• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    熱塑性聚氨酯增韌聚乳酸及其熔噴非織造材料研究

    2021-10-23 01:05MdObaidurRahman朱斐超楊瀟東黃瑞杰,汪倫合劉蕊徐曉天于斌
    絲綢 2021年10期
    關(guān)鍵詞:聚乳酸聚氨酯結(jié)晶

    Md Obaidur Rahman 朱斐超 楊瀟東 黃瑞杰,汪倫合 劉蕊 徐曉天 于斌

    摘要: 聚乳酸(PLA)生物可降解熔噴非織造材料因其超細(xì)纖維結(jié)構(gòu)和環(huán)境友好性而體現(xiàn)出有力的市場競爭力,但PLA由于其本身力學(xué)韌性不足,限制了拓展應(yīng)用。文章以高流動性熱塑性聚氨酯(TPU)為PLA的增韌材料,采用熔融共混法制備熔噴非織造用PLA/TPU復(fù)合母粒,對其相結(jié)構(gòu)形態(tài)、熱-結(jié)晶性能、熱穩(wěn)定性和晶型結(jié)構(gòu)變化進(jìn)行研究,進(jìn)一步制備了PLA/TPU熔噴非織造材料。結(jié)果表明:PLA與TPU為不相容體系,TPU對PLA的結(jié)晶過程和晶型結(jié)構(gòu)幾乎無影響,但使PLA的熱穩(wěn)定性有所下降。TPU共混質(zhì)量比在20%以內(nèi),PLA/TPU的熔噴加工性較佳,PLA/TPU熔噴非織造材料相比單一PLA熔噴材料體現(xiàn)出更好的強(qiáng)度和拉伸延展性。

    關(guān)鍵詞:

    聚乳酸;熱塑性聚氨酯;增韌;熔噴;非織造

    中圖分類號: TQ323.8

    文獻(xiàn)標(biāo)志碼: A

    文章編號: 1001-7003(2021)10-0028-08

    引用頁碼: 101106

    DOI: 10.3969/j.issn.1001-7003.2021.10.006(篇序)

    Study on toughened polylactic acid and its meltblown nonwovens by thermoplastic polyurethane

    RAHMAN Md Obaidur1a, ZHU Feichao1a,b, YANG Xiaodong1a, HUANG Ruijie2, WANG Lunhe3, LIU Rui1a, XU Xiaotian1a, YU Bin1a,b

    (1a.College of Textile Science and Engineering; 1b.Zhejiang Provincial Key Laboratory of Industrial Textile Materials and Manufacturing Technology,Zhejiang Sci-Tech University, Hangzhou 310018, China; 2.China General Nuclear(CGN) Juner New Materials Co., Ltd., Wenzhou325000, China;3. Zhejiang Honor Biomaterials Co., Ltd., Taizhou 318000, China)

    Abstract:

    Polylactic acid(PLA) biodegradable meltblown nonwovens show superior market competitiveness due to its ultrafine fiber structure and environmental friendliness. However, the lack of mechanical toughness of PLA has limited its application. In this paper, high-fluidity thermoplastic polyurethane(TPU) was used as the toughening material of PLA to fabricate the PLA/TPU composite masterbatch for the use of melt-blown nonwovens through melt blending method, and its phase structure, thermal-crystallization performance, thermal stability, and the changes in the crystal structure changes were studied, and PLA/TPU meltblown nonwovenswere further prepared. The results show that PLA and TPU are incompatible systems, and although TPU almost has no effect on the crystallization process and crystal structure of PLA, it can reducethe thermal stability of PLA. The mass ratio of TPU blending was less than 20%, and PLA/TPU showed a good the meltblown fabricability. PLA/TPU meltblown nonwovensexhibited superior strength and tensile ductility than single PLA meltblown material.

    Key words:

    polylactic acid; thermoplastic polyurethane; toughening; meltblown; nonwoven

    收稿日期: 2021-01-24;

    修回日期: 2021-09-17

    基金項目: 浙江省自然科學(xué)基金項目(LQ21E030013);浙江理工大學(xué)科研啟動基金項目(20202293-Y)

    作者簡介: Md Obaidur Rahman(1994),男,碩士研究生,研究方向為生物可降解熔噴非織造材料。通信作者:于斌,教授,yubin7712@163.com。

    At the end of 2019, the prevailing coronavirus(COVID-19) all over the world has increased the use of protective meltblown masks at an alarming rate day by day. But as the most common raw material of of the mask, polypropylene(PP), despite its advantages such as inexpensive, high flexural strength, and chemical resistance[1], is a petroleum-based polymer derived from the olefin monomer propylene[2], yet not fully environment friendly, resulting in a huge amount of energy/gas combustion, high environmental pollution[3]. This research introduces a biodegradable and flexible meltblown nonwoven fabric that can greatly benift human health and environmental safety and can replace the use of a large number of PP masks in everyday use. Meltblown is an industrialized simple, unique,and one-step process for the production of superfine diameter fibers in the form of a micrometer or Nanoscale(0.5-5 um)[4]. As Poly Lactic Acid(PLA) is a natural biodegradable polymer with high strength and stiffness, excellent transparency, and biodegradability,as well as an excellent antibacterial property, it is used for various purposes such as biomedical, filtration, food packaging, etc[5-6]. Its a compostable and bio-based polyester, while PLA is aliphatic polyester generally derived from natural sources such as corn, cassava, sugar, starch, potatoes or, other biomass[7]. PLA has some shortcomings such as inherent brittleness, thermal stability, high processing costs, and relatively poor mechanical properties,limiting its use in some specific areas[8]. Blending two or more polymers with the same or different physical and chemical properties is a common method for reducing cost and enhancing the overall properties of a product by taking advantage of the properties of each component[9]. A lot of polymers have been used in various researches for PLA touthening purposes[10] such as PA11[11],Polycaprolactone(PCL)[12], Poly Butylene Succinate(PBS)[13], etc.

    Thermoplastic polyurethane(TPU) with high toughness properties, durability, biocompatibility and flexibility is one of the most potential alternatives for enhancing the strength of Polylactic acid(PLA)[14-22]. Thermoplastic polyurethane(TPU) is also extensively applied to many fields such as automotive instrument panels, power tools, sporting goods, medical devices, footwear, inflatable rafts, and a variety of extruded films, sheets and profile applications[15]. Despite a few existing studies on PLA/TPU melt blend technic for PLA toughening[16-18], most of which are focused on toughening film or injection modeling, while studies on superfine fiber or MB nonwovens are rare. Thus in this study, Thermoplastic Polyurethane was used for improvingthe overall performance of PLAsuch as reducing inherent brittleness, improving mechanical properties(increasing strength), flexibility and also enhancing the surface of the composite meltblwn nonwovens. The current study is aimed to investigate the morphology, crystallization, and thermal behaviors of PLA/TPU meltblown fabric, which is hopefully a good candidate for replacing petroleum-based polymer in the meltblown applications. In view of some miscibility found in the blends, it is recommended that some facile or additive can be used in the blend to obtain a uniform high-quality melt-blown blend.

    1 實 驗

    1 Experiment

    1.1 原料與儀器

    1.1 Materials and instruments

    Materials: PLA(grade 6252D especially for MB processing) was supplied by NatureWorks LLC(USA),and the flexible Thermoplastic Polyurethane(grade 1080A) was purchased from BASF. All materials were used as received to produce biodegradable melt blown nonwovens without any further purification. The materials used in the experiment all were AR grade and used as received.

    Instruments: Twin screw extruder(TSE-30A; Nanjing Ruiya Extrusion System Limited, China. field emission scanning electron microscopy(FE-SEM)-(Ultra 55, Carl Zeiss, AG, Germany), Differential scanning calorimetry(DSC) Perkin-Elmer DSC 8000(USA), TGA-Mettler Toledo TGA/DSC1/1600(Switzerland), Wide-angle X-ray diffractometer(WAXD)-Bruker AXS D8 Discovery(Germany), Fourier transform infrared spectroscopy Perkin-Elmer Spectrum 100 ATR-(FTIR) machine, Mini meltblown machine(China).

    1.2 實驗方法

    1.2 Methods

    Melt compounding was performed using a twin-screw extruder(TSE-30A; Nanjing Ruiya Extrusion System Limited, China; length/diameter [L/D]=40) with a screw diameter of 18 mm And an L/D ratio of 40. Prior to this, the PLA & TPU were dried in a vacuum oven at 80 ℃ for 24 hours to remove the moisture. PLA/TPU blend was mixed in a mixer at 60 ℃ under 50 r/min at a certain weight ratio of 100/0, 95/5, 90/10, 85/15, 82/20. The 7-chamber temperature of the melt blended extruder was set to 175 ℃, 185 ℃, 190 ℃, 200 ℃, 180 ℃, 175 ℃, and 170 ℃ respectively. Setting the temperature according to the characteristics and melting point of the polymers is very important to obtainthe superior quality of the blend. Too high or too low temperature may result in bottleneck operation during the whole extrusion process. The materials were extruded automatically using a semi-automatic machine according to the material pouring & machine speed. Lower temperature resulted in improper blending and higher temperature resulted in the jamming of extruder chamber or ununiform melt flow of the blend.

    Before the meltblown process, the materialswere heated in the vacuum oven dryer at 80 ℃ non-disturbed for 16 hours to remove the moisture. As shown in Fig.1, PLA/TPU MB nonwovens were manufactured by a laboratory-scale MB nonwoven machine(Jiaxing Longman Measurement and Control Technology Co., Ltd., China) with a single orifice die. All the diameterswere set based on our previous work experience for the purpose of obtaining a uniform melt flow. The distance between the die and collector played a crucial role during the meltblown experiment for getting the superior quality of superfine meltblown fabric. The(DCD) was set to about 14 cm. The diameter of the orifice was 0.3 mm, and the L/D was 40. PLA and PLA/TPU were set at the temperature of 220 ℃ to 230 ℃. The hot air temperature was set to 260-270 ℃, the material temperature was 220 ℃ and the bucket temperature was 230 ℃. The platform

    speed and itinerary was set to 0.5 mm/s and 200 mm. The meltblown nanofibers were cooled at room temperature and collected in a stainless steel roller(collector) with a suction set; the collector speed and the die-to-collectordistance(DCD) were optimized according to the practical adjustment, in order to get uniform MB nonwovens.

    1.3 測試與表征

    1.3 Testing and characterization

    1.3.1 表面形貌

    1.3.1 Surface morphology characterization(SEM)

    The surface morphology and structure of PLA-TPU melt blended polymer were observed by using a field emission scanning electron microscopy(FE-SEM)(Ultra 55, Carl Zeiss, AG, Germany) at an accelerating voltage of 2-3 kV. The specimens were firstly dispersed in liquid nitrogen for about two to three minutes and the sample was cut with two stainless steel handle into small parts, and then attachedon the gold plate for testing. A clean and smooth surface played a crucial role in getting good quality images. The MB nonwovens(1 cm×1 cm) were gold-coated(2-3 nm) before observation. Fiber diameters of MB nonwovens were measured using image analysis software(ImageJ 1.48 V; National Institutes of Health, the USA) by following the method of Ellison et al[19].

    1.3.2 熱-結(jié)晶性能

    1.3.2 Differential scanning calorimetry(DSC)

    Differential scanning calorimetry(DSC) tests were carried out using Perkin-Elmer DSC 8000(USA) under N2 atmosphere(20 mL/min). Samples of(5±0.5) mg were weighed and sealed in aluminum crucibles. Samples were heated from 25 ℃ to 230 ℃ at a rate of 10 ℃/min(first heating), equilibrated at 230 ℃ for 3 min to eliminate the thermal history, and then cooled to 25 ℃ at a rate of 10 ℃/min, and then heated again from 25 ℃ to 230 ℃ at a rate of 10 ℃/min(second heating). The crystal weight fraction(Xc) of PLA was calculated according to Equations(1).

    Xc(PLA)=ΔHm(PLA)-ΔHcc(PLA)ΔH0(PLA)×100Wt(1)

    Here, the measured melting enthalpy is expressed as ΔHm, the measured cold crystallization enthalpy is expressed as ΔHcc, is the melting enthalpy for 100% crystalline PLA(93.1 J/g[20]) is expressed as ΔH0, and the weight fraction in PLA/TPU blends is denoted as Wt.

    1.3.3 熱重分析(TGA)

    1.3.3 Thermogravimetric analysis(TGA)

    TGA test was performed using a Mettler Toledo TGA/DSC1/1600(Switzerland) under N2 atmosphere(20 mL/min). Samples of (5±0.5) mg were weighed and put into a ceramic crucible; samples were heated from room temperature to 550 ℃ at a rate of 20 ℃/min.

    1.3.4 熔融共混PLA/TPU(XRD)的晶型結(jié)構(gòu)

    1.3.4 Crystal forms of melt blended PLA/TPU(XRD)

    A wide-angle X-ray diffractometer(WAXD) was obtained by using Bruker AXS D8 Discovery(Germany) at room temperature. The samples of PLA, TPU, and MBs with a size of 10 mm×10 mm were tested. The CuKa radiation source was operated at a power of 40 kV and a current of 40 mA. The scanning angle ranged from 10° to 40° with increments of 0.02°.

    1.3.5 拉伸性能

    1.3.5 Tensile performance

    Mechanical behaviors of PLA and PLA/TPU MB nonwovens were investigated using a universal tensile machine(Instron-3369, USA) according to the method of ISO 9073-3—1989. All samples were conditioned under standard laboratory conditions(25 ℃±2 ℃ and 65% RH) for 24 h. Samples with a size of 5 cm×2 cm were selected in a rolling direction, at a tensile speed of 50 mm/min. All the results were calculated as the average of five samples.

    2 結(jié)果與分析

    2 Results and analysis

    2.1 共混物的表面形態(tài)

    2.1 Surface morphology of blends

    The morphology of blendswas observed by scanning electron microscopy(SEM). The SEM images of the PLA/TPU of 100/0, 95/5, 90/10, 85/15, 80/20 are shown in Fig.2, respectively. As shown in figure A, 100% melt blended PLA had a very smooth surface compared to other ratios ofsurface. The phase morphology in binary PLA/TPU polymer blends was generally affected by the weight and viscosity ratios of blending components. Obviously, PLA/TPU blends still exhibited a "sea-islands" structure shown by thePLA/TPU blends. TPU phases were uniformly dispersed in PLA(Polylactic Acid) matrix in a globule shape with a diameter of roughly 8-9 mm, and some dispersed phases began to contact and even compress with each other as the blending weight ratio of TPU increased. It should be noted that there still existed some voids and de-bonding. It was observed that, as the amount of TPU increased in the composites, the thermal stability was improved.

    The glass transition temperatures of the composites increased with the addition of thermoplastic polyurethane, which could be attributed to the decrease in the segmental motion of the polymer chains. However, as the PLA/TPU blend with the same compositionwas in good condition, and exhbited stable performance, indicating a uniform TPU distribution of sea-island type composite fibers.

    2.2 熱-結(jié)晶性能

    2.2 Melting and crystallization

    DSC heating curves of PLA/TPU blends are shown in Fig.3, and the corresponding thermal parameters are listed in Tab.1. In the trace of the PLA heating curve, it is observed that the glass transition temperature(Tg) is 57.66 ℃, and the cold crystallization temperature(Tcc) is 112.11 ℃ due to the mobility and rearrangement of PLA macromolecules.

    PLA is a semicrystalline polymer, which determines its mechanical properties basically dependent on its crystallization behavior. As shown in the graph, after adding the TPU for increasing the flexibility of the blend, the structure of the blend did not change signfiicantly. The melting point and the crystallization rate of blended polymer exhibited an excellent relation between the corresponding polymers.

    It can be seen that the ratios of the glass transition temperature of PLA did not change much after gradually adding the TPU in the blend, indicatingthe fundamental stability of PLA in the blend. All the temperatures were nearly 57 degrees celsius and on the other hand, the cold crystalization temperature range started basically from 111 degrees to 112, also indicating a stable temperature of the total blend.

    2.3 熱穩(wěn)定性分析

    2.3 Thermal stablility of blends

    Biodegradable polymers sometimes exhibited poor thermal stability, which may affect the processing and properties of the final product. Polymeric materials properties such as glass transition temperature(Tg) and thermal stability are very important parameters in the applications of composite materials. Fig.4 shows the weight as a function of temperature for Poly Lactic Acid and Thermoplastic Polyurethane blends. A single thermal degradation stage was observed in both PLA and TPU. The initial thermal decomposition temperature(Tinitial) of PLA was about 282.4 ℃. In comparison with PLA, TPU exhibited btter thermal stability at 332.3 ℃.

    The thermal degradation of Tinitial PLA and TPU occurred through different mechanisms,because two distinct decomposition stages could be observed in PLA/TPU blends. Both non-free and free radical theories were adopted to explain the thermal degradation of PLA.

    2.4 晶型結(jié)構(gòu)

    2.4 Crystal forms

    To investigate the effect of TPU on the crystal structure of PLA, the WAXD patterns of TPU with and without modification and PLA/TPU MBs were determined, as shown in Fig.5. The XRD graph shows that all the baselines of the melt blended pure PLA and PLA/TPU were nearly the same. Only two major peaks were observed in the XRD graph.

    The main two peaks of PLA blend were located at 2θ(theta) angle of 16.64° and 18.94°, corresponding to(110) lattice plane and(203) lattice plane, respectively. The othertwo peaks were found at 14.75° & 22.31°, corresponding to(010) lattice plane and(105) lattice plane, respectively. After adding TPU in the PLA, no significant differences were found in the peak values, indicating that TPU did not affect the basic structure of PLA.

    2.5 PLA/TPU熔噴材料的形態(tài)和纖維直徑分布

    2.5 Morphology and fiber diameter distribution of PLA/TPU MB nonwovens

    Fig.6 and Tab.2 show the morphologies and fiber diameter distributions of PLA/TPU MB nonwovens. It was found that the surface of PLA MB fibers was smooth, diameters ranging from 0.5-7 μm. The turbulent drawing airflow resulted in the irregular drawing force of hot air on the extruded polymer melt. Therefore, the diameters of MB fibers varied and exhibited a normal distribution with the a peak valueat 2-3 μm. It could be seen that 100% PLA meltblown exhibited a very clear surface compared to other ratios of surface, which was the same as the blending process shown in figure 2A. As the amount of TPU increased in the blend, the image smoothness of the meltblown fabric decreased, because a higher amount of TPU increased the miscibility between the two polymers. The poor miscibility between PLA and TPU was another non-negligible factor that increased the fiber distribution, and the defects of PLA/TPU meltblown nonwoven were further aggravated due to the phase separation, especially at a TPU content of exceeding 15%.

    The relationship between the average mean flow pore diameter and melt blowing pressure, hot air, or other parametersof the membrane is unique. The mean stream pore distance acrossis characterized as an incentive in which the stream in the film is reduced significantly when performing a fractional stream test in a hairlike stream boundary instrument. Despite a bigger fiber width and increments with the expanding pressure at lower melt blowing pressure, as indicated before, it isthe fiber thickness that determines the mean stream pore distance across.

    2.6 PLA/TPU熔噴材料力學(xué)拉伸測試

    2.6 Mechanical properties of PLA/TPU MB nonwovens

    The tensile mechanical properties of PLA/TPU meltblown nonwovens are shown in Fig.7. Basically, in the advanced process of meltblownsconsisting of many superfine fibers and cohesive points that provide mechanical strength to the fabric, high-quality nonwovens fabric with porous and fluffy structures(nano-fiber) can be produced. When the meltblown nonwovens started stretching, it is generally that the nonwoven fabric is firstlynarrowed bythe tensile force,followed by a grdual drop of the fiber strength at an equilibrium stage. Adding TPU at 15% and 20% could significantly improve the toughness of the polylactic acid, as shown in the figure above in accordance with enhanced elongation at break, especially at 15% content. As shown in above Tensile strength-elongation figure, PLA/TPU 85/15 exhibitsan excellent

    tensile strength compared to pure PLA or other blends. The 80/20 the tensile strength ishigher, but it drops quickly; it is unstable like 85/15, because the compatibility between two polymers is not so good in this mixture, or it may be a chemical reaction. Some other studies have also revealed the same result that adding too much TPU in the blend can also lead to a decrease in the tensile strength.

    3 結(jié) 論

    3 Conclusions

    In order to toughen PLA and reduce its brittleness, one of the most popular and cost-saving ways is to melt it with PP, TPU or other materials with excellent flexibility, ductility, and strength. In the near future, the use of biodegradable PLA products will continuoulsy and rapidly increase the market share, and it has great potential to penetrate new markets, including some portions of the apparel market and textile industry. Poly Lactic Acid and Thermoplastic Polyurethane blends can be fabricated by melt-blown or melt-spinning to prepare a biodegradable and biocompatible polymer blend material with improved toughness, which can further be used in disposable filtration, adsorbing, health care, and medicals such as gloves, mask, etc. Only a few studies on PLA/TPU melt blown composite nonwovens have been carried out. In this research work, the fabric we made is very suitable for the production offlexible, soft and high-quality melt blown ffabrics and masks, which canprevent the spread of COVID-19. Asit is made of biodegradable polymer, it can alleviate environmental pollution. In addition,we have also foundsome miscibility in the composite blend between the two polymers. However, its very difficult to get a uniform blend from a natural polymer like PLA and to reduce the miscibility between the polymers blend according to our experience. A compatibilizer or an additive can be used in the blend to get more uniform and good quality of PLA/TPU biodegradable meltblown nonwoven fabric. However, to obtain the PLA/TPU MB nonwovens with better performance, the miscibility between PLA and TPU should be further improved using a simple and effective method.

    參考文獻(xiàn):

    [1]TOMI N Z, MARINKOVI A D. Compatibilization of polymer blends by the addition of graft copolymers-science direct[J/OL]. Compatibilization of Polymer Blends, 2020: 103-144. https://doi.org/10.1016/B978-0-12-816006-0.00004-9.

    [2]HISHAM A, MADDA H. Polypropylene as a promising plastic: a review[J]. American Journal of Polymer Science, 2016, 6(1): 1-11.

    [3]HWANG J, CHOI D, HAN S, et al. An assessment of the toxicity of polypropylene microplastics in human derived cells[J]. Science of the Total Environment, 2019(684): 657-669.

    [4]ZHU F, SU J, ZHAO Y, et al. Influence of halloysite nanotubes on poly(lactic acid) melt-blown nonwovens compatibilized by dual-monomer melt-grafted poly(lactic acid)[J]. Textile Research Journal, 2019, 89(19): 4173-4185.

    [5]JIA S, WANG Z, ZHU Y, et al. Composites of poly(lactic) acid/thermoplastic polyurethane/mica with compatibilizer: morphology, miscibility and interphase[J]. RSC Advances, 2015, 5(120): 98915-98924.

    [6]LI Z, LIU L, RAO Y, et al. Mechanical and antibacterial properties of oriented poly(lactic acid)[J]. Polymer Engineering and Science, 2019, 59(10): 2121-2127.

    [7]BHAGABATI P. Biopolymers and biocomposites mediated sustainable high-performance materials for automobile applications[J]. Polymer Science, 2020, 1548-0569.

    [8]COOPER T A. Developments in bioplastic materials for packaging food, beverages and other fast-moving consumer goods-science direct[J/OL]. Trends in Packaging of Food, Beverages and Other Fast-Moving Consumer Goods(FMCG), 2013: 108-152. https://doi.org/10.1533/9780857098979.108.

    [9]QIN Y. Applications of advanced technologies in the development of functional medical textile materials[J/OL]. Medical Textile Materials, 2016: 55-70. https://doi.org/10.1016/B978-0-08-100618-4.00005-4.

    [10]ZHAO X, HU H, WANG X, et al. Super tough poly(lactic acid) blends: a comprehensive review[J]. RSC Advances, 2020, 10(22): 13316-13368.

    [11]ZHU F, YU B, SU J, et al. Study on PLA/PA11 bio-based toughening melt-blown nonwovens[J]. Autex Research Journal, 2020, 20(1): 24-31.

    [12]TAKAYAMA T, TODO M. Improvement of impact fracture properties of PLA/PCL polymer blend due to LTI addition[J]. Journal of Materials Science, 2006, 41(15): 4989-4992.

    [13]YOKOHARA T, YAMAGUCHI M. Structure and properties for biomass-based polyester blends of PLA and PBS[J]. European Polymer Journal, 2008, 44(3): 677-685.

    [14]MARTIN D J, OSMAN A F, ANDRIANI Y, et al. Thermoplastic Polyurethane(TPU) Based Polymer Nanocomposites[J/OL]. Materials Science and Engineering, 2012: 321-350. https://doi.org/10.1533/9780857096241.2.321.

    [15]BATRK E, MADAKBA S, KAHRAMAN M V. Improved thermal stability and wettability behavior of thermoplastic polyurethane/barium metaborate composites[J]. Materials Research, 2016, 19(2): 434-439.

    [16]HAN D, CHEN G, XIAO M, et al. Biodegradable and toughened composite of poly(Propylene carbonate)/thermoplastic polyurethane(PPC/TPU): effect of hydrogen bonding[J]. International Journal of Molecular Sciences, 2018, 19(7): 2032.

    [17]JAO V, GLENN G, KLAMCZYNSKI A, et al. Biodegradability study of polylactic acid/ thermoplastic polyurethane blends[J]. Polymer Testing, 2015, 47: 1-3.

    [18]NORDIN N M, BUYS Y F, ANUAR H, et al. Development of conductive polymer composites from PLA/TPU blends filled with graphene nanoplatelets[J]. Materials Today: Proceedings, 2019(17): 500-507.

    [19]ELLISON C J, PHATAK A, GILES D W, et al. Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup[J]. Polymer, 2007, 48(11): 3306-3316.

    [20]RASHMI B J, PRASHANTHA K, LACRAMPE M, et al. Toughening of poly(lactic acid) without sacrificing stiffness and strength by melt-blending with polyamide 11 and selective localization of halloysite nanotubes[J]. Express Polymer Letters, 2015, 9(8): 721-735.

    [21]NOFAR M, MOHAMMADI M, CARREAU P J. Effect of TPU hard segment content on the rheological and mechanical properties of PLA/TPU blends[J]Journal of Applied Polymer Science, 2020, 137(45): 1-11.

    [22]MO X Z, WEIF X, TAN D F, et al. The compatibilization of PLA-g-TPU graft copolymer on polylactide/thermoplastic polyurethane blends[J]. Journal of Polymer Research, 2020, 27(2): 33.

    猜你喜歡
    聚乳酸聚氨酯結(jié)晶
    KD514:自催化型雙組分水性聚氨酯及其制備方法
    適當(dāng)添加單甘酯 合理調(diào)節(jié)棕櫚油結(jié)晶
    高性能抗水解型聚乳酸樹脂問世
    柚子皮對陽離子染料結(jié)晶紫的吸附性能研究
    特種聚氨酯助力油田鉆井提效
    聚氨酯泡沫材料研究進(jìn)展
    功能聚氨酯的研究
    你家的蜂蜜結(jié)晶了嗎
    蜂蜜結(jié)晶怎么辦
    聚乳酸纖維的性能特點與產(chǎn)品開發(fā)前景
    在线观看免费高清a一片| 欧美激情国产日韩精品一区| 欧美亚洲 丝袜 人妻 在线| 一区二区三区四区激情视频| 日韩熟女老妇一区二区性免费视频| 丝袜美足系列| 制服丝袜香蕉在线| 欧美xxⅹ黑人| 欧美精品一区二区大全| a级毛片在线看网站| 中文欧美无线码| 蜜臀久久99精品久久宅男| 成年美女黄网站色视频大全免费 | 蜜臀久久99精品久久宅男| 午夜日本视频在线| 久久99精品国语久久久| 波野结衣二区三区在线| 国产日韩欧美在线精品| 99热6这里只有精品| 成人无遮挡网站| 啦啦啦中文免费视频观看日本| 国产精品国产三级国产av玫瑰| 国产av码专区亚洲av| 精品国产一区二区三区久久久樱花| 国产在线免费精品| 亚洲丝袜综合中文字幕| 久久久久网色| 男女国产视频网站| 日韩不卡一区二区三区视频在线| 免费观看a级毛片全部| 亚洲精品久久久久久婷婷小说| 国产精品人妻久久久久久| 乱码一卡2卡4卡精品| 国产成人aa在线观看| 国产免费一区二区三区四区乱码| av卡一久久| av免费在线看不卡| 母亲3免费完整高清在线观看 | 日本黄大片高清| 在线播放无遮挡| 免费黄网站久久成人精品| 亚洲欧美清纯卡通| 多毛熟女@视频| 欧美日韩精品成人综合77777| 免费观看av网站的网址| 国产精品人妻久久久久久| 蜜桃久久精品国产亚洲av| 免费日韩欧美在线观看| 亚洲av电影在线观看一区二区三区| 人人妻人人澡人人看| 男女免费视频国产| 日韩人妻高清精品专区| 成人免费观看视频高清| 久久精品熟女亚洲av麻豆精品| 日韩一区二区视频免费看| 国产深夜福利视频在线观看| 精品人妻熟女av久视频| 啦啦啦视频在线资源免费观看| 日韩中文字幕视频在线看片| 只有这里有精品99| 国产av码专区亚洲av| a级片在线免费高清观看视频| 九九爱精品视频在线观看| a级毛片黄视频| 亚洲色图综合在线观看| 国产男人的电影天堂91| 亚洲精品日韩av片在线观看| 欧美三级亚洲精品| 精品人妻熟女毛片av久久网站| 国产一区有黄有色的免费视频| 久久99热6这里只有精品| 一级毛片我不卡| 欧美性感艳星| 99久久中文字幕三级久久日本| 国产精品国产三级专区第一集| 美女脱内裤让男人舔精品视频| 尾随美女入室| 国产一区有黄有色的免费视频| 国产精品久久久久久精品古装| 大香蕉97超碰在线| av国产精品久久久久影院| 久久人人爽人人爽人人片va| 久久精品国产自在天天线| 美女大奶头黄色视频| 国产精品一区二区在线观看99| 午夜视频国产福利| 国产深夜福利视频在线观看| 午夜激情福利司机影院| 午夜福利影视在线免费观看| 日本午夜av视频| 亚洲av日韩在线播放| 丁香六月天网| 国产精品熟女久久久久浪| 国产一区二区在线观看日韩| 母亲3免费完整高清在线观看 | 国产熟女午夜一区二区三区 | 精品卡一卡二卡四卡免费| 中文字幕最新亚洲高清| 极品人妻少妇av视频| 一区二区三区精品91| 我的老师免费观看完整版| 国产一区二区三区综合在线观看 | 在线观看人妻少妇| 妹子高潮喷水视频| 午夜激情av网站| 能在线免费看毛片的网站| 国产成人av激情在线播放 | 王馨瑶露胸无遮挡在线观看| 在线观看国产h片| 国产男人的电影天堂91| 搡女人真爽免费视频火全软件| av免费观看日本| 久久久午夜欧美精品| 国产免费福利视频在线观看| 岛国毛片在线播放| 中国美白少妇内射xxxbb| 国产免费又黄又爽又色| 成年av动漫网址| 免费黄色在线免费观看| 婷婷色综合www| 黄色毛片三级朝国网站| 亚洲情色 制服丝袜| 日韩av免费高清视频| 国产成人91sexporn| 国产 一区精品| 亚洲精品亚洲一区二区| 肉色欧美久久久久久久蜜桃| 久久久久国产网址| 久久亚洲国产成人精品v| 亚洲丝袜综合中文字幕| 一个人免费看片子| 九九爱精品视频在线观看| 999精品在线视频| 下体分泌物呈黄色| 国产亚洲精品久久久com| 日日摸夜夜添夜夜爱| 一级毛片电影观看| 一级片'在线观看视频| 中国三级夫妇交换| 亚洲av成人精品一二三区| 黄片无遮挡物在线观看| 亚洲精品视频女| 交换朋友夫妻互换小说| 熟女电影av网| 老司机影院毛片| 伦理电影大哥的女人| 免费看光身美女| 欧美人与善性xxx| 欧美老熟妇乱子伦牲交| 日韩一区二区视频免费看| 久久国产精品男人的天堂亚洲 | 欧美日韩亚洲高清精品| 妹子高潮喷水视频| 麻豆精品久久久久久蜜桃| 国产成人aa在线观看| 国产老妇伦熟女老妇高清| 丰满少妇做爰视频| 大片免费播放器 马上看| 免费观看无遮挡的男女| 久久青草综合色| 天堂8中文在线网| 黑人欧美特级aaaaaa片| 91久久精品国产一区二区三区| 精品久久久久久久久av| 日韩中文字幕视频在线看片| 18禁裸乳无遮挡动漫免费视频| 国产精品一区二区在线不卡| 国产成人免费无遮挡视频| 91精品伊人久久大香线蕉| 啦啦啦中文免费视频观看日本| 九色亚洲精品在线播放| 男女无遮挡免费网站观看| 黄色一级大片看看| 夫妻性生交免费视频一级片| 免费人妻精品一区二区三区视频| a级片在线免费高清观看视频| 亚洲国产毛片av蜜桃av| 中文字幕人妻熟人妻熟丝袜美| 日日撸夜夜添| 九色成人免费人妻av| 日韩三级伦理在线观看| 97超视频在线观看视频| 女人精品久久久久毛片| 九九久久精品国产亚洲av麻豆| 亚洲欧美成人综合另类久久久| 精品国产乱码久久久久久小说| 精品久久久久久久久亚洲| 少妇被粗大猛烈的视频| 精品国产乱码久久久久久小说| 26uuu在线亚洲综合色| 日韩不卡一区二区三区视频在线| 日韩不卡一区二区三区视频在线| 免费播放大片免费观看视频在线观看| 又大又黄又爽视频免费| 成人国产麻豆网| 精品国产一区二区久久| 最新中文字幕久久久久| 国产伦精品一区二区三区视频9| 亚洲美女视频黄频| 亚洲综合色惰| 亚洲精品色激情综合| 亚洲国产欧美在线一区| 九色成人免费人妻av| 激情五月婷婷亚洲| 欧美另类一区| 免费大片18禁| 久久97久久精品| 国产成人a∨麻豆精品| 中文乱码字字幕精品一区二区三区| 内地一区二区视频在线| 国产色爽女视频免费观看| 久热这里只有精品99| 街头女战士在线观看网站| 激情五月婷婷亚洲| 下体分泌物呈黄色| 80岁老熟妇乱子伦牲交| 亚洲激情五月婷婷啪啪| 久久久久人妻精品一区果冻| 热99国产精品久久久久久7| 人妻系列 视频| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久亚洲中文字幕| 精品一品国产午夜福利视频| 亚洲人成网站在线观看播放| 国产毛片在线视频| 国产精品一区二区三区四区免费观看| 亚洲av二区三区四区| 日本-黄色视频高清免费观看| 人成视频在线观看免费观看| 汤姆久久久久久久影院中文字幕| 哪个播放器可以免费观看大片| 国产一区二区在线观看av| 中文精品一卡2卡3卡4更新| 搡老乐熟女国产| 啦啦啦中文免费视频观看日本| 99九九在线精品视频| a级毛片黄视频| 欧美丝袜亚洲另类| 亚洲不卡免费看| 久久女婷五月综合色啪小说| 亚洲第一区二区三区不卡| 亚洲精品亚洲一区二区| 欧美人与性动交α欧美精品济南到 | 性高湖久久久久久久久免费观看| 99热国产这里只有精品6| 99九九线精品视频在线观看视频| 国产成人免费无遮挡视频| 欧美xxxx性猛交bbbb| 18禁观看日本| 免费少妇av软件| 色5月婷婷丁香| 国产高清不卡午夜福利| 欧美精品人与动牲交sv欧美| 男人操女人黄网站| 18禁裸乳无遮挡动漫免费视频| av一本久久久久| 美女福利国产在线| 国产精品久久久久久精品电影小说| 韩国高清视频一区二区三区| 黑人巨大精品欧美一区二区蜜桃 | av在线app专区| 亚洲欧美成人精品一区二区| .国产精品久久| 天天躁夜夜躁狠狠久久av| 精品久久久久久久久亚洲| 日韩中文字幕视频在线看片| 黄片播放在线免费| 插阴视频在线观看视频| 麻豆乱淫一区二区| 黑人巨大精品欧美一区二区蜜桃 | 黄色配什么色好看| 国产国语露脸激情在线看| 国产男女内射视频| 亚洲精品av麻豆狂野| 亚洲av免费高清在线观看| 如何舔出高潮| 国产淫语在线视频| 亚洲中文av在线| 欧美精品人与动牲交sv欧美| 久久精品国产自在天天线| 免费久久久久久久精品成人欧美视频 | 午夜视频国产福利| 80岁老熟妇乱子伦牲交| 欧美激情极品国产一区二区三区 | 日韩人妻高清精品专区| 少妇人妻久久综合中文| 日韩成人av中文字幕在线观看| 黄色视频在线播放观看不卡| 另类亚洲欧美激情| 成人毛片60女人毛片免费| 99热网站在线观看| 久久 成人 亚洲| 最近2019中文字幕mv第一页| 十八禁网站网址无遮挡| 亚洲国产av新网站| 夜夜骑夜夜射夜夜干| 一级爰片在线观看| 最近中文字幕2019免费版| 亚洲av国产av综合av卡| 亚洲伊人久久精品综合| 国产日韩一区二区三区精品不卡 | 超碰97精品在线观看| 在线观看一区二区三区激情| 久久av网站| 久久99一区二区三区| 五月伊人婷婷丁香| 免费av中文字幕在线| 亚洲高清免费不卡视频| 久久精品国产亚洲网站| 丝袜喷水一区| 不卡视频在线观看欧美| 国产成人精品无人区| 欧美日韩精品成人综合77777| 又粗又硬又长又爽又黄的视频| 国产免费视频播放在线视频| 精品人妻熟女av久视频| 熟妇人妻不卡中文字幕| 久久久欧美国产精品| 欧美三级亚洲精品| 亚洲熟女精品中文字幕| 男女边吃奶边做爰视频| 性色avwww在线观看| 丝袜在线中文字幕| 欧美变态另类bdsm刘玥| 欧美三级亚洲精品| 国产极品粉嫩免费观看在线 | 一本一本综合久久| 熟妇人妻不卡中文字幕| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 91久久精品电影网| 伦理电影免费视频| 亚洲av不卡在线观看| 日本免费在线观看一区| 成人国产av品久久久| 精品国产露脸久久av麻豆| 日韩不卡一区二区三区视频在线| 最近中文字幕高清免费大全6| 青春草国产在线视频| 在线天堂最新版资源| 日韩中字成人| 免费久久久久久久精品成人欧美视频 | 晚上一个人看的免费电影| 日韩视频在线欧美| 久久久久久久久久久免费av| 少妇人妻 视频| 好男人视频免费观看在线| 性色av一级| 一级毛片aaaaaa免费看小| 看十八女毛片水多多多| 亚洲精品视频女| 久久久午夜欧美精品| 久久精品国产自在天天线| 成人影院久久| 久久久久精品性色| av在线老鸭窝| 性高湖久久久久久久久免费观看| 亚洲天堂av无毛| 一区二区三区四区激情视频| 亚洲av综合色区一区| av.在线天堂| av一本久久久久| 女的被弄到高潮叫床怎么办| 黑丝袜美女国产一区| 久久久久久伊人网av| 大香蕉97超碰在线| 午夜免费观看性视频| av在线观看视频网站免费| 亚洲综合精品二区| 新久久久久国产一级毛片| 日本-黄色视频高清免费观看| 精品久久蜜臀av无| 色婷婷久久久亚洲欧美| 亚洲三级黄色毛片| 美女大奶头黄色视频| 夫妻午夜视频| 久久人人爽人人片av| 夫妻性生交免费视频一级片| 国产精品三级大全| 亚洲av在线观看美女高潮| 国产精品成人在线| 成年人午夜在线观看视频| 久久毛片免费看一区二区三区| 日韩伦理黄色片| 免费日韩欧美在线观看| 日韩,欧美,国产一区二区三区| 色哟哟·www| 亚洲国产最新在线播放| 美女中出高潮动态图| 亚洲欧美一区二区三区黑人 | 成人亚洲精品一区在线观看| 色吧在线观看| 丝袜美足系列| 乱人伦中国视频| 中文天堂在线官网| 一区二区三区免费毛片| 久久婷婷青草| 亚洲精品aⅴ在线观看| 少妇人妻 视频| 国精品久久久久久国模美| 久久狼人影院| 国产精品国产三级专区第一集| av卡一久久| 中文字幕久久专区| 人妻制服诱惑在线中文字幕| 国产免费一级a男人的天堂| 哪个播放器可以免费观看大片| 综合色丁香网| 亚洲精品456在线播放app| 人妻一区二区av| 肉色欧美久久久久久久蜜桃| 两个人的视频大全免费| 美女大奶头黄色视频| av免费观看日本| 9色porny在线观看| 久久韩国三级中文字幕| 999精品在线视频| 亚洲精品久久成人aⅴ小说 | 三级国产精品欧美在线观看| 国产午夜精品久久久久久一区二区三区| 国产 一区精品| 色吧在线观看| 人人澡人人妻人| 老司机亚洲免费影院| 男女无遮挡免费网站观看| 最近中文字幕2019免费版| 免费播放大片免费观看视频在线观看| 九九久久精品国产亚洲av麻豆| 啦啦啦在线观看免费高清www| 9色porny在线观看| 亚洲精品第二区| 久久久国产欧美日韩av| 亚洲国产精品999| 精品久久蜜臀av无| 婷婷色av中文字幕| 亚洲av二区三区四区| 成人漫画全彩无遮挡| 国产色爽女视频免费观看| 国产一区二区三区av在线| 99久国产av精品国产电影| 一区二区日韩欧美中文字幕 | 熟女电影av网| 毛片一级片免费看久久久久| 久久久久久久大尺度免费视频| 久久久国产精品麻豆| 一级毛片 在线播放| 久久久久网色| 精品人妻在线不人妻| 成人手机av| 亚洲色图综合在线观看| 国产欧美日韩一区二区三区在线 | 精品少妇黑人巨大在线播放| 久久人妻熟女aⅴ| 成人影院久久| 日韩欧美一区视频在线观看| 日韩三级伦理在线观看| 精品亚洲成国产av| www.色视频.com| 午夜精品国产一区二区电影| 久久久午夜欧美精品| 国产 精品1| 国产免费福利视频在线观看| av不卡在线播放| 国产高清不卡午夜福利| 国产精品女同一区二区软件| 精品亚洲乱码少妇综合久久| 日韩精品有码人妻一区| 欧美日韩av久久| 母亲3免费完整高清在线观看 | 国产亚洲av片在线观看秒播厂| 国产国语露脸激情在线看| 久久精品久久久久久久性| 欧美三级亚洲精品| 卡戴珊不雅视频在线播放| 一区二区日韩欧美中文字幕 | 免费av不卡在线播放| xxxhd国产人妻xxx| 国产毛片在线视频| 在线观看国产h片| 日韩精品免费视频一区二区三区 | .国产精品久久| 9色porny在线观看| 亚洲丝袜综合中文字幕| 爱豆传媒免费全集在线观看| 在线观看www视频免费| 大陆偷拍与自拍| 免费av中文字幕在线| 国产欧美日韩一区二区三区在线 | 好男人视频免费观看在线| 久久婷婷青草| 亚洲国产精品专区欧美| 在线免费观看不下载黄p国产| 亚洲国产精品一区二区三区在线| 男女高潮啪啪啪动态图| 久热久热在线精品观看| 亚洲成人av在线免费| 男女高潮啪啪啪动态图| 老熟女久久久| 婷婷色麻豆天堂久久| 最近手机中文字幕大全| 久久亚洲国产成人精品v| 九九久久精品国产亚洲av麻豆| 国内精品宾馆在线| 在线精品无人区一区二区三| 亚洲国产精品专区欧美| 久久久久国产精品人妻一区二区| 伦理电影大哥的女人| 一级a做视频免费观看| 久久久久久久久久久丰满| 亚洲av中文av极速乱| 狂野欧美激情性bbbbbb| 超色免费av| 简卡轻食公司| 亚洲精品亚洲一区二区| 韩国av在线不卡| 中文欧美无线码| 国产精品久久久久久精品古装| 22中文网久久字幕| 亚洲精品日本国产第一区| 寂寞人妻少妇视频99o| 亚洲婷婷狠狠爱综合网| 日韩熟女老妇一区二区性免费视频| 国产亚洲最大av| 精品人妻在线不人妻| 亚洲一级一片aⅴ在线观看| 热re99久久精品国产66热6| 欧美精品一区二区大全| 日韩一本色道免费dvd| 狂野欧美激情性xxxx在线观看| 欧美成人午夜免费资源| 91久久精品电影网| 亚洲综合色网址| 纯流量卡能插随身wifi吗| 草草在线视频免费看| 欧美3d第一页| 美女大奶头黄色视频| 久久97久久精品| 赤兔流量卡办理| 亚洲综合色惰| 亚洲av综合色区一区| 精品熟女少妇av免费看| 免费观看性生交大片5| 久久毛片免费看一区二区三区| 女人精品久久久久毛片| 欧美 日韩 精品 国产| 亚洲精品视频女| a级毛片黄视频| 亚洲国产精品一区二区三区在线| 国产成人a∨麻豆精品| 国产又色又爽无遮挡免| 九色成人免费人妻av| 久久久久久久亚洲中文字幕| 桃花免费在线播放| 日韩电影二区| 亚洲情色 制服丝袜| 女性生殖器流出的白浆| 久久午夜福利片| 国产精品久久久久久久电影| 亚洲综合精品二区| 免费高清在线观看日韩| 免费观看无遮挡的男女| 国产av精品麻豆| 我要看黄色一级片免费的| 寂寞人妻少妇视频99o| 婷婷色综合www| 我的老师免费观看完整版| 美女国产高潮福利片在线看| 精品国产一区二区三区久久久樱花| 我要看黄色一级片免费的| 国产有黄有色有爽视频| 亚洲欧美清纯卡通| 国产免费福利视频在线观看| 国语对白做爰xxxⅹ性视频网站| 亚洲成色77777| 亚洲综合精品二区| a级毛片在线看网站| 亚洲精品456在线播放app| 亚洲伊人久久精品综合| 日韩电影二区| 青青草视频在线视频观看| 免费av不卡在线播放| 美女国产高潮福利片在线看| 日本与韩国留学比较| 国产深夜福利视频在线观看| 亚洲av福利一区| 国产伦理片在线播放av一区| 99久久综合免费| 人成视频在线观看免费观看| 日本黄色片子视频| 九九久久精品国产亚洲av麻豆| 青春草视频在线免费观看| 9色porny在线观看| 欧美最新免费一区二区三区| av女优亚洲男人天堂| 亚洲熟女精品中文字幕| 少妇精品久久久久久久| √禁漫天堂资源中文www| 高清视频免费观看一区二区| 91精品国产国语对白视频| 久久人妻熟女aⅴ| 久久精品国产亚洲网站| 成人国产麻豆网| 亚洲三级黄色毛片| 99九九线精品视频在线观看视频| 性高湖久久久久久久久免费观看| 春色校园在线视频观看| 这个男人来自地球电影免费观看 | 久久久久久久亚洲中文字幕| 一级毛片电影观看| 免费看光身美女| 国产在视频线精品| 天天躁夜夜躁狠狠久久av| 亚洲成人一二三区av| 亚洲国产av新网站| 国产淫语在线视频| 综合色丁香网|