàn)裝置
所有指標(biāo)的測(cè)定方法參照國(guó)家標(biāo)準(zhǔn)方法進(jìn)行測(cè)定[18],TN采用堿性過硫酸鉀氧化-紫外分光光度法,TP采用過硫酸鉀消解-鉬銻抗顯色分光光度法,NH4+-N采用納氏試劑分光光度法,NO3--N采用紫外分光光度法.
沉積物耗氧速率(SOD)參照文獻(xiàn)[19]計(jì)算.
SOD=HOD-WOD (1)
式中:SOD為沉積物耗氧速率,mg/(L·h);HOD為等溫層需氧量,由裝置B中測(cè)得DO隨時(shí)間變化關(guān)系得出;WOD為水體需氧量,mg/(L·h),由裝置A中測(cè)得DO隨時(shí)間變化關(guān)系得出,水體需氧量(WOD)符合零級(jí)反應(yīng)動(dòng)力學(xué)方程關(guān)系[20].經(jīng)換算可由式(2)求出單位時(shí)間、單位面積的沉積物的耗氧速率:
式中:SOD為沉積物耗氧速率,g/(m2·d);為耗氧系數(shù),mg/(L·h);為與水接觸的沉積物面積,m2;為裝置中原水的體積,L.
靜態(tài)實(shí)驗(yàn)平均釋放通量采用式(3)計(jì)算[21]:
式中:為靜態(tài)實(shí)驗(yàn)氮磷釋放通量,mg/(m2·d);1為最大釋放質(zhì)量濃度,mg/L;為裝置體積,L;為裝置橫截面積,m2;o為實(shí)驗(yàn)進(jìn)行時(shí)間,d.
為說明沉積物氮磷釋放對(duì)水庫(kù)水質(zhì)的影響,參照文獻(xiàn)[22],在沉積物向上覆水體的釋放僅考慮分子擴(kuò)散的作用下,沉積物氮磷釋放對(duì)水體貢獻(xiàn)率采用式(4)計(jì)算:
式中:為溶質(zhì)擴(kuò)散對(duì)上覆水的貢獻(xiàn)率,%;為氮磷釋放通量,mg/(m2·d);w為茜坑水庫(kù)水體滯留時(shí)間,d.根據(jù)水庫(kù)管理所資料,茜坑水庫(kù)平均水力停留時(shí)間為46d;為底層水體水深,m.本研究選取5m,與厭氧區(qū)高度保持一致;表示底層水體氮磷平均濃度, mg/L.
水質(zhì)參數(shù)采用Excel 2019軟件建立數(shù)據(jù)庫(kù),繪圖采用AutoCAD 2020和OriginPro 2018軟件.
2.1.1 水溫、DO變化特征 5~9月,茜坑水庫(kù)水溫和DO均處于分層狀態(tài)(圖3),水庫(kù)表層水溫變化范圍為28.32~31.89℃,底層為20.19~28.33℃;表層DO變化范圍為7.71~11.28mg/L,底層為0~0.38mg/L.水溫分層阻礙了DO的垂向傳遞,加之底層微生物和沉積物耗氧作用不斷消耗氧氣,造成水庫(kù)底層0~5m處于缺氧或者厭氧狀態(tài).較低的DO將會(huì)影響氮磷等物質(zhì)的循環(huán)過程,沉積物極有可能釋放出內(nèi)源污染物,造成上覆水體污染.
2.1.2 氮磷營(yíng)養(yǎng)鹽變化特征 5~9月,水庫(kù)表層TP濃度為(0.033±0.013)mg/L;中層濃度為(0.038±0.014) mg/L;底層濃度為(0.054±0.016)mg/L(圖4a).表層和中層TP平均濃度均超過《地表水環(huán)境質(zhì)量標(biāo)準(zhǔn)》中Ⅱ類水的限值要求,底層TP平均濃度超過《地表水環(huán)境質(zhì)量標(biāo)準(zhǔn)》中Ⅲ類水的限值要求,TP污染嚴(yán)重.底層水體TP濃度顯著高于表層和中層(<0.01). NH4+-N在垂向上也存在同樣的差異(<0.01),底層NH4+-N濃度為(0.243±0.111)mg/L,顯著高于表層(0.062±0.038)mg/L和中層(0.059±0.049)mg/L(圖4b).但底層水體TN和NO3--N含量并非顯著大于表層和中層(>0.05)(圖4c,4d),這可能是底層水體微生物發(fā)生反硝化作用導(dǎo)致的.
圖3 茜坑水庫(kù)水溫、DO變化特征
圖4 茜坑水庫(kù)水庫(kù)氮、磷變化特征
如圖5所示,裝置中DO均隨著時(shí)間的增加而降低.有關(guān)SOD的計(jì)算,Bowman等[23]研究表明,上覆水DO濃度在一定范圍內(nèi),SOD為一常數(shù),也即沉積物耗氧速率在上述范圍內(nèi)不依賴于上覆水溶解氧濃度的變化,為零級(jí)反應(yīng).但也有研究認(rèn)為,SOD與上覆水DO濃度之間呈一定的冪函數(shù)關(guān)系[24-26].本研究將實(shí)驗(yàn)數(shù)據(jù)分別按零級(jí)和一級(jí)反應(yīng)處理,經(jīng)檢驗(yàn),裝置B中DO濃度隨時(shí)間變化呈零級(jí)反應(yīng)動(dòng)力學(xué)方程關(guān)系(2=0.987).計(jì)算得HOD為1.74g/(m2·d).WOD符合零級(jí)反應(yīng)動(dòng)力學(xué)(2=0.989),計(jì)算得WOD為0.71g/(m2·d).由式(1),SOD為1.03g/(m2·d).靜態(tài)實(shí)驗(yàn)中SOD約為HOD的1.45倍,說明水體中溶解氧的降低主要是由于沉積物對(duì)氧氣的消耗.
圖5 靜態(tài)實(shí)驗(yàn)DO變化
圖6 氮循環(huán)示意
上述結(jié)果表明,茜坑水庫(kù)底層水體NH4+-N和TP濃度顯著高于表層和中層水體,成為茜坑水庫(kù)主要污染指標(biāo).為探明沉積物氮磷釋放特征,對(duì)NH4+-N和TP的平均釋放通量進(jìn)行了分析.沉積物中NH4+- N、NO3--N、亞硝酸鹽氮(NO2--N)隨著上覆水DO、氧化還原條件等的變化進(jìn)行硝化、反硝化作用[27-30](圖6).靜態(tài)實(shí)驗(yàn)表明,30d左右,氮磷釋放達(dá)到平衡,沉積物中氮的釋放主要以NH4+-N形式為主. NH4+-N的釋放極值為0.261mg/L,由式(3),其平均釋放通量為7.36mg/(m2·d).NH4+-N因礦化作用濃度逐漸升高,沉積物是上覆水NH4+-N的主要來源.靜態(tài)實(shí)驗(yàn)TP的釋放極值為0.108mg/L,平均釋放通量為2.20mg/(m2·d).靜態(tài)實(shí)驗(yàn)氮磷釋放通量均為正值,表明沉積物是氮磷污染物的“源”.
表1 茜坑水庫(kù)沉積物靜態(tài)實(shí)驗(yàn)計(jì)算結(jié)果
沉積物耗氧是影響水體溶解氧的重要因素,對(duì)于研究水體氧收支平衡具有重要意義[31].研究表明[32],沉積物耗氧能占到整個(gè)水體耗氧的90%以上,對(duì)上覆水溶解氧有很大的影響.水體中的溶解氧一方面受表層水體與大氣進(jìn)行氣體交換復(fù)氧和浮游植物光合作用增氧影響,另一方面受微生物呼吸作用耗氧和沉積物耗氧作用的影響.熱分層期底層水體厭氧環(huán)境的形成是水體耗氧和復(fù)氧失衡導(dǎo)致的[33-34].本研究證實(shí)了以上結(jié)論,茜坑水庫(kù)熱分層期SOD約為WOD的1.45倍(圖5),SOD是導(dǎo)致茜坑水庫(kù)底層呈厭氧狀態(tài)的主要因素,暗示熱分層的存在阻礙了上下層水體溶解氧的傳遞.余曉等[35]對(duì)潘家口水庫(kù)的研究表明,水庫(kù)底層耗氧物質(zhì)是造成熱分層期間底層溶解氧濃度降低的重要原因.Müller等[36]也指出,水庫(kù)底層厭氧區(qū)的耗氧主要是沉積物-水界面耗氧.蘇露等[19]對(duì)金盆水庫(kù)的研究也表明,金盆水庫(kù)沉積物對(duì)氧氣的消耗量約為水體的2~6倍,等溫層中溶解氧的降低主要是由于沉積物對(duì)氧氣的消耗.
相比于國(guó)內(nèi)其他地區(qū)水庫(kù)沉積物的耗氧速率(表2),茜坑水庫(kù)沉積物的耗氧速率高于山西汾河水庫(kù)、山東周村水庫(kù),但與氣候相近的廈門西港水庫(kù)沉積物的耗氧速率相近,這可能是夏季茜坑水庫(kù)地處南亞熱帶,日平均氣溫高使得水庫(kù)底層水溫較高,沉積物-水界面的生物、化學(xué)反應(yīng)活性增強(qiáng)使得其耗氧速率相對(duì)較大.
表2 不同水庫(kù)沉積物耗氧速率
沉積物是湖泊、水庫(kù)等水體中營(yíng)養(yǎng)鹽的匯與源,沉積物中累積的氮、磷等污染物質(zhì)可以在厭氧條件及再懸浮等作用下釋放重新進(jìn)入水體,對(duì)水質(zhì)造成影響[40-41].茜坑水庫(kù)底層水體厭氧區(qū)的出現(xiàn)為沉積物污染物的釋放提供了有利條件.現(xiàn)場(chǎng)監(jiān)測(cè)數(shù)據(jù)表明,夏季茜坑水庫(kù)熱分層期,底層水體厭氧導(dǎo)致沉積物中氨氮和總磷大量釋放,底層水體氨氮平均濃度為0.242mg/L,總磷平均濃度為0.052mg/L,斜溫層的穩(wěn)定存在阻斷了表層和底層水體的對(duì)流交換,底層水體氮磷濃度顯著高于表層和中層水體.徐進(jìn)等[21]對(duì)李家河水庫(kù)的研究表明,熱分層期,水庫(kù)底部會(huì)出現(xiàn)季節(jié)性缺氧現(xiàn)象,沉積物附近氧化還原電位降低,不同形態(tài)的磷不斷轉(zhuǎn)化釋放進(jìn)入上覆水體中,使得底部水體總磷濃度迅速增大.夏品華等[42]對(duì)紅楓湖水庫(kù)季節(jié)性分層的水環(huán)境質(zhì)量響應(yīng)研究表明,分層期總磷具有上低下高的分布特征.
表3 茜坑水庫(kù)沉積物營(yíng)養(yǎng)鹽擴(kuò)散對(duì)水體的貢獻(xiàn)率
注:為底層水體水滌;表示底層水體N、P平均濃度;為溶質(zhì)擴(kuò)散對(duì)上覆水的貢獻(xiàn)率.
靜態(tài)實(shí)驗(yàn)氨氮和磷的平均釋放通量表明,沉積物向上覆水體釋放氮磷污染物,沉積物是氮磷污染物的“源”.內(nèi)源氨氮和磷的釋放對(duì)水體的貢獻(xiàn)率分別可達(dá)27.98%和38.92%(表3),沉積物氮磷對(duì)茜坑水庫(kù)水質(zhì)有較大的影響.
相比于國(guó)內(nèi)其他類型湖庫(kù)(表4),茜坑水庫(kù)氨氮的磷的平均釋放通量處于較高水平,茜坑水庫(kù)沉積物氮磷的釋放對(duì)水體造成的影響不容忽視.
表4 不同湖庫(kù)沉積物氮磷釋放通量
4.1 夏季茜坑水庫(kù)水體處于熱分層狀態(tài),熱分層的存在阻礙了DO的傳遞,底層水體DO含量較低,底層0~5m處于厭氧或缺氧狀態(tài),有利于沉積物污染物的釋放.
4.2 靜態(tài)實(shí)驗(yàn)沉積物的耗氧速率為1.03g/(m2·d),水體中溶解氧的降低主要是沉積物對(duì)氧氣的消耗.
4.3 靜態(tài)實(shí)驗(yàn)顯示,沉積物中氨氮和總磷的平均釋放通量為7.36mg/(m2·d)和2.20mg/(m2·d),表明沉積物是水庫(kù)內(nèi)源氮磷污染的“源”.沉積物氮磷的釋放是底層水體氨氮和總磷的濃度顯著高于表層和中層水體重要原因.消除水庫(kù)底層厭氧區(qū),控制沉積物內(nèi)源污染,是改善茜坑水庫(kù)水質(zhì)的有力措施.
[1] Li X, Huang T L, Ma W X, et al. Effects of rainfall patterns on water quality in a stratified reservoir subject to eutrophication: Implications for management [J]. Science of the Total Environment, 2015,521- 522:27-36.
[2] 黃廷林.水源水庫(kù)水質(zhì)污染原位控制與改善是飲用水水質(zhì)安全保障的首要前提[J]. 給水排水, 2017,53(1):1-3,69.
Huang T L. In-situ control and improvement of water pollution in source reservoirs is the primary prerequisite for the safety of drinking water quality [J]. Water Supply and Wastewater, 2017,53(1):1-3,69.
[3] 周子振,黃廷林,章武首,等.柘林水庫(kù)污染物來源及水體分層對(duì)水質(zhì)的影響[J]. 哈爾濱工業(yè)大學(xué)學(xué)報(bào), 2016,48(2):93-99.
Zhou Z Z, Huang T L, Zhang W S, et al. Influence of pollutant sources and water stratification on water quality in Zhelin Reservoir [J]. Journal of Harbin Institute of Technology, 2016,48(2):93-99.
[4] Liu C, Shao S, Shen Q, et al. Effects of riverine suspended particulate matter on the post-dredging increase in internal phosphorus loading across the sediment-water interface [J]. Environmental Pollution, 2016, 211:165-172.
[5] Eila V, Anu L, Veli-Pekka S, et al. A new gypsum-based technique to reduce methane and phosphorus release from sediments of eutrophied lakes [J]. Water Research, 2003,37(1):1-10.
[6] 王志齊,劉新星,姚志宏,等.丹江口水庫(kù)氮磷內(nèi)源釋放對(duì)比[J]. 環(huán)境科學(xué), 2019,40(11):4953-4961.
Wang Z Q, Liu X X, Yao Z H, et al. Co mparison of nitrogen and phosphorus endogenous release from Danjiangkou Reservoir [J]. Environmental Science, 2019,40(11):4953-4961.
[7] 張華俊,陳修康,韓博平,等.鶴地水庫(kù)沉積物營(yíng)養(yǎng)鹽及重金屬分布和污染特征分析[J]. 環(huán)境科學(xué), 2012,33(4):1167-1175.
Zhang H J, Chen X K, Han F P, et al. Distribution and pollution characteristics of nutrients and heavy metals in sediments of Hedi Reservior [J]. Environmental Science, 2012,33(4):1167-1175.
[8] 雷 沛,張 洪,王 超,等.沉積物水界面污染物遷移擴(kuò)散的研究進(jìn)展[J]. 湖泊科學(xué), 2018,30(6):1489-1508.
Lei P, Zhang H, Wang C, et al. Research progress on migration and diffusion of pollutants at sediment water interface [J]. Lake Science, 2018,30(6):1489-1508.
[9] 秦伯強(qiáng).長(zhǎng)江中下游淺水湖泊富營(yíng)養(yǎng)化發(fā)生機(jī)制與控制途徑初探[J]. 湖泊科學(xué), 2002,14(3):193-202.
Qin B Q. Mechanism and control of eutrophication in shallow lakes in the middle and lower reaches of the Yangtze River [J]. Lake Science, 2002,14(3):193-202.
[10] 黃紹基,趙海洲,方滿萍.質(zhì)量衡算模型計(jì)算太湖底泥磷的交換量[J]. 環(huán)境科學(xué), 1992,13(1):83-84,97.
Huang S J, Zhao H Z, Fang M P. Calculation of phosphorus exchange capacity in Taihu Lake Sediment by mass balance model [J]. Environmental Science, 1992,13(1):83-84,97.
[11] 張 路,范成新,王建軍,等.太湖水土界面氮磷交換通量的時(shí)空差異[J]. 環(huán)境科學(xué), 2006,27(8):1537-1543.
Zhang L, Fan C X, Wang J J, et al. Temporal and spatial differences of nitrogen and phosphorus exchange fluxes at water soil interface in Taihu Lake [J]. Environmental Science, 2006,27(8):1537-1543.
[12] Boers P C, O Van Hese. Phosphorus release from the peaty sediments of the Loosdrecht Lakes (The Netherlands) [J]. Pergamon, 1988,22(3): 355-363.
[13] 張 茜,馮民權(quán),郝曉燕.上覆水環(huán)境條件對(duì)底泥氮磷釋放的影響研究[J]. 環(huán)境污染與防治, 2020,42(1):7-11.
Zhang Xi, Feng Minquan, Hao Xiaoyan. Effect of overlying water environment on nitrogen and phosphorus release from sediment [J]. Environmental Pollution and Prevention, 2020,42(1):7-11.
[14] 裴佳瑤.雁鳴湖底泥氮磷釋放及主要環(huán)境影響因子研究[D]. 西安:西安理工大學(xué), 2020.
Pei J Y. Study on the release of nitrogen and phosphorus in the sediment of Yanming Lake and the main environmental influencing factors [D]. Xi 'an: Xi 'an University of Technology, 2020.
[15] 高 真,黃本勝,邱 靜,等.粵港澳大灣區(qū)水安全保障存在的問題及對(duì)策研究[J]. 中國(guó)水利, 2020,11:6-9.
Gao Z, Huang B S, Qiu J, et al. Problems and countermeasures of water security in Guangdong, Hong Kong and Macao Bay Area [J]. China Water Conservancy, 2020,11:6-9.
[16] 馬鑫標(biāo).茜坑水庫(kù)藻類污染成因分析及治理對(duì)策措施[J]. 科技創(chuàng)新與應(yīng)用, 2018,(29):122-123.
Ma X B. Cause analysis of algae pollution in Xikeng Reservoir and control measures [J]. Science & Technology Innovation and Application, 2018,(29):122-123.
[17] 李良庚.茜坑水庫(kù)建設(shè)生態(tài)水庫(kù)的實(shí)踐與探索[C]//2012全國(guó)河道治理與生態(tài)修復(fù)技術(shù)交流研討會(huì)論文集.北京:中國(guó)水利技術(shù)信息中心, 2012:45-47.
Li L G. Practice and exploration of constructing ecological reservoir in Xikeng Reservoir [C]//Proceedings of 2012 National River Management and Ecological Restoration Technology Exchange Symposium. Beijing: China Water Resources Technical Information Center, 2012:45-47.
[18] 國(guó)家環(huán)境保護(hù)總局.水和廢水監(jiān)測(cè)分析方法[M]. 4版.北京:中國(guó)環(huán)境科學(xué), 2002.
State Environmental Protection Administration. Water and wastewater monitoring and analysis methods [M]. (4th Ed). Beijing: China Environmental Science, 2002.
[19] 蘇 露,黃廷林,李 楠,等.分層型水源水庫(kù)沉積物需氧量特性[J]. 環(huán)境科學(xué), 2018,39(3):1159-1166.
Su L, Huang T L, Li N, et al. Sediment oxygen demand characteristics of stratified water source reservoirs [J]. Environmental Science, 2018,39(3):1159-1166.
[20] Beutel M W. Oxygen consumption and ammonia accumulation in the hypolimnion of Walker Lake, Nevada [J]. Hydrobiologia, 2001,466(1): 107-117.
[21] 徐 進(jìn),黃廷林,李 凱,等.李家河水庫(kù)污染物來源及水體分層對(duì)水質(zhì)的影響[J]. 環(huán)境科學(xué), 2019,40(7):3049-3057.
Xu J, Huang T L, Li K, et al. The impact of pollutant sources and water stratification in Lijiahe Reservoir on water quality [J]. Environmental Science, 2019,40(7):3049-3057.
[22] 張?zhí)鹉?周石磊,陳召瑩,等.白洋淀夏季入淀區(qū)沉積物間隙水-上覆水水質(zhì)特征及交換通量分析[J/OL]. 環(huán)境科學(xué):1-12[2021-02-27].
Zhang T N, Zhou S L, Chen Z Y, et al. Analysis of water quality characteristics and exchange flux between intercalation water and overlayer water in sediments of Baiyangdian Lake in summer [J/OL]. Environmental Science:1-12[2021-02-27].
[23] Bowman G T, Delfino J J. Sediment oxygen demand techniques: A review and comparison of laboratory and in situ systems [J]. Water Research, 1980,14(5):491-499.
[24] 范成新,相崎守弘,福島武彥,等.霞浦湖沉積物需氧速率的研究[J]. 海洋與湖沼, 1998,29(5):508-513.
Fan C X, Aizaki M, Fukushima T, et al. Study on the oxygen demand rate of sediments in Lake Kasumigaura [J]. Ocean and Limnology, 1998,29(5):508-513.
[25] Hargrave B T. Similarity of oxygen uptake by benthic communities [J]. Limnology & Oceanography, 1969,14(5):801-805.
[26] Ellis C R, Stefan H G. Oxygen demand in ice covered lakes as it pertains to winter aeration [J]. Jawra Journal of the American Water Resources Association, 2010,25(6):1169-1176.
[27] Chai B B, Huang T L, Zhu W H, et al. A new method of inhibiting pollutant release from source water reservoir sediment by adding chemical stabilization agents combined with water-lifting aerator [J]. Journal of Environmental Sciences, 2011,23(12):1977-1982.
[28] Xiang Z K, Qing Z, Bertram B, et al. High frequency data provide new insights into evaluating and modeling nitrogen retention in reservoirs [J]. Water Research, 2019,166:115017.1-115017.12.
[29] Han C N, Qin Y W, Zheng B H, et al. Geochemistry of phosphorus release along transect of sediments from a tributary backwater zone in the Three Gorges Reservoir [J]. Science of the Total Environment, 2020,722:136964.
[30] 周石磊,黃廷林,張春華,等.基于Miseq的好氧反硝化菌源水脫氮的種群演變[J]. 中國(guó)環(huán)境科學(xué), 2016,36(4):1125-1135.
Zhou S L, Huang T L, Zhang C H, et al. Population evolution of aerobic denitrifying bacteria source water denitrification based on Miseq [J]. China Environmental Science, 2016,36(4):1125-1135.
[31] 李 延,單保慶,唐文忠,等.北京市典型城市河流(涼水河)沉積物耗氧污染特征[J]. 環(huán)境工程學(xué)報(bào), 2017,11(9):5065-5070.
Li Y, Shan B Q, Tang W Z, et al. Pollution characteristics of oxygen consumption in sediments of typical urban rivers in Beijing (Liangshui River) [J]. Environmental Engineering Journal, 2017,11(9):5065- 5070.
[32] Robert R W, William J S, Model for sediment oxygen demand in lakes [J]. Journal of Environmental Engineering, 1986,112(1):25-43.
[33] Zhou Z Z, Huang T L, Li Y, et al. Sediment pollution characteristics and in situ control in a deep drinking water reservoir [J]. Journal of Environmental Sciences (China), 2017,52:223-231.
[34] 邱曉鵬,黃廷林,曾明正.溶解氧對(duì)湖庫(kù)熱分層和富營(yíng)養(yǎng)化的響應(yīng)--以棗莊周村水庫(kù)為例[J]. 中國(guó)環(huán)境科學(xué), 2016,36(5):1547-1553.
Qiu X P, Huang T L, Zeng M Z. Response of dissolved oxygen to thermal stratification and eutrophication of lake reservoir: A case study of Zhoucun Reservoir in Zaozhuang [J]. China Environmental Science, 2016,36(5):1547-1553.
[35] 余 曉,諸葛亦斯,劉曉波,等.大型深水水庫(kù)溶解氧層化結(jié)構(gòu)演化機(jī)制[J]. 湖泊科學(xué), 2020,32(5):1496-1507.
Yu X, Zhuge Y S, Liu X B, et al. Evolution mechanism of dissolved oxygen stratification structure in large deep-water reservoirs [J]. Lake Science, 2020,32(5):1496-1507.
[36] Müller B, Bryant L D, Matzinger A, et al. Hypolimnetic oxygen depletion in eutrophic lakes [J]. Environmental Science &Ttechnology, 2012,46(18):9964-9971.
[37] 黃廷林,李建軍.揚(yáng)水曝氣技術(shù)對(duì)汾河水庫(kù)原水水質(zhì)的改善[J]. 供水技術(shù), 2007,1(4):13-16.
Huang T L, Li J J. Raising water and aeration technology to improve the quality of raw water of Fenhe Reservoir [J]. Water Supply Technology, 2007,1(4):13-16.
[38] 曹占輝,黃廷林,邱曉鵬,等.周村水庫(kù)沉積物污染物釋放潛力模擬[J]. 環(huán)境科學(xué)與技術(shù), 2013,36(9):41-44.
Cao Z H, Huang T L, Qiu X P, et al. Simulation of the release potential of sediment pollutants in Zhoucun Reservoir [J]. Environmental Science and Technology, 2013,36(9):41-44.
[39] 陳于望,陳香梅.港灣沉積物耗氧的研究[J]. 廈門大學(xué)學(xué)報(bào)(自然科學(xué)版), 1990,(6):716-717.
Chen Y W, Chen X M. Study on the oxygen consumption of sediments in the harbor [J]. Journal of Xiamen University (Natural Science Edition), 1990,(6):716-717.
[40] Yuan H Z, Tai Z Q, Li Q, et al. In-situ, high-resolution evidence from water-sediment interface for significant role of iron bound phosphorus in eutrophic lake [J]. Science of the Total Environment, 2020,706: 136040.
[41] Wang S R, Jin X C, Zhao H C, et al. Phosphorus release characteristics of different trophic lake sediments under simulative disturbing conditions [J]. Journal of Hazardous Materials, 2009,161(2/3):1551- 1559.
[42] 夏品華,林 陶,李存雄,等.貴州高原紅楓湖水庫(kù)季節(jié)性分層的水環(huán)境質(zhì)量響應(yīng)[J]. 中國(guó)環(huán)境科學(xué), 2011,31(9):1477-1485.
Xia P H, Lin T, Li C X, et al. Response of water environmental quality to seasonal stratification of Hongfeng Lake Reservoir in Guizhou Plateau [J]. China Environmental Science, 2011,31(9):1477- 1485.
[43] 陳后合,孔健健,王淑賢.深水型湖泊底泥NH4+-N釋放的環(huán)境因子影響實(shí)驗(yàn)研究[J]. 環(huán)境科學(xué)與管理, 2006,31(7):57-60.
Chen H H, Kong J J, Wang S X. Experimental study on the impact of environmental factors released by NH4+-N from the sediment of deep-water lakes [J]. Environmental Science and Management, 2006, 31(7):57-60.
[44] 蘇玉萍,林 佳,何 靈,等.福建省山仔水庫(kù)沉積物磷對(duì)水體磷濃度貢獻(xiàn)的估算[J]. 湖泊科學(xué), 2008,20(6):748-754.
Su Y P, Lin J, He L, et al. Estimation of the contribution of phosphorus in the sediments of Shanzi Reservoir in Fujian Province to the phosphorus concentration of water bodies [J]. Journal of Lake Science, 2008,20(6):748-754.
[45] 徐 徽,張 路,商景閣,等.太湖水土界面氮磷釋放通量的流動(dòng)培養(yǎng)研究[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 2009,25(4):66-71.
Xu H, Zhang L, Shang J G, et al. Study on the flow cultivation of nitrogen and phosphorus release fluxes from the water-soil interface of Taihu Lake [J]. Journal of Ecology and Rural Environment, 2009, 25(4):66-71.
[46] 王建軍,沈 吉,張 路,等.云南滇池和撫仙湖沉積物-水界面營(yíng)養(yǎng)鹽通量及氧氣對(duì)其的影響[J]. 湖泊科學(xué), 2010,22(5):640-648.
Wang J J, Shen J, Zhang L, et al. Nutrient flux at the sediment-water interface of Dianchi Lake and Fuxian Lake in Yunnan and the effect of oxygen on it [J]. Journal of Lake Science, 2010,22(5):640-648.
本實(shí)驗(yàn)的現(xiàn)場(chǎng)采樣工作由深圳市北部水源工程管理處茜坑水庫(kù)管理所的工作人員協(xié)助完成,在此表示感謝.
Water quality characteristics and sediments endogenous pollution of subtropical stratified reservoir.
WANG Bin1,2, HUANG Ting-lin1,2*, CHEN Fan1,2, YANG Peng-cheng1,2, YEYan-zhong3, ZHAIZhen-qi3, ZHOUBi-wen4
(1.Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an 710055, China;2.Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China;3.Xikeng Reservoir Management Institute, North Water Resources Engineering Management Office, Guangdong, Shenzhen 518110, China;4.Shenzhen Nanbo Environmental Technology Co., Ltd., Guangdong, Shenzhen 518110, China)., 2021,41(10):4829~4836
To explore the impact of sediment endogenous pollution on subtropical stratified water source reservoirs (Xikeng Reservoir), a combination of in-situ monitoring and indoor simulation was used to analyze the water temperature and dissolved oxygen, nitrogen and phosphorus in the deep water area of the Xikeng Reservoir from May to September 2020. The oxygen consumption rate of sediments in Xikeng Reservoir and the release flux of nitrogen and phosphorus in the sediments were analyzed by the static experimental simulation method. The results of in-situ monitoring showed that the water temperature and dissolved oxygen in Xikeng Reservoir were in stratified state from May to September, and the dissolved oxygen in the bottom of the reservoir was low during this period, which provides prerequisites for the anaerobic release of endogenous pollutants from sediments. In the stratification stage, the concentrations of ammonia nitrogen and total phosphorus in bottom water were significantly higher than those in surface and middle water (<0.01). The corresponding average concentrations of ammonia nitrogen and total phosphorus in surface water were 0.062mg/L and 0.033mg/L, respectively, while those in middle water were 0.058mg/L and 0.037mg/L, and those in bottom water were 0.242mg/L and 0.052mg/L. Static simulation experiments showed that the oxygen consumption of both water and sediments was in line with the zero-order reaction kinetics model (2was 0.987 and 0.989, respectively). The oxygen consumption rate of sediments was 1.03g/(m2·d), which was about 1.45times of that of water. The oxygen consumption of sediment induced the reduction of dissolved oxygenand the release of sediment endogenous pollution. The maximum release value of ammonia nitrogen was 0.261mg/L, and the average release flux was 7.36mg/(m2·d). The maximum release value of total phosphorus was 0.108mg/L, and the average release flux was 2.20mg/(m2·d). The release of endogenous ammonia nitrogen and total phosphorus contributed 27.98% and 38.92% to the water, and the release of nitrogen and phosphorus from sediments had a significant effect on the water quality of the reservoir.
stratified reservoir;thermal stratification;water quality characteristics;sediments;endogenous pollution
X524
A
1000-6923(2021)10-4829-08
王 斌(1995-),男,內(nèi)蒙古自治區(qū)鄂爾多斯市人,西安建筑科技大學(xué)碩士研究生,主要研究方向?yàn)樗此畮?kù)污染物演替及水質(zhì)改善.
2021-03-15
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2019YFD1100101);國(guó)家自然科學(xué)基金資助項(xiàng)目(51979217)
* 責(zé)任作者, 教授, huangtinglin@xauat.edu.cn