• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Y-Gorenstein Cotorsion Modules

    2021-10-14 02:10:18

    (Department of Mathematics, Longnan Teachers College, Longnan 742500, China)

    Abstract: Let R be an associative ring with identity,and Y be a class of right R-modules,which contains all injective right R-modules.In this paper, we introduce the definition of Y-Gorenstein cotorsion modules, which is a generalization of cotorsion and Gorenstein cotorsion modules.We discuss the relationship between Gorenstein cotorsion, weakly Gorenstein cotorsion and Y-Gorenstein cotorsion modules.We investigate properties and characterizations of Y-Gorenstein cotorsion modules.

    Keywords: Y-Gorenstein cotorsion; Y-Gorenstein flat; Strongly Gorenstein flat; Weakly Gorenstein cotorsion; Coherent ring

    §1.Introduction

    Gorenstein homological theory plays an important role in relative homological algebra.In 2001, Enochs et al [5]introduced Gorenstein flat modules over an associative ringR, which is an important generalization of flat modules.Lei and Meng [7]investigated Gorenstein cotorsion modules relative to Gorenstein flat modules, and got many properties similar to cotorsion modules.Ding et al [1]introduced and invstigated strongly Gorenstein flat modules.Based on the above, Zhao et al [12]discussed weakly Gorenstein cotorsion modules relative to strongly Gorenstein flat modules.Meng [9]gave the notion ofY-Gorenstein flat modules, in whichYis a class of rightR-modules and contains all injective rightR-modules.As is well known, flat modules areY-Gorenstein flat, andY-Gorenstein flat modules are Gorenstein flat.WhenYis the class of all injective rightR-modules,Y-Gorenstein flat modules are precisely Gorenstein flat modules.Naturally, we can consider cotorsion modules relative toY-Gorenstein flat modules,which will be calledY-Gorenstein cotorsion modules in the paper.Furthermore, we investigate the relationship between Gorenstein cotorsion modules, weakly Gorenstein cotorsion modules andY-Gorenstein cotorsion modules.

    We now state main results of this paper.

    Theorem 1.1.Let F be the class of all flat left R-modules, and Y be a class of right R-modules which contains all injective right R-modules.If Y+?F, then every Y-Gorenstein cotorsion left R-module is weakly Gorenstein cotorsion.

    Theorem 1.2.The following statements hold:

    (1)For a family {Mi}i∈I of R-modules, all Mi are Y-Gorenstein cotorsion if and only ifY-Gorenstein cotorsion.

    (2)Let0→M →N →L→0be an exact sequence of left R-modules.If M,L are Y-Gorenstein cotorsion modules, then N is also Y-Gorenstein cotorsion.

    Theorem 1.3.Let R be a right coherent ring, every left R-module has finite Y-Gorenstein flat dimension, and A be a nonempty collection of left ideals of R.Then the following statements are equivalent:

    (1)Every Y-Gorenstein cotorsion module RM is A-injective.

    (2)R/A is Y-Gorenstein flat for any A∈A.

    Theorem 1.4.Let R be a left perfect ring.Then the following statements are equivalent:

    (1)Every left R-module is Y-Gorenstein cotorsion.

    (2)Every Y-Gorenstein flat left R-module is Y-Gorenstein cotorsion.

    This paper is organized as follows.Section 2 contains some known notions and results for use throughout the paper, and we introduceY-Gorenstein cotorsion modules, and discuss the relationship between Gorenstein cotorsion modules, weakly Gorenstein cotorsion modules andY-Gorenstein cotorsion modules.Section 3 is devoted to properties and characterizations ofY-Gorenstein cotorsion modules.

    §2.Preliminaries

    Throughout the paper,Rwill be an associative ring with identity and all modules are unitalR-modules.We useR-Mod (resp., Mod-R) to denote the class of left (resp., right)R-modules.RM(resp.,MR) denotes a left (resp., right)R-moduleM.A leftR-moduleCis called cotorsion if(F,C)=0 for any flat leftR-moduleF(see [8]).Following [5], a moduleRMis said to be Gorenstein flat, if there exists an exact sequence of flat leftR-modules···→F1→F0→F0→F1→...withMKer(F0→F1), such thatE ?R-leaves the sequence exact for every injective rightR-moduleE.A moduleRNis called Gorenstein cotorsion if(F,N)=0 for any Gorenstein flat leftR-moduleF(see [7]).In addition, a moduleRMis said to be strongly Gorenstein flat, if there exists an exact sequence of projective leftRmodules···→P1→P0→P0→P1→...withMKer(P0→P1), such that HomR(-,F) leaves the sequence exact for every flat leftR-moduleF.WhenRis a right coherent ring,every strongly Gorenstein flat leftR-module is Gorenstein flat.A moduleRNis called weakly Gorenstein cotorsion if(F,N)=0 for any strongly Gorenstein flat leftR-moduleF(see [12]).

    LetXbe a class of leftR-modules that contains all projective leftR-modules, andYbe a class of rightR-modules that contains all injective rightR-modules.According to [9], a moduleRMis said to beX-Gorenstein projective, if there exists an exact sequence of projective leftRmodules···→P1→P0→P0→P1→...withKer(P0→P1), such that HomR(-,X) leaves the sequence exact for everyX ∈X.A moduleRNis calledY-Gorenstein flat if there exists an exact sequence of flat leftR-modules···→F1→F0→F0→F1→...withMKer(F0→F1),such thatY ?R-leaves the sequence exact for everyY ∈Y.

    Remark 2.1.(1)Y-Gorenstein flat modules are Gorenstein flat.

    (2)If Y is the class of all injective right R-modules, then Gorenstein flat modules are precisely Y-Gorenstein flat modules.

    (3)If X is the class of all flat modules, then the class of X-Gorenstein projective modules coincides with that of strongly Gorenstein flat modules.

    LetAbe a nonempty collection of left ideals of a ringR.RMis said to beA-injective, if everyR-homomorphismf:A→MwithA∈Acan be lifted to anR-homomorphismg:R→M,or equivalently(R/A,M)=0 for anyA∈A(see [11]).

    LetCbe a class of leftR-module (closed under isomorphisms).AC-precover ofRMis a morphismφ:C →MwithC ∈Csuch that HomR(C′,φ) is surjective for everyC′∈C.If in addition, any morphismα:C →Cverifyingφ?α=φis an automorphism, thenφis said to be aC-cover ofRM(see [2]).DenoteC⊥={M ∈R-Mod=0 for anyC ∈C}, and⊥C={N ∈R-Mod(N,C)=0 for anyC ∈C}.A pair (F,C) of classes of leftR-modules is called a cotorsion theory (which is also called a cotorsion pair), ifF⊥=Cand⊥C=F(see [3]).A cotorsion theory (F,C) is complete, if for anyM ∈R-Mod, there exist short exact sequences 0→C →F →M →0 and 0→M →C′→F′→0 withF,F′∈FandC,C′∈C(see[10]).A cotorsion theory(F,C)is hereditary, if whenever 0→L′→L→L′′→0 is exact withL,L′′∈F,thenL′is also inF(see [4,6]).

    Definition 2.1.Let Y be a class of right R-modules that contains all injective right R-modules.A module RM is said to be Y-Gorenstein cotorsion provided that(Q,M)=0for any Y-Gorenstein flat left R-module Q.

    It is obvious that cotorsion modules and Gorenstein cotorsion modules areY-Gorenstein cotorsion.IfYis the class of all injective rightR-modules, then the class of Gorenstein cotorsion leftR-modules coincides with that ofY-Gorenstein cotorsion leftR-modules.

    Lemma 2.1.[9]Let X be a class of left R-modules that contains all projective left R-modules,and Y be a class of right R-modules that contains all injective right R-modules.If Y+?X,where Y+={Y+=HomZ(Y,Q/Z)|Y ∈Y}, then every X-Gorenstein projective left R-module is Y-Gorenstein flat.

    Proposition 2.1.Let F be the class of all flat left R-modules, and I be the class of all injective right R-modules.If I+?F, then any F-Gorenstein projective left R-module is I-Gorenstein flat, which means strongly Gorenstein flat modules are Gorenstein flat.

    Proposition 2.2.Let F be the class of all flat left R-modules, and Y be a class of right R-modules that contains all injective right R-modules.If Y+?F, then every strongly Gorenstein flat left R-module is Y-Gorenstein flat.

    Proof.This is not difficult to prove by Remark 2.1(3) and Lemma 2.1.

    Following the above proposition,we can get the relationship betweenY-Gorenstein cotorsion leftR-modules and weakly Gorenstein cotorsion modules.

    Theorem 2.1.Let F be the class of all flat left R-modules, and Y be a class of right R-modules which contains all injective right R-modules.If Y+?F, then every Y-Gorenstein cotorsion left R-module is weakly Gorenstein cotorsion.

    According to definition of weakly Gorenstein cotorsion andY-Gorenstein cotorsion modules,it is easy to obtain that everyY-Gorenstein cotorsion leftR-module is weakly Gorenstein cotorsion.

    Corollary 2.1.If R is a right coherent ring, then every Gorenstein cotorsion left R-module is weakly Gorenstein cotorsion.

    §3.Properties and characterizations of Y-Gorenstein cotorsion modules

    In this section,Ydenotes a class of rightR-modules that contains all injective modules.

    Theorem 3.1.The following statements hold:

    (1)For a family {Mi}i∈I of R-modules, all Mi are Y-Gorenstein cotorsion if and only ifis Y-Gorenstein cotorsion.

    (2)Let0→M →N →L→0be an exact sequence of left R-modules.If M,L are Y-Gorenstein cotorsion modules, then N is also Y-Gorenstein cotorsion.

    Proof.(1) Let{Mi}i∈Ibe a family ofR-modules.One hand, if allMiareY-Gorenstein cotorsion leftR-modules, then for anyY-Gorenstein flat leftR-moduleQ, we have the isomorphism

    SinceM,LareY-Gorenstein cotorsion modules, we haveso=0.It is easy to obtain thatNis alsoY-Gorenstein cotorsion.

    Lemma 3.1.If R is a right coherent ring, then the class of Y-Gorenstein flat left R-modules are closed under extensions, kernels of epimorphisms, direct sums and direct summands.

    Theorem 3.2.Let R be a right coherent ring and RM be a Y-Gorenstein cotorsion module.Then

    for any Y-Gorenstein flat left R-module Q and any i≥1.

    Proof.For anyY-Gorenstein flat leftR-moduleQ, suppose···→P2→P1→P0→Q→0 is a projective resolution ofQ.LetK0=Ker(P0→Q),Kj=Ker(Pj →Pj-1) (j ≥1).Note that projective modules areY-Gorenstein flat,soPiisY-Gorenstein flat for anyi≥0.Following Lemma 3.1, we can getKjisY-Gorenstein flat for anyj ≥0.By applying the functor HomR(-,M)to above resolution, it is not difficult to obtain that

    Proposition 3.1.Let R be a right coherent ring and(ε):0→M →N →L→0be an exact sequence of left R-modules.If N is Y-Gorenstein cotorsion, then the following conditions are equivalent:

    (1)M is a Y-Gorenstein cotorsion module.

    (2) (ε)stays exact underHomR(Q,-)for any Y-Gorenstein flat module Q.

    Proof.(1)?(2) It is obvious.

    (2)?(1) For anyY-Gorenstein flat moduleQ, By applying the functor HomR(Q,-) to the sequence (ε), we can get the following long exact sequence

    Corollary 3.1.Let M be a right R-module with finite injective dimension.ThenHomZ(M,Q/Z)is Y-Gorenstein cotorsion module.

    Proof.Since Gorenstein cotorsion modules areY-Gorenstein cotorsion, it is not difficult to prove above conclusion by Proposition 2.4 in [7].

    Denote byYGF(resp.,YGC) the class of allY-Gorenstein flat (resp., cotorsion) leftR-modules.By ( [9],Theorem 4.13), we can get the following result.

    Lemma 3.2.If R is a right coherent ring and every left R-module has finite Y-Gorenstein flat dimension.Then(YGF,YGC)is a complete hereditary cotorsion theory.

    Theorem 3.3.Let R be a right coherent ring, every left R-module has finite Y-Gorenstein flat dimension, and A be a nonempty collection of left ideals of R.Then the following statements are equivalent:

    (1)Every Y-Gorenstein cotorsion module RM is A-injective.

    (2)R/A is Y-Gorenstein flat for any A∈A.

    Proof.(1)?(2) For anyA∈A, it is sufficient to prove(R/A,C)=0 for everyYGorenstein cotorsion moduleC.Consider the exact sequence 0→A→R→R/A→0 and induced exact sequence

    Theorem 3.4.Let R be a right coherent ring, and Q be a Y-Gorenstein flat cover of RM with K=Ker(Q→M).Then K is a Y-Gorenstein cotorsion module.Moreover, if M is a Y-Gorenstein cotorsion module, then Q is also a Y-Gorenstein cotorsion module.

    Proof.According to Lemma 3.1 and Lemma 3.3(1),it can be obtained that(X′,K)=0 for anyY-Gorenstein flat moduleX′.ThenKis aY-Gorenstein cotorsion module by Definition 2.1.Moreover, ifMis aY-Gorenstein cotorsion module, thenQis also aY-Gorenstein cotorsion module by properties of the Ext functor.

    Theorem 3.5.Let R be a right coherent ring, and H be a Y-Gorenstein cotorsion envelope of RM with D=Coker(M →H).Then C is a Y-Gorenstein flat module.Moreover, if M is a Y-Gorenstein flat module, then H is also a Y-Gorenstein flat module.

    Proof.It is not difficult to prove by Theorem 3.1 (2) and Lemma 3.3 (2).

    Proposition 3.2.Let R be a commutative ring and P a flat R-module.If M is a Y-Gorenstein flat module, then M ?R P is a Y-Gorenstein flat module.

    Proof.Assume thatMis aY-Gorenstein flat module, then there exists an exact sequence of flatR-modules

    withsuch thatY ?R-leaves the sequence exact for anyY ∈Y.SincePis a flat module, we have exact sequence

    withNote thatFi,Fiare flat for alli≥0 andPis a flat module, we know thatFi ?R P, Fi ?R Pare flat modules.For anyY ∈Y, consider the following commutative diagram (Diagram 1)

    Diagram 1 the constructed commutative diagram

    SinceMisY-Gorenstein flat andPis flat, it is not difficult to obtain that the upper sequence of commutative diagram is exact.ThereforeM ?R Pis aY-Gorenstein flat module.

    Theorem 3.6.Let R be a left perfect ring.Then the following statements are equivalent:

    (1)Every left R-module is Y-Gorenstein cotorsion.

    (2)Every Y-Gorenstein flat left R-module is Y-Gorenstein cotorsion.

    Proof.(1)?(2) It is obvious.

    (2)?(1)For any leftR-moduleM, it is only to prove=0 for anyY-Gorenstein flat moduleQ.By the definition of theY-Gorenstein flat modules, there is an exact sequence of flat leftR-modules

    withKer(F0→F1) such thatY ?R-leaves the sequence exact for anyY ∈Y.LetK=Ker(F1→F2), consider the short exact sequence 0→Q→F0→K →0, it is clear thatKisY-Gorenstein flat.Following (2), we knowQisY-Gorenstein cotorsion, and=0.By applying the functor HomR(K,-) to the sequence, we can get exact sequence

    SoQis direct summand ofF0.Since the class of all flat modules is closed under direct summands,Qis flat.Note thatRis a left perfect, the class of all flat modules coincides with that of all projective modules, we have thatQis projective.So=0.Therefore,EveryY-Gorenstein flat leftR-module isY-Gorenstein cotorsion.

    Acknowledgements

    We thank the referees and reviewers for their time and comments.

    国产亚洲精品久久久com| 男女国产视频网站| 国产精品国产三级专区第一集| 少妇的逼水好多| 建设人人有责人人尽责人人享有的| 日本爱情动作片www.在线观看| 亚洲欧美成人综合另类久久久| 国产av精品麻豆| 国产精品不卡视频一区二区| 成人综合一区亚洲| 热re99久久精品国产66热6| 一级毛片我不卡| 我要看日韩黄色一级片| 99久久精品热视频| 在线观看免费日韩欧美大片 | 高清在线视频一区二区三区| 秋霞在线观看毛片| 亚洲精品第二区| 51国产日韩欧美| 色视频在线一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 久久99蜜桃精品久久| 你懂的网址亚洲精品在线观看| 亚洲欧美成人精品一区二区| videos熟女内射| 免费看av在线观看网站| 中文字幕精品免费在线观看视频 | 少妇精品久久久久久久| 久久精品国产鲁丝片午夜精品| 国产在线一区二区三区精| 国产精品嫩草影院av在线观看| 插阴视频在线观看视频| 精品久久久精品久久久| 黄色毛片三级朝国网站 | 亚洲国产精品999| 免费看光身美女| 国产精品一区二区三区四区免费观看| 五月开心婷婷网| 91精品一卡2卡3卡4卡| 欧美激情国产日韩精品一区| 亚洲久久久国产精品| 五月开心婷婷网| 欧美日韩一区二区视频在线观看视频在线| 成人亚洲欧美一区二区av| 天堂中文最新版在线下载| 三级国产精品欧美在线观看| 久久久亚洲精品成人影院| 久久99蜜桃精品久久| 少妇人妻一区二区三区视频| 男的添女的下面高潮视频| 九草在线视频观看| 日韩欧美一区视频在线观看 | 最新的欧美精品一区二区| 午夜日本视频在线| 国产黄片美女视频| 麻豆成人av视频| 中文字幕免费在线视频6| 成人二区视频| 中文字幕人妻熟人妻熟丝袜美| 欧美精品高潮呻吟av久久| 秋霞伦理黄片| 精品少妇黑人巨大在线播放| 成人亚洲精品一区在线观看| 国产精品.久久久| 午夜福利在线观看免费完整高清在| 欧美精品人与动牲交sv欧美| 中文欧美无线码| 人人妻人人澡人人看| 草草在线视频免费看| av又黄又爽大尺度在线免费看| 激情五月婷婷亚洲| 亚洲精品久久午夜乱码| 大码成人一级视频| 久久久国产一区二区| 亚洲av电影在线观看一区二区三区| 人人妻人人添人人爽欧美一区卜| 国产精品久久久久久av不卡| 久久国内精品自在自线图片| 麻豆成人午夜福利视频| 欧美3d第一页| 观看免费一级毛片| 少妇的逼水好多| 亚洲欧美日韩东京热| 一级毛片黄色毛片免费观看视频| 美女大奶头黄色视频| 日本色播在线视频| 一级毛片 在线播放| √禁漫天堂资源中文www| 综合色丁香网| 国产亚洲精品久久久com| 亚洲精品日本国产第一区| 一本一本综合久久| av在线播放精品| 精品一区在线观看国产| 日日摸夜夜添夜夜爱| 欧美日韩国产mv在线观看视频| 乱系列少妇在线播放| 久热久热在线精品观看| 日本91视频免费播放| 97超碰精品成人国产| 国产白丝娇喘喷水9色精品| 欧美三级亚洲精品| 久久人妻熟女aⅴ| 在线天堂最新版资源| av天堂中文字幕网| 亚洲av二区三区四区| 国产成人精品福利久久| 日本黄色日本黄色录像| 欧美人与善性xxx| 亚洲精品一二三| 99久久精品一区二区三区| tube8黄色片| 久久久久久久久久久丰满| 亚洲av不卡在线观看| 韩国高清视频一区二区三区| 国产精品一区www在线观看| 亚洲欧美清纯卡通| 男男h啪啪无遮挡| 久久精品久久精品一区二区三区| 国产综合精华液| 久久午夜综合久久蜜桃| 亚洲欧洲精品一区二区精品久久久 | 国产色婷婷99| av在线老鸭窝| 乱人伦中国视频| 自线自在国产av| 丝袜在线中文字幕| 国产视频内射| 国产精品国产三级国产专区5o| 下体分泌物呈黄色| 亚洲av免费高清在线观看| 亚洲综合精品二区| 亚洲婷婷狠狠爱综合网| 毛片一级片免费看久久久久| 国产成人免费无遮挡视频| 一区二区三区四区激情视频| 观看美女的网站| 国产精品女同一区二区软件| 噜噜噜噜噜久久久久久91| a级毛片免费高清观看在线播放| 久久人人爽人人爽人人片va| 又粗又硬又长又爽又黄的视频| 日韩制服骚丝袜av| 亚洲怡红院男人天堂| 少妇被粗大猛烈的视频| 亚洲美女黄色视频免费看| 国产亚洲5aaaaa淫片| freevideosex欧美| 一区二区三区精品91| 日韩av在线免费看完整版不卡| 亚洲精品视频女| 日日啪夜夜撸| 只有这里有精品99| 国产午夜精品久久久久久一区二区三区| 亚洲av国产av综合av卡| 婷婷色麻豆天堂久久| av在线观看视频网站免费| 国产精品偷伦视频观看了| 黄片无遮挡物在线观看| 91aial.com中文字幕在线观看| 男女啪啪激烈高潮av片| 日日啪夜夜撸| 国产精品成人在线| 亚洲美女黄色视频免费看| 国产一区二区三区av在线| 午夜av观看不卡| 国产熟女午夜一区二区三区 | 精品人妻偷拍中文字幕| av在线观看视频网站免费| 免费播放大片免费观看视频在线观看| 日本vs欧美在线观看视频 | 妹子高潮喷水视频| 久久久久久久国产电影| 久久久久久人妻| 亚洲精品一区蜜桃| 亚洲国产毛片av蜜桃av| 国产av一区二区精品久久| 日韩,欧美,国产一区二区三区| 不卡视频在线观看欧美| 国产白丝娇喘喷水9色精品| 中文字幕人妻丝袜制服| 日韩欧美 国产精品| 熟女电影av网| 永久网站在线| 亚洲精品,欧美精品| 亚洲美女视频黄频| 美女国产视频在线观看| 一级片'在线观看视频| 国产一区二区在线观看av| 国产亚洲5aaaaa淫片| 亚洲av成人精品一二三区| 亚洲av.av天堂| 18禁裸乳无遮挡动漫免费视频| 国产精品免费大片| 久久久久久久精品精品| 一区二区三区乱码不卡18| 99久久精品国产国产毛片| av不卡在线播放| 精品人妻熟女av久视频| 久久99热6这里只有精品| 建设人人有责人人尽责人人享有的| 欧美日韩亚洲高清精品| 新久久久久国产一级毛片| 国产精品麻豆人妻色哟哟久久| 欧美97在线视频| 午夜免费观看性视频| www.av在线官网国产| 天堂中文最新版在线下载| 亚洲真实伦在线观看| 看非洲黑人一级黄片| 十分钟在线观看高清视频www | 中国国产av一级| 美女福利国产在线| 麻豆成人午夜福利视频| 午夜激情福利司机影院| 久久久久久久国产电影| 亚洲第一av免费看| 亚洲久久久国产精品| h日本视频在线播放| 伊人亚洲综合成人网| 成人黄色视频免费在线看| 久久久久久久久大av| 亚洲欧洲日产国产| 综合色丁香网| 日韩欧美精品免费久久| 狂野欧美白嫩少妇大欣赏| 麻豆精品久久久久久蜜桃| 成年av动漫网址| 成人午夜精彩视频在线观看| 最后的刺客免费高清国语| 91精品伊人久久大香线蕉| 日韩 亚洲 欧美在线| 亚洲人成网站在线播| 亚洲国产毛片av蜜桃av| 久久久久久久久久成人| 肉色欧美久久久久久久蜜桃| 交换朋友夫妻互换小说| 成人黄色视频免费在线看| 国产亚洲91精品色在线| 久久久久久久精品精品| 国产精品久久久久久久久免| 国产成人精品一,二区| 久久久久久久久久久免费av| av免费观看日本| av在线播放精品| 国产一级毛片在线| 一个人看视频在线观看www免费| 国产亚洲5aaaaa淫片| 久久久久人妻精品一区果冻| 中文乱码字字幕精品一区二区三区| 精品亚洲乱码少妇综合久久| 性高湖久久久久久久久免费观看| 3wmmmm亚洲av在线观看| 91在线精品国自产拍蜜月| 久久99热6这里只有精品| 亚洲欧美成人精品一区二区| 久久久亚洲精品成人影院| 有码 亚洲区| 水蜜桃什么品种好| 成人午夜精彩视频在线观看| 午夜福利网站1000一区二区三区| 欧美精品一区二区免费开放| 国产国拍精品亚洲av在线观看| 日本欧美国产在线视频| 国产日韩欧美在线精品| 欧美日韩一区二区视频在线观看视频在线| 色婷婷av一区二区三区视频| 能在线免费看毛片的网站| 又爽又黄a免费视频| 99视频精品全部免费 在线| 99热网站在线观看| 午夜老司机福利剧场| 在线观看人妻少妇| 亚洲电影在线观看av| 国产一区亚洲一区在线观看| 最近手机中文字幕大全| 精品亚洲成a人片在线观看| 熟女电影av网| 中文精品一卡2卡3卡4更新| 老司机影院成人| 国产欧美日韩精品一区二区| 亚洲av国产av综合av卡| 亚洲国产精品一区三区| 婷婷色av中文字幕| 国产在线男女| 在线看a的网站| 菩萨蛮人人尽说江南好唐韦庄| 天美传媒精品一区二区| 国内精品宾馆在线| 18禁动态无遮挡网站| 秋霞伦理黄片| 国产高清不卡午夜福利| av免费观看日本| 日韩强制内射视频| 色婷婷久久久亚洲欧美| 国产爽快片一区二区三区| 91精品一卡2卡3卡4卡| 制服丝袜香蕉在线| 国产伦精品一区二区三区视频9| 中国国产av一级| 国产精品久久久久久精品电影小说| 国产成人午夜福利电影在线观看| 蜜臀久久99精品久久宅男| 狂野欧美激情性xxxx在线观看| 国产精品嫩草影院av在线观看| 日日啪夜夜爽| 亚洲,欧美,日韩| 在线观看av片永久免费下载| 亚洲综合色惰| 亚洲,一卡二卡三卡| 久久精品国产亚洲网站| av黄色大香蕉| av有码第一页| 国产一区二区三区av在线| 夫妻午夜视频| 国模一区二区三区四区视频| 中文字幕亚洲精品专区| 91精品一卡2卡3卡4卡| 日韩欧美 国产精品| 日日撸夜夜添| 卡戴珊不雅视频在线播放| 妹子高潮喷水视频| 日韩一区二区视频免费看| 国产免费福利视频在线观看| 99久久精品热视频| 久久6这里有精品| a级毛色黄片| 欧美变态另类bdsm刘玥| 国产精品一区二区性色av| 亚洲综合色惰| 精品少妇内射三级| 99热这里只有精品一区| 伊人久久精品亚洲午夜| 国产精品福利在线免费观看| 欧美少妇被猛烈插入视频| 人妻少妇偷人精品九色| 国产免费又黄又爽又色| 肉色欧美久久久久久久蜜桃| 极品人妻少妇av视频| 国产成人a∨麻豆精品| 在线亚洲精品国产二区图片欧美 | 亚洲成人一二三区av| a级片在线免费高清观看视频| 亚洲av欧美aⅴ国产| 久久久久久久久大av| 99久久综合免费| 成年av动漫网址| 大香蕉久久网| 日韩伦理黄色片| 久久精品久久精品一区二区三区| 久久精品久久久久久久性| 蜜桃在线观看..| 亚洲欧美一区二区三区黑人 | 精品熟女少妇av免费看| www.色视频.com| 久久6这里有精品| 91精品国产九色| 99国产精品免费福利视频| 日本与韩国留学比较| 亚洲国产精品一区三区| 国产精品一二三区在线看| 伦理电影大哥的女人| 国产一区二区在线观看av| av国产久精品久网站免费入址| 精品人妻一区二区三区麻豆| 欧美区成人在线视频| 自拍欧美九色日韩亚洲蝌蚪91 | 插逼视频在线观看| 桃花免费在线播放| 大香蕉97超碰在线| 男女无遮挡免费网站观看| 男人舔奶头视频| 校园人妻丝袜中文字幕| 亚洲av不卡在线观看| 欧美最新免费一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 亚洲四区av| 欧美变态另类bdsm刘玥| 一区二区三区精品91| 久久97久久精品| 久久精品国产a三级三级三级| 99精国产麻豆久久婷婷| 2018国产大陆天天弄谢| 国产黄色视频一区二区在线观看| 80岁老熟妇乱子伦牲交| 只有这里有精品99| 综合色丁香网| 十八禁高潮呻吟视频 | 91在线精品国自产拍蜜月| 97在线人人人人妻| 在线看a的网站| 在线观看美女被高潮喷水网站| 亚洲国产成人一精品久久久| 精品国产露脸久久av麻豆| 亚洲精品乱久久久久久| 国产老妇伦熟女老妇高清| a级一级毛片免费在线观看| 这个男人来自地球电影免费观看 | 欧美日本中文国产一区发布| 久久精品久久久久久噜噜老黄| videossex国产| 精品一区二区三卡| 日韩一本色道免费dvd| 久久精品久久精品一区二区三区| 又爽又黄a免费视频| 国产永久视频网站| 视频中文字幕在线观看| 又爽又黄a免费视频| a级毛片在线看网站| 最近中文字幕高清免费大全6| 亚洲精品一区蜜桃| 国产永久视频网站| 天美传媒精品一区二区| 亚洲精品一区蜜桃| 国产免费福利视频在线观看| 噜噜噜噜噜久久久久久91| 三上悠亚av全集在线观看 | 亚洲精品国产色婷婷电影| 亚洲精品456在线播放app| 国产精品一区二区在线观看99| 五月玫瑰六月丁香| 国产乱来视频区| 国产精品.久久久| 大片电影免费在线观看免费| 免费黄色在线免费观看| 岛国毛片在线播放| 午夜激情久久久久久久| 国产精品蜜桃在线观看| 国产成人精品久久久久久| 成人18禁高潮啪啪吃奶动态图 | 黄色怎么调成土黄色| 久久久a久久爽久久v久久| 免费人妻精品一区二区三区视频| 亚洲,一卡二卡三卡| 成人美女网站在线观看视频| 亚洲av国产av综合av卡| 啦啦啦中文免费视频观看日本| 新久久久久国产一级毛片| 亚洲av欧美aⅴ国产| 免费观看无遮挡的男女| 成人美女网站在线观看视频| 亚洲真实伦在线观看| 插阴视频在线观看视频| 人妻一区二区av| 日本vs欧美在线观看视频 | 黄色一级大片看看| 我的女老师完整版在线观看| 久久久久精品性色| 久久久久久久久久成人| www.色视频.com| 久久久久国产精品人妻一区二区| 精品少妇黑人巨大在线播放| 欧美 日韩 精品 国产| 国产欧美日韩精品一区二区| 精品国产一区二区久久| 51国产日韩欧美| 天堂中文最新版在线下载| 91久久精品国产一区二区成人| 少妇被粗大的猛进出69影院 | 免费观看的影片在线观看| 亚洲中文av在线| 我要看日韩黄色一级片| 美女中出高潮动态图| 免费播放大片免费观看视频在线观看| 狂野欧美激情性bbbbbb| 欧美日韩综合久久久久久| 天堂8中文在线网| 成人午夜精彩视频在线观看| 一本色道久久久久久精品综合| 亚洲精品国产av蜜桃| 久久99蜜桃精品久久| 人妻少妇偷人精品九色| 在线天堂最新版资源| 久久 成人 亚洲| 国产精品99久久久久久久久| 国产精品欧美亚洲77777| 亚洲av成人精品一区久久| 色婷婷av一区二区三区视频| 纯流量卡能插随身wifi吗| 中文欧美无线码| a 毛片基地| 我的老师免费观看完整版| 久久国产亚洲av麻豆专区| 伦精品一区二区三区| 激情五月婷婷亚洲| 欧美97在线视频| 中国三级夫妇交换| 黑人巨大精品欧美一区二区蜜桃 | 亚洲图色成人| 69精品国产乱码久久久| a级毛色黄片| 久久久亚洲精品成人影院| 99久国产av精品国产电影| av福利片在线观看| 亚洲,一卡二卡三卡| 伦精品一区二区三区| 国产精品一区二区在线不卡| 在线观看免费视频网站a站| 久久久久久伊人网av| 国产爽快片一区二区三区| 日本av免费视频播放| 久久精品国产亚洲网站| 日韩av在线免费看完整版不卡| 老司机亚洲免费影院| 99精国产麻豆久久婷婷| av卡一久久| 精品酒店卫生间| 日本av手机在线免费观看| 熟女av电影| 噜噜噜噜噜久久久久久91| 精品一品国产午夜福利视频| 日韩三级伦理在线观看| 在现免费观看毛片| 免费av不卡在线播放| 国产日韩一区二区三区精品不卡 | 国产av国产精品国产| 国产又色又爽无遮挡免| 久久久久视频综合| 免费黄网站久久成人精品| 国产精品国产三级专区第一集| 国产精品嫩草影院av在线观看| 精品人妻熟女毛片av久久网站| 亚洲内射少妇av| 极品少妇高潮喷水抽搐| 69精品国产乱码久久久| 亚洲欧美日韩另类电影网站| av.在线天堂| 少妇猛男粗大的猛烈进出视频| 日日摸夜夜添夜夜添av毛片| 精品午夜福利在线看| 成年av动漫网址| 街头女战士在线观看网站| 国产精品久久久久久精品电影小说| 夫妻性生交免费视频一级片| 天美传媒精品一区二区| 18+在线观看网站| 九草在线视频观看| 中国三级夫妇交换| 免费黄网站久久成人精品| av播播在线观看一区| 国产精品99久久99久久久不卡 | 毛片一级片免费看久久久久| 中国美白少妇内射xxxbb| 亚洲欧洲日产国产| 国产日韩欧美在线精品| 日本vs欧美在线观看视频 | 蜜臀久久99精品久久宅男| av不卡在线播放| 国产有黄有色有爽视频| 在线观看免费高清a一片| 亚洲,欧美,日韩| 久久午夜综合久久蜜桃| 国产av一区二区精品久久| 亚洲情色 制服丝袜| 黄色配什么色好看| 午夜福利视频精品| 肉色欧美久久久久久久蜜桃| a 毛片基地| 国产成人精品无人区| 高清欧美精品videossex| 国产白丝娇喘喷水9色精品| 精品少妇久久久久久888优播| 97超碰精品成人国产| 男女边吃奶边做爰视频| 青春草视频在线免费观看| 国国产精品蜜臀av免费| 久久久欧美国产精品| 天堂8中文在线网| 伦理电影大哥的女人| 日日摸夜夜添夜夜爱| 精品人妻熟女毛片av久久网站| 午夜激情久久久久久久| 精品人妻一区二区三区麻豆| 人人妻人人澡人人看| 亚洲精品国产av蜜桃| 精华霜和精华液先用哪个| 热re99久久精品国产66热6| 汤姆久久久久久久影院中文字幕| 人妻少妇偷人精品九色| 国产精品一区二区性色av| 亚洲四区av| 中文字幕人妻丝袜制服| 一区二区三区乱码不卡18| av福利片在线观看| 99久久综合免费| 久久国产精品大桥未久av | 国产伦精品一区二区三区四那| 2018国产大陆天天弄谢| 青春草视频在线免费观看| 啦啦啦在线观看免费高清www| 久久久久久久亚洲中文字幕| 亚洲av男天堂| 日日啪夜夜爽| 99热网站在线观看| 亚洲av在线观看美女高潮| 国产精品人妻久久久影院| 免费少妇av软件| 日本猛色少妇xxxxx猛交久久| 成年女人在线观看亚洲视频| 夫妻午夜视频| 18+在线观看网站| 久久人人爽av亚洲精品天堂| 岛国毛片在线播放| 亚洲高清免费不卡视频| 久久国产精品大桥未久av | 99re6热这里在线精品视频| 免费观看性生交大片5| 亚洲经典国产精华液单| 国语对白做爰xxxⅹ性视频网站| 欧美日韩一区二区视频在线观看视频在线| 中文字幕精品免费在线观看视频 | 国产精品久久久久成人av| 我的老师免费观看完整版| 久久久久精品性色| 男女啪啪激烈高潮av片|