• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Full Friendly Index Sets of a Family of Cubic Graphs

    2021-10-14 02:10:02

    ( School of Mathematics and Information Science, Henan Polytechnic University,Jiaozuo 454003, China)

    Abstract: Let G=(V,E) be a graph.For a vertex labeling f:V →Z2, it induces an edge labeling f+:E →Z2, where for each edge v1v2 ∈E we have f+(v1v2)=f(v1)+f(v2).For each i∈Z2,we use vf(i)(respectively,ef(i))to denote the number of vertices(respectively,edges) with label i.A vertex labeling f of G is said to be friendly if vertices with different labels differ in size by at most one.The full friendly index set of a graph G, denoted by FFI(G), consists of all possible values of ef(1)-ef(0), where f ranges over all friendly labelings of G.In this paper, motivated by a problem raised by [6], we study the full friendly index sets of a family of cubic graphs.

    Keywords: Vertex labeling; Friendly labeling; Embedding labeling graph method; Cubic graph

    §1.Introduction

    Many real-world situations can be modeled by a graph consisting of a set of vertices together with edges joining certain pairs of these vertices.Especially, labeling graphs often paly a vital role in applications such as: parallel computing, circuit design, coding theory, communication network addressing, data base management, secret sharing schemes, see [1,2,15,20–22,24]and their references.

    LetG=(V(G),E(G)) be a connected simple graph.Avertex 0-1 labeling f:V(G)→Z2induces anedge 0-1 labeling f+:E(G)→Z2, given by

    for eachv1v2∈E(G).

    For eachi∈Z2, a vertexuis called ani-vertexiff(u)=i, and an edge is called ani-edgeiff+(e)=i.An edge is also called an (i,j)-edgeif it is incident with both ani-vertex and aj-vertex.Define

    A vertex labelingfof a graphGis said to befriendlyif

    A graphGwith a friendly labelingfsuch thatef(1)-ef(0)=k, denoted byGf(k), is called alabeling graph with friendly index k.Throughout this paper, we usually drop the subscriptfif this is unambiguous.

    Thefull friendly index set, introduced by Shiu and Kwong [17], is the set

    A friendly labeling of a graphGwas also known as a bisection ofG, which has been studied extensively in the area of graph partitions [4,5,7–9,12,14,23].From the algorithm perspective,it is NP-hard to find the maximum or minimum bisection (namely, friendly labelings with maximum or minimum 1-edges) of an arbitrary graph.Researchers usually focus their studies on some specific graphs.For example, Lee and Ng [13]determined the friendly index sets of cycles, complete graphs and some bipartite graphs.Kwong and Lee [10]determined the friendly index sets of 2-regular graphs.Recently, Gao et.al.[6]obtained the full friendly index sets of a family of cubic graphs, which are full vertices blow-up ofCmbyK1,1,2.The answers for the full friendly index sets of general cubic graphs are still unknown.

    Definition 1.1.Let G=(V,E)and H=(V1,E1)be two graphs.Suppose u∈V(G)is a d-degree vertex and u1,...,ud are its neighborhoods.Let v1,...,vd be d distinct vertices of H.We say u is blow-up by H at vertex v1,...,vd if we delete u and joint ui to vi for1≤i≤d.The full vertices blow-up graph G(H)is obtained by blowing up each vertex of G by a copy of H.

    Definition 1.2.Let G1and G2be two labeling graphs, e=u1u2∈E(G1)is an(a,b)-edge and the labels of v1,v2∈V(G2)are c, d, respectively.A new labeling graph G(e,{v1,v2}), calledembeddingG2onG1ate, is obtained by

    (1) Subdivide e by inserting a new vertex u on it,

    (2) Blow-up u by G2at v1,v2.

    Suppose vi is jointed to ui for i∈[2].Let k be the friendly index of G1, the embedding operation is denoted by a+c+(k)+d+b.

    In [6], the authors posed the following problem.

    Problem[6]For what type of cubic graphs, their full friendly index sets can be obtained by embedding labeling graph method?

    Letbe the bipartite graph obtained by deleting an edge fromK3,3, and letv1,v2to be the two 2-degree vertices insee Figure 1.LetCmbe a cycle of lengthm.Denote byCm() the full vertices blow-up ofCmbyatv1,v2, see Figure 2.Clearly,Cm() is a cubic graph with order 6mand size 9m.In this paper it is simplified using the embedding labeling graph method and then extended to handle the full friendly index set ofCm().

    Fig.1 Graph

    Fig.2 Graph Cm()

    §2.Preliminaries

    We give some results on labeling of graphs, note that in the first two the labelings is not necessarily friendly.

    Lemma 2.1.[19]Let f be a labeling of a graph G that contains a cycle C as its subgraph.If C contains a1-edge, then the number of1-edges in C is a positive even number.

    Lemma 2.2.In all possible(0,1)-labelings of the vertices of , we have e(1)-e(0)equals-8, -4, -2,0,2,4, or8.

    Proof.In any (0,1)-labeling of, sincee(1)+e(0)=8, we have

    In our figures of labeling graphs, vertices marked·are labeled 1 and vertices marked?are labeled 0.

    Fig.3 All possible (0,1)-labelings of

    Now we consider friendly labelings and give our key lemma.

    Lemma 2.3.Let G be a cubic graph.In any friendly labeling of G, if two vertex labels are exchanged, then e(1)changes by -6, -4, -2,0,2,4, or6.

    Proof.When exchanging the labels of two verticesu, vin a labeling cubic graphG, the edge labels will not change for edges which contain neitherunorv.Therefore, we shall only consider edges which contain eitheruorv.Now exchange the labels ofuandvand denote the new labeling byf′.Iff(u)=f(v), thene(1) changes by 0.Supposef(u)≠f(v), we divide the proof into three cases according to the distanced(u,v) ofu,v(namely, the length of the shortestu,v-path inG).

    Case (a),d(u,v)≥3.Note thatef(1)+ef(0)=6, whereef(1)∈{0,1,2,3,4,5,6}under labelingf.Inf′, all of the six edges are changed their labels (from 0 to 1 or from 1 to 0).Soef′(1)=ef(0)=6-ef(1) and the number of 1-edges changed by

    Case(b),d(u,v)=2.Regardless of the label ofv1inf,there always havef(uv1)=1-f(vv1).This impliesef(1)≠0,6.Among the remainder four edges, supposexof them are labeled 0 inf′, wherex∈{0,1,2,3,4}.Then

    Case(c),d(u,v)=1.Note thatf′(uv)=f(uv)=1.Among the remainder four edges,supposexof them are labeled 0 inf′, wherex∈{0,1,2,3,4}.Then

    This completes the proof.

    Fig.4 Three possible structures of two vertices in a cubic graph

    §3.The full friendly index sets of Cm()

    In this section,we obtain the full friendly index sets ofCm()by a sequence of embedding process.We only do embedding at cycle edges.For example, inC2(-14) we embed 0(c) of Figure 3 at some (0,1)-cycle-edge thenC3(-17) is obtained (see Figure 8).We divide our proof into two cases according to the parity ofm.

    3.1. m is even

    Firstly, we give the maximum and minimum value ofFFI(Cm()).

    Lemma 3.1.When m is even, we have

    We show that maxe(1)=9mand mine(1)=2, then the result follows immediately.

    Considering the full vertex blow-up ofCmby 8(a), vertex labeled 0 is jointed to vertex labeled 1 in each blow-up operation.(See the bottom right labeling graph in Figure 5 for the casem=2.) This implies maxe(1)=9m.

    SinceCm() is connected, at least one 0-vertex is adjacent to a 1-vertex, we seee(1)>0.Note that each edge ofCm() is lying on a cycle.By Lemma 2.1, we know thate(1)≥2.Through blowing upm/2 consecutive vertices ofCmby-8(a) and blow up others by-8(b),then joint the 2-degree vertices successively.(See the upper left labeling graph in Figure 5 for the casem=2.) This implies mine(1)=2.

    The proof of our main result is by using induction, we show them=2 andm=4 cases first.

    Lemma 3.2.FFI(C2())={4i+2:-4≤i≤4}.

    Proof.From Lemma 3.1, for any friendly labelling

    If we change the labels of two vertices, then by Lemma 2.3 the value ofe(1) changes is even.Hence, each possible friendly index is 2 (mod 4) from-14 to 18, see Figure 5.

    Fig.5 Labeling graphs G2(4i+2) (-4≤i≤4)

    Lemma 3.3.FFI(C4())={4i:-8≤i≤9}.

    Proof.From Lemma 3.1, for any friendly labelling

    and by Lemma 2.3 each possible index is 0 (mod 4) from-32 to 36.Therefore,

    Now we use the embedding labeling graph method to show the reverse direction.

    InG2(-10) andG2(14) do

    InG2(4i+2) (-2≤i≤2),G2(-14) andG2(18) do

    Compared withG2(4i+2) (-4≤i≤4), the valuee(1)-e(0) is decreased by 18.So we obtainG4(4i) (-8≤i≤0) and denote them byA.

    InG2(-10) andG2(14) do

    InG2(4i+2) (-2≤i≤2),G2(-14) andG2(18) do

    The valuee(1)-e(0) is increased by 18, we obtainG4(4i) (1≤i≤9) and denote them byB.

    CombiningAandBwe have the desired conclusion.The labeling graphsG4(4i)(-8≤i≤9)are illustrated in Figure 6.

    Fig.6 Labeling graphs G4(4i) (-8≤i≤9)

    In order to getCm+2(K1,1,2), the authors [6]embed two labelingK1,1,2on two cycle-edges ofCm(K1,1,2).In this paper, we simplified the embedding operation by embedding twoonce a time.Considering the labeling graphs-15(a) and 17(a) in Figure 7.Note that both labelings in the depictured graphs are friendly.Hence, if the labeling ofCm() is friendly,then so doesCm+2().

    Fig.7 -15(a) and 17(a)

    Theorem 3.1.When m≥2is even,

    Proof.By Lemma 2.3 and Lemma 3.1, the left hand is a subset of the right.We prove the opposite direction by induction onm.By Lemma 3.2 and Lemma 3.3, the theorem is true form=2,4.Suppose that it holds form=n(≥6).It should be noticed that in the following we will do the embeddings on some 1-edges or 0-edges, so one should carefully examine the existence of such edges.

    3.2. m is odd

    Lemma 3.4.When m is odd, we have

    We show that maxe(1)=9mand mine(1)=5, then the result follows immediately.

    Considering the full vertex blow-up ofCmby 8(a), vertex labeled 0 is jointed to vertex labeled 1 in each blow-up operation.(See the bottom right labeling graph in Figure 8 for the casem=3.) This implies maxe(1)=9m.

    SinceCm() is connected, at least one 0-vertex is adjacent to a 1-vertex, which impliese(1)>0.Note that every edge ofCm() lies on a cycle.

    By Lemma 2.1, we know thate(1)≥2.Through blowing upconsecutive vertices ofCmby-8(a) andconsecutive vertices by-8(b), then joint the 2-degree vertices successively.Sincemis odd, so in one-subgraph, three vertices are labeled 0 and the others are labeled 1.

    Hence, there are at least four edges are labeled 1 in this-subgraph.(See the upper left labeling graph in Figure 8 for the casem=3.) This implies mine(1)=5.

    The proof of our main result is by using induction, we show them=3 andm=5 cases first.

    Lemma 3.5.FFI(C3())={4i+3:-5≤i≤6}.

    Proof.From Lemma 3.4, for any friendly labellinge(1)-e(0)∈[-17,27].If we change the labels of two vertices, then by Lemma 2.3 the value ofe(1) changes is even.Hence, each possible index is 3 (mod 4) from-17 to 27, see Figure 8.

    Fig.8 Labeling graphs G3(4i+3) (-5≤i≤6)

    Lemma 3.6.FFI(C5())={4i+1:-9≤i≤11}.

    Proof.From Lemma 3.4, for any friendly labelling

    By Lemma 2.3, each possible index is 1 (mod 4) from-35 to 45.Therefore,FFI(C5())?{4i+1:-9≤i≤11}.

    Now we use the embedding labeling graph method to show the reverse direction.InG3(4i+3) (-5≤i≤6), there exist at least one 1-edge in every labeling graph.

    InG3(4i+3)(-5≤i≤6),do 0+0+(-15(a))+0+1.Compared withG3(4i+3)(-5≤i≤6),the valuee(1)-e(0) is decreased by 18.We obtainG5(4i+1) (-9≤i≤2) and denote them byC.

    InG3(4i+3) (-2≤i≤6), do 0+0+(17(a))+0+1.The valuee(1)-e(0) is increased by 18, we obtainG5(4i+1) (3≤i≤11) and denote them byD.

    CombiningCandDwe have the desired conclusion.The labeling graphsG5(4i+3)(-9≤i≤11) are illustrated in Figure 9.

    Fig.9 Labeling graphs G5(4i+1) (-9≤i≤11)

    Theorem 3.2.When m≥3is odd,

    Proof.By Lemma 2.3 and Lemma 3.4, the left hand is a subset of the right.We prove the opposite direction by induction onm.By Lemma 3.5 and Lemma 3.6, the theorem is true form=3,5.Suppose that it holds form=n(≥7).It should be noticed that there exists a 1-edge inGn(4i+3).

    §4.Other related labeling indices

    In this section, we would like to mention some other kinds of indices about friendly labeling of graphs.The first one isfriendly index set FI(G) which was introduced in [3], it is the set of absolute values of all numbers inFFI(G).More formally,

    By Theorem 3.1 and Theorem 3.2, we obtain

    Corollary 4.1.For odd m≥1,

    For even m,

    A graphGiscordialif-1, 0, or 1∈FFI(G), see [3,16].The cordiality ofCm() follows immediately form our main results.

    Corollary 4.2.For odd m≥1, the graph Cm()is cordial.For even m≥2,

    Shiu and Kwong [18]introduced the full product-cordial index set of graphs.LetG=(V,E)be a graph.A vertex friendly labelingf:V →Z2induces an edge labelingf*:E →Z2, given byf*(xy)=f(x)f(y) for eachxy ∈E.For eachi∈Z2, letvf(i)=|{u∈V(G):f(u)=i}|andef*(i)=|{xy ∈E(G):f*(xy)=i}|.Thefull product-cordial index setofG,denoted byFPCI(G),is defined as

    Lemma 4.1.Let G be a d-regular graph and let f:V(G)→Z2be a friendly labeling of G.For i∈Z2, denote Vi=f-1(i)and e(Vi)=e(G[Vi]).Then

    Proof.Lete(V0,V1) be the number of edges with one end inV0and the other inV1.Without loss of generality, suppose|V0|≥|V1|.The result follows by simply considering the sum of degrees of vertices inV0andV1:

    This completes the proof.

    Ifdis odd, then the ordern(G) of anyd-regular graphGmust be even by the handshaking principle.So we always havee(V0)=e(V1) in any friendly labeling ofG.Now we consider the edge labelingf*defined above, we obtainef*(1)=e(V1) andef*(0)=e(V0)+e(V0,V1).Therefore, we obtain the following relationship between friendly index set and product-cordial index ofd-regular graphs whendis odd

    In [11], the authors also ask for connections between friendly index set and product-cordial index set of general simple graphs.By Theorem 3.1 and Theorem 3.2, we have

    Corollary 4.3.The full product-cordial index sets of Cm(K-3,3)is

    大型黄色视频在线免费观看| 一区二区三区激情视频| 亚洲中文日韩欧美视频| 一本大道久久a久久精品| 国产伦一二天堂av在线观看| 757午夜福利合集在线观看| 中文资源天堂在线| 欧美乱色亚洲激情| 免费一级毛片在线播放高清视频| 无限看片的www在线观看| 亚洲熟女毛片儿| 亚洲自拍偷在线| 国产精品久久久av美女十八| 午夜免费观看网址| 淫秽高清视频在线观看| 色播亚洲综合网| 18禁裸乳无遮挡免费网站照片 | 一个人观看的视频www高清免费观看 | 日本精品一区二区三区蜜桃| 亚洲精品色激情综合| 亚洲av成人av| 亚洲中文av在线| 久久香蕉国产精品| 免费女性裸体啪啪无遮挡网站| 国产成人精品无人区| 日本免费a在线| 国产精品久久久久久人妻精品电影| 男人的好看免费观看在线视频 | 日本一区二区免费在线视频| 久久久久久亚洲精品国产蜜桃av| 欧美日韩亚洲国产一区二区在线观看| 99热这里只有精品一区 | 国产精品国产高清国产av| 亚洲专区字幕在线| 亚洲专区字幕在线| 国产激情欧美一区二区| 国产久久久一区二区三区| 亚洲欧洲精品一区二区精品久久久| 精品久久蜜臀av无| 久久精品aⅴ一区二区三区四区| 亚洲片人在线观看| 男人舔女人下体高潮全视频| 亚洲久久久国产精品| 淫秽高清视频在线观看| 日本a在线网址| 国产精华一区二区三区| 精品无人区乱码1区二区| 狂野欧美激情性xxxx| 91老司机精品| 看黄色毛片网站| 亚洲精品一卡2卡三卡4卡5卡| 国产一级毛片七仙女欲春2 | 中亚洲国语对白在线视频| 最近在线观看免费完整版| 亚洲avbb在线观看| 国产精品永久免费网站| 看片在线看免费视频| 亚洲国产精品合色在线| 久热这里只有精品99| 母亲3免费完整高清在线观看| 校园春色视频在线观看| 国产视频一区二区在线看| 男女做爰动态图高潮gif福利片| 老鸭窝网址在线观看| 欧美成人免费av一区二区三区| 最新美女视频免费是黄的| 精品午夜福利视频在线观看一区| 大型av网站在线播放| 日本一区二区免费在线视频| 亚洲免费av在线视频| 丰满人妻熟妇乱又伦精品不卡| 精品高清国产在线一区| 精品国产国语对白av| 免费在线观看影片大全网站| 中文字幕人妻丝袜一区二区| 久久久久久久精品吃奶| 免费在线观看黄色视频的| √禁漫天堂资源中文www| 国产精品亚洲美女久久久| 动漫黄色视频在线观看| 久久天堂一区二区三区四区| 性色av乱码一区二区三区2| 久久香蕉激情| 91老司机精品| 欧美日韩黄片免| 男人舔女人下体高潮全视频| 欧美性猛交╳xxx乱大交人| 亚洲成av人片免费观看| 99在线视频只有这里精品首页| 久久久久精品国产欧美久久久| 成年版毛片免费区| 波多野结衣高清无吗| 国产亚洲精品第一综合不卡| 久久精品影院6| 欧美性猛交╳xxx乱大交人| 国产亚洲av嫩草精品影院| 在线看三级毛片| 国产1区2区3区精品| 妹子高潮喷水视频| 每晚都被弄得嗷嗷叫到高潮| 久久婷婷人人爽人人干人人爱| 人成视频在线观看免费观看| 午夜老司机福利片| 久久草成人影院| 99国产精品99久久久久| 老熟妇乱子伦视频在线观看| 女人高潮潮喷娇喘18禁视频| 岛国视频午夜一区免费看| 夜夜爽天天搞| 国产亚洲欧美98| 麻豆一二三区av精品| 一二三四在线观看免费中文在| 丁香欧美五月| 国产av不卡久久| 免费看十八禁软件| 十分钟在线观看高清视频www| 久久久久久亚洲精品国产蜜桃av| 怎么达到女性高潮| 午夜激情av网站| 亚洲精品一区av在线观看| 国产成年人精品一区二区| 色播亚洲综合网| bbb黄色大片| 熟女少妇亚洲综合色aaa.| 国产亚洲精品av在线| 亚洲国产精品合色在线| 欧美又色又爽又黄视频| 在线免费观看的www视频| 两个人视频免费观看高清| tocl精华| 啦啦啦观看免费观看视频高清| 香蕉久久夜色| 老司机靠b影院| 自线自在国产av| 搡老岳熟女国产| 国产一区二区三区在线臀色熟女| 午夜精品在线福利| 欧美日韩亚洲国产一区二区在线观看| 黄色a级毛片大全视频| 黄片播放在线免费| 波多野结衣巨乳人妻| 亚洲专区国产一区二区| 日韩免费av在线播放| 午夜福利一区二区在线看| 亚洲七黄色美女视频| 亚洲成人久久爱视频| 老司机午夜福利在线观看视频| 淫妇啪啪啪对白视频| 亚洲av成人一区二区三| 精品不卡国产一区二区三区| 国产av在哪里看| 岛国视频午夜一区免费看| 精品久久久久久久末码| 精品熟女少妇八av免费久了| √禁漫天堂资源中文www| 国产精品野战在线观看| 在线观看舔阴道视频| 中文亚洲av片在线观看爽| 中文字幕人成人乱码亚洲影| 黑丝袜美女国产一区| 99精品久久久久人妻精品| 成人一区二区视频在线观看| 老熟妇仑乱视频hdxx| 国产主播在线观看一区二区| 亚洲av第一区精品v没综合| 免费看日本二区| 女性被躁到高潮视频| 亚洲欧美日韩无卡精品| 大型av网站在线播放| 国产人伦9x9x在线观看| 美国免费a级毛片| 午夜免费成人在线视频| 88av欧美| 亚洲色图 男人天堂 中文字幕| 午夜免费鲁丝| 妹子高潮喷水视频| 老汉色av国产亚洲站长工具| 午夜精品在线福利| 中文字幕av电影在线播放| 少妇 在线观看| 婷婷六月久久综合丁香| 满18在线观看网站| 免费在线观看成人毛片| 黑人欧美特级aaaaaa片| 欧美三级亚洲精品| 国产精品免费一区二区三区在线| 亚洲精华国产精华精| 欧美成人免费av一区二区三区| 一本大道久久a久久精品| 老司机靠b影院| 国产av一区二区精品久久| 国产亚洲精品久久久久5区| 免费在线观看成人毛片| 亚洲av中文字字幕乱码综合 | 欧美黑人欧美精品刺激| 亚洲精品久久国产高清桃花| 欧洲精品卡2卡3卡4卡5卡区| 亚洲午夜精品一区,二区,三区| 巨乳人妻的诱惑在线观看| 亚洲av第一区精品v没综合| 老司机午夜福利在线观看视频| 免费在线观看视频国产中文字幕亚洲| 最好的美女福利视频网| 欧美性猛交黑人性爽| 国产视频内射| 老司机深夜福利视频在线观看| 亚洲自拍偷在线| 欧美在线一区亚洲| 午夜福利成人在线免费观看| 丝袜在线中文字幕| 久久天躁狠狠躁夜夜2o2o| 在线国产一区二区在线| 18禁国产床啪视频网站| 99久久综合精品五月天人人| 日韩免费av在线播放| 夜夜爽天天搞| 男男h啪啪无遮挡| 日本 av在线| 一级作爱视频免费观看| 久久香蕉精品热| 国产精品av久久久久免费| 国产又黄又爽又无遮挡在线| av在线播放免费不卡| 麻豆国产av国片精品| 欧美激情久久久久久爽电影| 视频区欧美日本亚洲| 欧洲精品卡2卡3卡4卡5卡区| 天天躁狠狠躁夜夜躁狠狠躁| 热99re8久久精品国产| 女性被躁到高潮视频| 国产一区二区在线av高清观看| 午夜久久久在线观看| 日韩欧美国产一区二区入口| 亚洲成av人片免费观看| 色老头精品视频在线观看| 国产av不卡久久| 亚洲国产中文字幕在线视频| 午夜影院日韩av| 久久久久九九精品影院| 国产精品亚洲美女久久久| 亚洲久久久国产精品| 欧美日韩亚洲国产一区二区在线观看| 久久人人精品亚洲av| 一本一本综合久久| 国产精品亚洲一级av第二区| 欧美性猛交╳xxx乱大交人| 久久午夜综合久久蜜桃| 日韩欧美 国产精品| 香蕉丝袜av| 国产区一区二久久| 十八禁人妻一区二区| 亚洲在线自拍视频| 自线自在国产av| 国产伦人伦偷精品视频| 婷婷丁香在线五月| 亚洲电影在线观看av| 久久婷婷人人爽人人干人人爱| 亚洲精品久久国产高清桃花| 最近最新中文字幕大全电影3 | 国产精品久久久久久精品电影 | 国产野战对白在线观看| АⅤ资源中文在线天堂| 性欧美人与动物交配| 亚洲三区欧美一区| 欧美性猛交╳xxx乱大交人| 国产久久久一区二区三区| 国产精品综合久久久久久久免费| 两个人视频免费观看高清| 两个人看的免费小视频| 精品人妻1区二区| 满18在线观看网站| 最新美女视频免费是黄的| 国产成人欧美| 亚洲精品美女久久av网站| 精品欧美国产一区二区三| 色播在线永久视频| 两个人免费观看高清视频| 午夜精品在线福利| 脱女人内裤的视频| 人人妻,人人澡人人爽秒播| 国产精品自产拍在线观看55亚洲| 夜夜夜夜夜久久久久| 亚洲一区二区三区不卡视频| 久久国产精品男人的天堂亚洲| 免费看十八禁软件| 日韩大尺度精品在线看网址| 午夜免费成人在线视频| 69av精品久久久久久| 国产精品一区二区免费欧美| 国产爱豆传媒在线观看 | 免费人成视频x8x8入口观看| 男女那种视频在线观看| 久久午夜综合久久蜜桃| 亚洲国产高清在线一区二区三 | 亚洲成a人片在线一区二区| 中文字幕精品免费在线观看视频| 两个人免费观看高清视频| 最新在线观看一区二区三区| 亚洲熟女毛片儿| 国产精品二区激情视频| 国产精品美女特级片免费视频播放器 | 久久热在线av| 亚洲av成人不卡在线观看播放网| 男女之事视频高清在线观看| 观看免费一级毛片| 男女午夜视频在线观看| 久久久久久久精品吃奶| 夜夜躁狠狠躁天天躁| 精品人妻1区二区| 国产精品久久视频播放| 波多野结衣巨乳人妻| 啦啦啦免费观看视频1| 精品欧美国产一区二区三| 99国产精品一区二区三区| 美女高潮喷水抽搐中文字幕| 午夜精品久久久久久毛片777| 成人一区二区视频在线观看| 国产不卡一卡二| 午夜精品久久久久久毛片777| 超碰成人久久| 精品国产乱码久久久久久男人| 色综合婷婷激情| 国产三级黄色录像| 男男h啪啪无遮挡| 变态另类丝袜制服| 久久 成人 亚洲| 免费在线观看完整版高清| 丰满人妻熟妇乱又伦精品不卡| 一a级毛片在线观看| 国产v大片淫在线免费观看| 神马国产精品三级电影在线观看 | 欧美最黄视频在线播放免费| 欧美激情极品国产一区二区三区| 真人做人爱边吃奶动态| 色综合站精品国产| 国产亚洲精品综合一区在线观看 | 非洲黑人性xxxx精品又粗又长| 每晚都被弄得嗷嗷叫到高潮| 亚洲成人久久爱视频| 亚洲精品国产区一区二| 香蕉国产在线看| av免费在线观看网站| 国产成人精品无人区| 少妇熟女aⅴ在线视频| 欧美日韩乱码在线| 好看av亚洲va欧美ⅴa在| 90打野战视频偷拍视频| 好看av亚洲va欧美ⅴa在| 国产精品精品国产色婷婷| 精品卡一卡二卡四卡免费| 久久久久久大精品| 国产激情偷乱视频一区二区| 欧美日韩中文字幕国产精品一区二区三区| 在线国产一区二区在线| 午夜福利免费观看在线| 好看av亚洲va欧美ⅴa在| 亚洲性夜色夜夜综合| 亚洲国产欧美网| 国产午夜精品久久久久久| 人妻丰满熟妇av一区二区三区| 亚洲男人天堂网一区| 欧美久久黑人一区二区| 亚洲精品美女久久久久99蜜臀| 91老司机精品| 国产av不卡久久| 亚洲 欧美一区二区三区| 在线天堂中文资源库| 怎么达到女性高潮| 免费电影在线观看免费观看| 老司机午夜福利在线观看视频| 午夜视频精品福利| 1024视频免费在线观看| 不卡av一区二区三区| 亚洲,欧美精品.| 日韩欧美在线二视频| 在线视频色国产色| 午夜老司机福利片| 婷婷亚洲欧美| 午夜福利免费观看在线| 人妻丰满熟妇av一区二区三区| 一区福利在线观看| 国产视频内射| 韩国精品一区二区三区| 欧美成狂野欧美在线观看| 欧美乱色亚洲激情| 一级a爱片免费观看的视频| 久久久国产成人免费| 国语自产精品视频在线第100页| 国产欧美日韩精品亚洲av| 99久久综合精品五月天人人| 精品电影一区二区在线| 久久天躁狠狠躁夜夜2o2o| 女人爽到高潮嗷嗷叫在线视频| 国产精品一区二区三区四区久久 | 欧美性长视频在线观看| 亚洲av成人av| 国内久久婷婷六月综合欲色啪| 久久久久久九九精品二区国产 | 男人操女人黄网站| 亚洲色图av天堂| 欧美日韩亚洲综合一区二区三区_| 淫妇啪啪啪对白视频| 男女下面进入的视频免费午夜 | 国产精品国产高清国产av| 亚洲无线在线观看| 亚洲人成网站高清观看| avwww免费| 在线看三级毛片| 亚洲成人精品中文字幕电影| 色综合欧美亚洲国产小说| 国产高清激情床上av| 国产人伦9x9x在线观看| 久久久水蜜桃国产精品网| 男男h啪啪无遮挡| 丝袜美腿诱惑在线| 老司机在亚洲福利影院| 亚洲成av人片免费观看| 波多野结衣高清无吗| 在线av久久热| 草草在线视频免费看| 九色国产91popny在线| 天堂√8在线中文| 日日爽夜夜爽网站| 亚洲性夜色夜夜综合| 国产精品乱码一区二三区的特点| 老鸭窝网址在线观看| 日韩中文字幕欧美一区二区| 久99久视频精品免费| 国产av在哪里看| 精品欧美一区二区三区在线| 久久99热这里只有精品18| 日韩欧美国产在线观看| 亚洲成av片中文字幕在线观看| 日日摸夜夜添夜夜添小说| 亚洲性夜色夜夜综合| 欧美日韩瑟瑟在线播放| 99riav亚洲国产免费| 12—13女人毛片做爰片一| 在线观看免费午夜福利视频| 国产野战对白在线观看| 日本在线视频免费播放| 亚洲精品美女久久av网站| netflix在线观看网站| 久久精品国产亚洲av高清一级| 亚洲第一青青草原| 精品久久久久久久久久久久久 | 国产亚洲欧美98| 国产在线观看jvid| 国产片内射在线| АⅤ资源中文在线天堂| 国产伦在线观看视频一区| 国产精品久久久久久人妻精品电影| 女同久久另类99精品国产91| 后天国语完整版免费观看| 亚洲国产高清在线一区二区三 | 动漫黄色视频在线观看| x7x7x7水蜜桃| 久久亚洲精品不卡| 黑人欧美特级aaaaaa片| 久久久精品欧美日韩精品| 欧美 亚洲 国产 日韩一| av视频在线观看入口| 婷婷精品国产亚洲av| 久久九九热精品免费| 日韩精品青青久久久久久| 久久久久国产一级毛片高清牌| 欧美午夜高清在线| 天堂影院成人在线观看| 欧美性猛交黑人性爽| 欧美日韩瑟瑟在线播放| 久久午夜亚洲精品久久| 婷婷精品国产亚洲av在线| 精品午夜福利视频在线观看一区| 亚洲男人天堂网一区| 亚洲国产欧美网| 日韩av在线大香蕉| 久久婷婷成人综合色麻豆| e午夜精品久久久久久久| 在线观看一区二区三区| 久久热在线av| 极品教师在线免费播放| 亚洲五月色婷婷综合| 国产精品美女特级片免费视频播放器 | 女人爽到高潮嗷嗷叫在线视频| 色播亚洲综合网| 国产成人欧美| 精品久久蜜臀av无| 99精品欧美一区二区三区四区| 亚洲国产欧美网| 夜夜爽天天搞| 午夜福利高清视频| 成人亚洲精品av一区二区| 99精品欧美一区二区三区四区| 久久精品国产综合久久久| 久久亚洲真实| 99久久久亚洲精品蜜臀av| 国产亚洲欧美98| 他把我摸到了高潮在线观看| 色综合婷婷激情| 母亲3免费完整高清在线观看| 老汉色∧v一级毛片| 首页视频小说图片口味搜索| 在线免费观看的www视频| 99久久99久久久精品蜜桃| 老鸭窝网址在线观看| 欧美一区二区精品小视频在线| 精品欧美一区二区三区在线| 国产精品一区二区三区四区久久 | 色综合站精品国产| 午夜激情av网站| 亚洲人成电影免费在线| 啦啦啦免费观看视频1| 国产成人av激情在线播放| 国产精品精品国产色婷婷| 侵犯人妻中文字幕一二三四区| 18禁黄网站禁片午夜丰满| av在线播放免费不卡| 国产99久久九九免费精品| 亚洲av第一区精品v没综合| 国产午夜福利久久久久久| 亚洲一区高清亚洲精品| 亚洲,欧美精品.| 国产亚洲精品一区二区www| 18禁裸乳无遮挡免费网站照片 | 亚洲一卡2卡3卡4卡5卡精品中文| www日本黄色视频网| 日本一本二区三区精品| 免费观看人在逋| 动漫黄色视频在线观看| 十分钟在线观看高清视频www| 久久中文看片网| 午夜日韩欧美国产| 中国美女看黄片| 午夜福利在线在线| 伦理电影免费视频| 99国产综合亚洲精品| 一级黄色大片毛片| 免费在线观看亚洲国产| 少妇被粗大的猛进出69影院| 国产亚洲精品av在线| 高清毛片免费观看视频网站| 久久国产乱子伦精品免费另类| 黄片播放在线免费| 欧美成人性av电影在线观看| 国产精品综合久久久久久久免费| 欧美中文综合在线视频| 久久香蕉国产精品| 曰老女人黄片| 人人妻人人澡人人看| 在线永久观看黄色视频| 在线观看舔阴道视频| 黄片大片在线免费观看| 美女大奶头视频| 啦啦啦韩国在线观看视频| 国产高清有码在线观看视频 | 久久国产精品男人的天堂亚洲| 看免费av毛片| 欧美黑人巨大hd| 欧美又色又爽又黄视频| 最新美女视频免费是黄的| 少妇裸体淫交视频免费看高清 | 午夜福利18| 国产在线精品亚洲第一网站| 黄频高清免费视频| 一进一出抽搐gif免费好疼| 日韩欧美在线二视频| 亚洲人成77777在线视频| 亚洲av五月六月丁香网| 别揉我奶头~嗯~啊~动态视频| 久久精品夜夜夜夜夜久久蜜豆 | 少妇 在线观看| 免费在线观看亚洲国产| 88av欧美| 婷婷亚洲欧美| 99热6这里只有精品| 精品乱码久久久久久99久播| 熟妇人妻久久中文字幕3abv| 一级作爱视频免费观看| 少妇被粗大的猛进出69影院| av电影中文网址| 99在线视频只有这里精品首页| 国产主播在线观看一区二区| netflix在线观看网站| 两性夫妻黄色片| 日韩精品免费视频一区二区三区| 色综合婷婷激情| 给我免费播放毛片高清在线观看| 精品国产一区二区三区四区第35| 一级毛片女人18水好多| av超薄肉色丝袜交足视频| 婷婷精品国产亚洲av在线| 国产成人av激情在线播放| 亚洲黑人精品在线| av中文乱码字幕在线| 亚洲人成网站高清观看| 色播亚洲综合网| 亚洲 欧美 日韩 在线 免费| 成人午夜高清在线视频 | 国产成人影院久久av| 婷婷精品国产亚洲av在线| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产欧洲综合997久久, | 麻豆国产av国片精品| 日韩欧美一区视频在线观看| 久久精品国产综合久久久| 1024手机看黄色片| 少妇被粗大的猛进出69影院| 看黄色毛片网站| 欧美成狂野欧美在线观看| 草草在线视频免费看| 久久精品亚洲精品国产色婷小说| 国产真实乱freesex| 一进一出好大好爽视频| 亚洲va日本ⅴa欧美va伊人久久| 99久久国产精品久久久|