• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Batalin-Vilkovisky Structure on Hochschild Cohomology of Self-Injective Quadratic Monomial Algebras

    2021-10-14 02:10:22

    ( School of Mathematics and Statistics, Henan University, Kaifeng 475004, China)

    Abstract: We give a complete description of the Batalin-Vilkovisky algebra structure on Hochschild cohomology of the self-injective quadratic monomial algebras.

    Keywords: Batalin-Vilkovisky algebra structure; Hochschild cohomology; Self-injective quadratic monomial algebra

    §1.Introduction

    The Hochschild homology and cohomology theory played a fundamental role in representation theory of artin algebras.Hochschild homology is closely related to the voriented cycle and the global dimension of algebras; Hochschild cohomology is closely related to simple connectedness,separability and deformation theory.

    The monomial algebras is a class of relatively simple algebras.The Hochschild homology and cohomology of this kind of algebras have been widely studied.The cup product on the Hochschild cohomology has been described for some especial monomial algebras such as radical square zero algebras [3], exterior algebras [14], truncated quiver algebras [1,7]and so on.For the Lie structure on the Hochschild cohomology, Xu and Zhang have described the Gerstenhaber bracket on the Hochschild cohomology of truncated quiver algebras in terms of parallel paths[15].The Gerstenhaber bracket on the Hochschild cohomology of triangular quadratic monomial algebras are considered in [2].However, for most finite dimensional algebras, it is little to known about the the Gerstenhaber bracket of the Hochschild cohomology.Here we will give the description of the Gerstenhaber bracket on Hochschild cohomology of the self-injective quadratic monomial algebras clearly.

    During several decades,a new structure in Hochschild theory has been extensively studied in topology and mathematical physics, and recently this was introduced into algebra, the so-called Batalin-Vilkovisky structure.Roughly speaking a Batalin-Vilkovisky structure is an operator on a Gerstenhaber algebra which squares to zero, and which together with the cup product,can express the Gerstenhaber bracket.A Batalin-Vilkovisky algebra structure exists only on Hochschild cohomology of certain special classes of algebras.Tradler found that the Hochschild cohomology of a finite-dimensional self-injective algebra is a Batalin-Vilkovisky algebra [11].In 2016, Lambre et al.and Volkov independently showed that this result is also valid for Frobenius algebras with semisimple Nakayama automorphisms [8,13].But it is very difficult to give the Batalin-Vilkovisky algebra structure on the Hochschild cohomology of an algebra in general.Here for the self-injective quadratic monomial algebras, we can give a complete description of the Batalin-Vilkovisky algebra structure on the Hochschild cohomology of this kind of algebras.

    The paper is structured as follows.In Section 2, we review the definitions of Hochschild cohomology, cup product, Gerstenhaber bracket product and Batalin-Vilkovisky algebra.In Section 3, we first show that the self-injective quadratic monomial algebras are essentially the radical square zero Nakayama algebras of typeWe denote this class of algebras byAnand recall the minimal projective bimodule resolution ofAnwhich has given by Bardezll.We also give a basis of each degree of Hochschild cohomology ofAnby using this resolution.In Section 4, we give the ring structure onHH*(An)=HHm(An).In particular, we show that the Hochschild cohomology ring modulo the nilpotent ideal is finite generated, and so give a positive answer to the Snashall-Solberg conjecture.In Section 5, by the chain mappings between the reduced bar resolution and the minimal projective bimodule resolution ofAn,we give the Gerstenhaber algebra structure and the Batalin-Vilkovisky algebra structure onHH*(An) clearly.Throughout this paper, we fix k an algebraically closed field with chark=0,?:=?k.

    §2.Hochschild cohomology of associative algebras

    The cohomology theory of associative algebras was introduced by Hochschild (see [6]).Let Λ be an associative algebra over a field k.The Hochschild cohomologyHH*(Λ) of Λ has a very rich structure.In this section, we recall the cup product, the Gerstenhaber bracket and Batalin-Vilkovisky algebra structure in the Hochschild cohomology.

    For an associative k-algebra Λ, there is a projective bimodule resolution of Λ as following:

    for alla0,a1,···,am+1∈Λ.This resolution is called the bar resolution of Λ.

    This graded Lie bracket is usually called the Gerstenhaber bracket inHH*+1(Λ).It is well-known that (HH*(Λ),凵,[,]) is a Gerstenhaber algebra (see [5]).That is, the following conditions hold:

    (1) (HH*(Λ),凵) is an associative algebra.

    (2) (HH*+1(Λ),[,]) is a graded Lie algebra with bracket [,]of degree-1.

    (3) [f 凵g,h]=[f,h]凵g+(-1)|f|(|h|-1)f 凵[g,h], where|f|denotes the degree off.

    If there is an operator on Hochschild cohomology which squares to zero and together with the cup product can express the Lie bracket, then it is an Batalin-Vilkovisky algebra.Let us review the definition of Batalin-Vilkovisky algebra (see, for example [12]).

    Definition 2.1.A Batalin-Vilkovisky algebra is a Gerstenhaber algebra(Λ·,凵,[,])together with an operatorΔ:Λ·→Λ·-1of degree -1such thatΔ?Δ=0and

    for homogeneous elements a,b∈Λ·.

    For any associative k-algebra with unity,the author proved that(HH*(Λ),凵,[,])is always a Gerstenhaber algebra in [5].However, for a given algebra, it is very difficult to obtain this structure concretely, that is, to describe exactly the cup product and Gerstenhaber bracket product, is very difficult.The Batalin-Vilkovisky operator Δ does not always exist for the Hochschild cohomology ringHH*(Λ) of an algebra Λ.So far, we only know that there is a Batalin-Vilkovisky operator on Hochschild cohomology ring for few kinds of algebras.

    §3.Hochschild cohomology groups

    In this section, we consider the Hochschild cohomology groups of the self-injective quadratic monomial algebras.Recently, Lu and Zhu have given a detailed description of self-injective quadratic monomial algebras in [9].They have shown that a basic k-algebra Λ over an algebraically closed field k is self-injective if and only if Λ is self-injective Nakayama k-algebra(see Remark 4.3.7 in [9]).Thus by studying the self-injective quadratic monomial algebras, we only need to consider the algebrasAn, which are given by quiverQas following:

    with relationsαiαi+1=0,i=1,2,···,n, whereαn+1=α1.This is,An=kQ/I, whereIis an ideal of path algebra kQgenerated byαiαi+1=0,i=1,2,···,n.We denote byeithe trivial path inQand the idempotent element in kQcorresponding to vertexi,i=1,2,···,n.ThenB:={ei,αi|1≤i≤n}is a k-basis ofAn, and so that dimkAn=2n.

    The algebrasAnare truncated quiver algebras.Bardezll and his collaborators have given the Hochschild cohomology groups for truncated quiver algebras in [4].In this section we will use the parallel paths to give these conclusions again.Firstly, we consider the minimal projective bimodule resolution ofAn.Setting

    for allm≥1.We denote by o(p) and t(p) the originals and terminus ofp, for any pathp∈kQ.Let

    and denote by k{X//Y}the vector space spanned by the elements inX//Y, and call (p,q)∈kQ//kQa parallel path.Consider the setsB//Fm, we get

    Define complex L=(Lm,σm),whereLm=k(B//Fm)ifm≥0 and for anym≥1,σm:Lm-1→Lmis given by

    andσm=0 ifm/=kn+1.Then,by direct calculation,we get a k-basis ofHHm(An)as following.

    Proposition 3.1.Let An be the self-injective quadratic monomial algebra.Then

    §4.Hochschild cohomology ring

    In this section,the cup product of the cohomology ringHH*(An)is described by the parallel paths, and so that the ring structure ofHH*(An) andHH*(An)/Nare given explicitly.

    For any finite-dimensional k-algebra Λ, Siegel and Witherspoon proved that any projective Λe-resolution X of Λ gives rise to the cup product onHH*(Λ)=HHm(Λ) (see [11]).They showed that there exists a chain map△:X→X?ΛX lifting the identity, which is unique up to homotopy, and the cup product of two elementsηinHHm(Λ) andξinHHn(Λ) can be defined by the composition of the maps

    whereωis the natural isomorphism.

    Here, we will use the minimal projective bimodule resolution P=(Pm,dm) ofAnwhich is constructed in Section 3, to give the cup product ofHH*(An).First recall that the tensor complex P?AnP:=(Pm,bm) is given by

    where b0=ω?(d0?d0), d0is the multiplication map, ω:An ?An An →An is the natural isomorphism.

    Proof.Firstly, it is easy to see thatd0=b0?△0.Secondly, forn=1 and eachαi, we have

    The dreams come nightly. Dreams of turning cartwheels in the yard or hitting a tennis ball against a brick wall. But there is one, the most vivid and recurring13, and the most haunting of all...There is a lake and trees, a soft breeze and a perfect sky. It is a scene so beautiful it is almost beyond imagining. And in the midst of it all, she is walking. She has never felt more at peace.

    Therefore, we obtain the commutative diagram.

    Now, for anym≥0 andη:=(a,f)∈Lm=k{B//Fm}, we identify it with its imageφm(η)under the isomorphismφm:Lm →which is given in Section 3.By the morphism△:=(△m)m≥0,the following theorem will give a description of the cup product using the parallel paths.

    Proposition 4.1.Suppose η:=(a,f)∈HHm(An)and ξ:=(a′,f′)∈HHl(An).Then

    Now, using the basis ofHHm(An) in the pervious section and the description of the cup product in Proposition 4.1, we can give the ring structure ofHH*(An).

    Theorem 4.1.As gradedk-algebras, we have the following isomorphism:

    For any finite-dimensional k-algebra Λ, letNbe the ideal ofHH*(Λ) generated by all the homogeneous nilpotent elements.IfHH*(Λ)/Nis a finite-dimensional commutative k-algebra,then it is used to define the support varieties for Λ-modules[10].Moreover, Snashall and Solberg conjectured thatHH*(Λ)/Nis finitely generated for any finite-dimensional k-algebra Λ.Here,using the result in Theorem 4.1, we can give the ring structure ofHH*(An)/Ndirectly.

    Corollary 4.1.For the quotient algebra HH*(An)/N, we have

    where the degree of u is kn and kn is even.

    §5.Batalin-Vilkovisky structure on Hochschild cohomology

    In this section, we give the Gerstenhaber algebra structure and the Batalin-Vilkovisky algebra structure onHH*(An) clearly.

    whereen+1=e1andαn+1=α1.In [8]and [13], the authors proved that the Hochschild cohomology ring of a Frobenius algebra with semisimple Nakayama automorphism is a Batalin-Vilkovisky algebra in different ways.For the algebraAn, we can define an automorphism ˉ()by

    for anyα∈HHm(An), whereB1={ei|1≤i≤n}andμ=(-1)i(m-1).

    By the formulas

    This means that to determine operator Δ, we only need to calculate Δ(a) and Δ(a凵b) for all the generatorsa,bofHH*(An).Moreover, using the comparison morphisms Ψ and Φ, we compute Δ(f) by formula Δ(f)=Δ(f ?Ψm)Φm-1,for anyf ∈HHm(An).

    Theorem 5.1.Let An be the self-injective quadratic monomial algebra.Denote byΔthe Batalin-Vilkovisky operator on HH*k〈y,u〉/I.Then we have

    Using the Batalin-Vilkovisky operator Δ onHH*(An), we can determine the Gerstenhaber bracket [,]onHH*(An) by setting

    for any homogeneous elementsα,β ∈HH*(An).Then the Gerstenhaber algebra structure onHH*(An) can be induced.

    Corollary 5.1.Let An be the self-injective quadratic monomial algebra.Then Gerstenhaber bracket on the HH*(An)k〈y,u〉/I is induced by

    Now we can give a complete description of the Batalin-Vilkovisky algebra structure on Hochschild cohomology of the self-injective quadratic monomial algebras.

    Corollary 5.2.Let An be the self-injective quadratic monomial algebra.The Batalin-Vilkovisky algebra(HH*(An), 凵,[,],Δ)is isomorphic tok〈y,u〉/I, where the ideal I is generated by y2and yu-uy, the Gerstenhaber bracket is induced by[y,y]=0,[u,u]=0,[y,u]=-knu, the Batalin-Vilkovisky operator is induced byΔ(y)=1,Δ(u)=0,Δ(yu)=(kn+1)u, and the degree of y and u is 1 and kn respectively, kn is even.

    亚洲欧洲日产国产| 成人手机av| 男人添女人高潮全过程视频| 久久久国产精品麻豆| 亚洲精品乱码久久久v下载方式| 日日爽夜夜爽网站| 91精品国产九色| 亚洲高清免费不卡视频| 有码 亚洲区| 亚洲国产精品专区欧美| 日本色播在线视频| 精品久久久久久久久亚洲| 国产 一区精品| 一区在线观看完整版| 国产 一区精品| 欧美日韩在线观看h| 成人毛片a级毛片在线播放| 制服丝袜香蕉在线| 久久久久久久久久人人人人人人| 精品人妻熟女毛片av久久网站| 看免费成人av毛片| 国产成人freesex在线| 国产探花极品一区二区| 国产探花极品一区二区| 五月开心婷婷网| 欧美最新免费一区二区三区| 亚洲成色77777| 大香蕉久久网| 少妇高潮的动态图| 十八禁网站网址无遮挡| 日韩在线高清观看一区二区三区| 蜜桃在线观看..| 97超碰精品成人国产| 国产不卡av网站在线观看| 热99久久久久精品小说推荐| 91精品一卡2卡3卡4卡| 在线观看免费视频网站a站| 久久久精品免费免费高清| 精品视频人人做人人爽| 精品一品国产午夜福利视频| 一级爰片在线观看| 成年女人在线观看亚洲视频| 超色免费av| 色网站视频免费| 欧美三级亚洲精品| 人妻夜夜爽99麻豆av| 边亲边吃奶的免费视频| 欧美精品人与动牲交sv欧美| 国产成人精品无人区| 欧美日韩成人在线一区二区| 亚洲国产精品一区二区三区在线| 亚洲av欧美aⅴ国产| 成人毛片60女人毛片免费| 日本黄大片高清| 日韩人妻高清精品专区| 亚洲精品,欧美精品| 国产极品天堂在线| 国产精品成人在线| av播播在线观看一区| 国产精品一国产av| 国产极品粉嫩免费观看在线 | 大香蕉久久成人网| 国产精品成人在线| 亚洲av成人精品一二三区| 99热网站在线观看| 又粗又硬又长又爽又黄的视频| 激情五月婷婷亚洲| 伦理电影免费视频| 久久综合国产亚洲精品| 青青草视频在线视频观看| 免费观看性生交大片5| 卡戴珊不雅视频在线播放| 多毛熟女@视频| 亚洲精品视频女| 国产男女超爽视频在线观看| 一级毛片aaaaaa免费看小| 一个人免费看片子| 青春草视频在线免费观看| 久热这里只有精品99| 亚洲国产精品999| www.av在线官网国产| 全区人妻精品视频| 一级毛片黄色毛片免费观看视频| 伊人亚洲综合成人网| 如日韩欧美国产精品一区二区三区 | 熟女av电影| 青春草视频在线免费观看| 秋霞伦理黄片| 午夜免费观看性视频| 精品人妻熟女毛片av久久网站| 日本-黄色视频高清免费观看| freevideosex欧美| 欧美亚洲 丝袜 人妻 在线| 亚洲精品亚洲一区二区| 久久99精品国语久久久| 菩萨蛮人人尽说江南好唐韦庄| 少妇的逼好多水| 美女xxoo啪啪120秒动态图| 国产免费视频播放在线视频| 午夜福利影视在线免费观看| 亚洲人与动物交配视频| 欧美丝袜亚洲另类| 久久精品国产鲁丝片午夜精品| 蜜桃国产av成人99| 女的被弄到高潮叫床怎么办| 少妇精品久久久久久久| 亚洲人成网站在线观看播放| 少妇高潮的动态图| 国产有黄有色有爽视频| 中文天堂在线官网| 欧美日韩视频精品一区| 国产成人免费观看mmmm| xxx大片免费视频| 美女xxoo啪啪120秒动态图| 18禁在线无遮挡免费观看视频| 中文字幕精品免费在线观看视频 | 国产在视频线精品| 欧美xxxx性猛交bbbb| 纯流量卡能插随身wifi吗| 欧美一级a爱片免费观看看| 国产成人午夜福利电影在线观看| 尾随美女入室| 欧美激情极品国产一区二区三区 | 免费黄频网站在线观看国产| 日韩视频在线欧美| 久久精品国产亚洲av涩爱| 夜夜看夜夜爽夜夜摸| 如日韩欧美国产精品一区二区三区 | 亚洲av日韩在线播放| 久久免费观看电影| 精品国产乱码久久久久久小说| 日韩中文字幕视频在线看片| 国产视频首页在线观看| 国产免费一区二区三区四区乱码| 免费黄色在线免费观看| 国产日韩欧美亚洲二区| kizo精华| 久久久久久久久久人人人人人人| 最新的欧美精品一区二区| 色婷婷av一区二区三区视频| 黑人猛操日本美女一级片| 视频中文字幕在线观看| 99久国产av精品国产电影| 国产亚洲一区二区精品| 97在线人人人人妻| 国产伦理片在线播放av一区| 久久精品人人爽人人爽视色| 亚洲av欧美aⅴ国产| 成人黄色视频免费在线看| 国产伦精品一区二区三区视频9| 成人国产av品久久久| 亚洲美女搞黄在线观看| 一个人免费看片子| 亚洲欧美成人精品一区二区| 精品国产露脸久久av麻豆| 精品国产露脸久久av麻豆| 国产极品天堂在线| 极品人妻少妇av视频| 亚洲国产精品一区三区| 最后的刺客免费高清国语| 少妇熟女欧美另类| 日本91视频免费播放| 国产不卡av网站在线观看| 高清视频免费观看一区二区| 国产成人精品久久久久久| 九草在线视频观看| 国产成人精品无人区| 欧美+日韩+精品| 欧美人与性动交α欧美精品济南到 | 久久鲁丝午夜福利片| 黄色配什么色好看| 十八禁网站网址无遮挡| 成年美女黄网站色视频大全免费 | 简卡轻食公司| 青春草国产在线视频| 国产色爽女视频免费观看| 麻豆成人av视频| 国产女主播在线喷水免费视频网站| 少妇丰满av| 欧美少妇被猛烈插入视频| 久久午夜福利片| 欧美3d第一页| 精品一区二区三卡| 色网站视频免费| 亚洲天堂av无毛| 啦啦啦中文免费视频观看日本| 国产黄色视频一区二区在线观看| 国产一区有黄有色的免费视频| 久久毛片免费看一区二区三区| 亚洲性久久影院| 国产欧美亚洲国产| 最新的欧美精品一区二区| 国产成人精品婷婷| 91精品国产国语对白视频| 亚洲五月色婷婷综合| 欧美一级a爱片免费观看看| 看免费成人av毛片| 日韩av在线免费看完整版不卡| 亚洲伊人久久精品综合| 91在线精品国自产拍蜜月| 中文乱码字字幕精品一区二区三区| 自线自在国产av| 久久毛片免费看一区二区三区| 高清午夜精品一区二区三区| 26uuu在线亚洲综合色| 精品午夜福利在线看| 亚洲高清免费不卡视频| 免费看av在线观看网站| 日本欧美视频一区| .国产精品久久| 亚洲精品久久久久久婷婷小说| 亚洲一级一片aⅴ在线观看| 女人精品久久久久毛片| 搡老乐熟女国产| 久久人人爽av亚洲精品天堂| 国产亚洲精品久久久com| 亚洲图色成人| 国产成人freesex在线| 美女大奶头黄色视频| 五月玫瑰六月丁香| 国产成人a∨麻豆精品| 超碰97精品在线观看| 日韩视频在线欧美| 欧美日韩综合久久久久久| 五月伊人婷婷丁香| 亚洲av电影在线观看一区二区三区| 一本一本综合久久| 乱人伦中国视频| 波野结衣二区三区在线| 日本vs欧美在线观看视频| 热re99久久国产66热| 人妻系列 视频| 国产精品女同一区二区软件| 亚洲国产最新在线播放| 国产色爽女视频免费观看| 大陆偷拍与自拍| 国产精品国产三级国产av玫瑰| 男人爽女人下面视频在线观看| 两个人免费观看高清视频| 黑丝袜美女国产一区| 国产爽快片一区二区三区| 亚洲精华国产精华液的使用体验| 我的老师免费观看完整版| 国产精品秋霞免费鲁丝片| av在线播放精品| 丝袜在线中文字幕| 亚洲精品美女久久av网站| 国产精品成人在线| 亚洲av电影在线观看一区二区三区| 最近的中文字幕免费完整| 亚洲丝袜综合中文字幕| 亚洲av日韩在线播放| 各种免费的搞黄视频| 最后的刺客免费高清国语| 自线自在国产av| 亚洲人成77777在线视频| 美女主播在线视频| 97在线视频观看| 国产黄色视频一区二区在线观看| 久久国产精品男人的天堂亚洲 | 日本91视频免费播放| 精品国产露脸久久av麻豆| 日日撸夜夜添| av电影中文网址| 特大巨黑吊av在线直播| 成年人免费黄色播放视频| 99热国产这里只有精品6| 校园人妻丝袜中文字幕| 韩国高清视频一区二区三区| 日日摸夜夜添夜夜添av毛片| 午夜福利网站1000一区二区三区| 五月玫瑰六月丁香| 日韩免费高清中文字幕av| av黄色大香蕉| 久久国产精品大桥未久av| 精品一区二区免费观看| 欧美日韩国产mv在线观看视频| 伊人久久国产一区二区| 性高湖久久久久久久久免费观看| 国产一区二区在线观看av| 中文字幕av电影在线播放| 五月天丁香电影| 免费少妇av软件| 国产精品 国内视频| 国产精品免费大片| av女优亚洲男人天堂| 久久精品熟女亚洲av麻豆精品| 国产av国产精品国产| 国内精品宾馆在线| 日本欧美视频一区| 精品人妻偷拍中文字幕| 欧美国产精品一级二级三级| 韩国高清视频一区二区三区| 色5月婷婷丁香| 久久久久精品久久久久真实原创| 国产精品久久久久久av不卡| 亚洲少妇的诱惑av| 大话2 男鬼变身卡| 多毛熟女@视频| 免费看av在线观看网站| 色5月婷婷丁香| 日本av免费视频播放| 黄色毛片三级朝国网站| 欧美日韩亚洲高清精品| 国产在线视频一区二区| 国产精品秋霞免费鲁丝片| av不卡在线播放| av视频免费观看在线观看| 国产精品国产三级专区第一集| 视频中文字幕在线观看| 成年av动漫网址| 国产熟女欧美一区二区| 精品久久久精品久久久| 亚洲精品国产av蜜桃| 国产成人freesex在线| 亚洲国产av新网站| 久久午夜福利片| 又黄又爽又刺激的免费视频.| 我的老师免费观看完整版| 国产片内射在线| 国产无遮挡羞羞视频在线观看| 少妇高潮的动态图| 一本色道久久久久久精品综合| 黄色视频在线播放观看不卡| 人人妻人人爽人人添夜夜欢视频| 日本wwww免费看| 老司机影院成人| 亚洲国产精品999| 3wmmmm亚洲av在线观看| 夜夜骑夜夜射夜夜干| 在线观看免费视频网站a站| 欧美日韩在线观看h| 卡戴珊不雅视频在线播放| 91成人精品电影| 日韩av不卡免费在线播放| 丰满迷人的少妇在线观看| 国产乱人偷精品视频| 肉色欧美久久久久久久蜜桃| 亚洲欧美色中文字幕在线| 看十八女毛片水多多多| 色吧在线观看| 亚洲欧美一区二区三区国产| 黄色一级大片看看| 亚洲怡红院男人天堂| 国产 精品1| 晚上一个人看的免费电影| 伊人久久精品亚洲午夜| 色婷婷av一区二区三区视频| 一级毛片我不卡| 蜜桃在线观看..| 欧美bdsm另类| 99久国产av精品国产电影| 尾随美女入室| 国产一区二区在线观看av| 亚洲国产色片| 国产午夜精品一二区理论片| 哪个播放器可以免费观看大片| 最近手机中文字幕大全| 久久久欧美国产精品| 久久久久精品久久久久真实原创| 一本久久精品| 免费看不卡的av| 亚洲国产av影院在线观看| 五月天丁香电影| 伊人久久精品亚洲午夜| 国产欧美另类精品又又久久亚洲欧美| 51国产日韩欧美| 精品酒店卫生间| xxx大片免费视频| 在线观看www视频免费| 久久女婷五月综合色啪小说| 高清av免费在线| 三上悠亚av全集在线观看| 高清黄色对白视频在线免费看| 日韩成人av中文字幕在线观看| 老女人水多毛片| 欧美精品人与动牲交sv欧美| 成人漫画全彩无遮挡| 亚洲国产精品国产精品| 精品人妻偷拍中文字幕| 久久精品久久精品一区二区三区| 午夜影院在线不卡| 超色免费av| 99久久精品国产国产毛片| 久久久久久久久久成人| 亚州av有码| 免费看av在线观看网站| 男女免费视频国产| 日本av手机在线免费观看| 丁香六月天网| 国产极品天堂在线| 嫩草影院入口| 日韩一区二区视频免费看| 如日韩欧美国产精品一区二区三区 | 一级毛片电影观看| 晚上一个人看的免费电影| 高清黄色对白视频在线免费看| 久久99热这里只频精品6学生| tube8黄色片| 91国产中文字幕| 美女cb高潮喷水在线观看| 热99久久久久精品小说推荐| 日韩制服骚丝袜av| 韩国av在线不卡| 精品国产一区二区三区久久久樱花| 多毛熟女@视频| 十八禁高潮呻吟视频| 国产黄色免费在线视频| 成人无遮挡网站| 80岁老熟妇乱子伦牲交| 哪个播放器可以免费观看大片| 男的添女的下面高潮视频| 26uuu在线亚洲综合色| 99九九线精品视频在线观看视频| 丝袜脚勾引网站| 在线观看一区二区三区激情| 波野结衣二区三区在线| 国产极品粉嫩免费观看在线 | 午夜免费鲁丝| 欧美3d第一页| 国产伦理片在线播放av一区| 伊人亚洲综合成人网| 色吧在线观看| av卡一久久| 免费黄网站久久成人精品| 欧美变态另类bdsm刘玥| 人成视频在线观看免费观看| 国产一区亚洲一区在线观看| 国产亚洲精品久久久com| 亚洲少妇的诱惑av| 精品国产露脸久久av麻豆| 国产成人免费观看mmmm| 美女福利国产在线| 乱人伦中国视频| 人体艺术视频欧美日本| 国产午夜精品久久久久久一区二区三区| 有码 亚洲区| 老司机影院成人| 免费少妇av软件| 在线看a的网站| 久久影院123| 精品视频人人做人人爽| 亚洲美女视频黄频| 久久精品久久久久久久性| 精品国产露脸久久av麻豆| 国产黄片视频在线免费观看| 成人午夜精彩视频在线观看| 色婷婷av一区二区三区视频| 欧美3d第一页| 母亲3免费完整高清在线观看 | 极品少妇高潮喷水抽搐| 街头女战士在线观看网站| 熟女人妻精品中文字幕| 久久久国产精品麻豆| 国产精品一区二区在线不卡| 精品久久久噜噜| 国产极品天堂在线| 国产片特级美女逼逼视频| 免费av不卡在线播放| 青春草亚洲视频在线观看| 国产成人精品一,二区| 亚洲av成人精品一二三区| 国产日韩欧美视频二区| 国产av码专区亚洲av| 日本爱情动作片www.在线观看| 两个人免费观看高清视频| 女的被弄到高潮叫床怎么办| 久久久久久久久久成人| √禁漫天堂资源中文www| 丝袜喷水一区| 亚洲国产av新网站| 亚洲精品中文字幕在线视频| 午夜福利在线观看免费完整高清在| 91在线精品国自产拍蜜月| 免费看不卡的av| 午夜激情久久久久久久| 国产亚洲精品第一综合不卡 | 午夜日本视频在线| 亚洲综合精品二区| 黄色一级大片看看| 国产日韩一区二区三区精品不卡 | 母亲3免费完整高清在线观看 | kizo精华| 国产精品三级大全| 新久久久久国产一级毛片| 久久精品久久久久久噜噜老黄| 亚洲av综合色区一区| 成人毛片a级毛片在线播放| 久久国内精品自在自线图片| www.av在线官网国产| 黄色怎么调成土黄色| 国产精品国产av在线观看| 亚洲国产欧美在线一区| 久久精品国产a三级三级三级| 精品久久久久久久久亚洲| 秋霞在线观看毛片| 人成视频在线观看免费观看| 欧美 亚洲 国产 日韩一| 精品国产露脸久久av麻豆| 美女福利国产在线| 国产不卡av网站在线观看| 少妇人妻久久综合中文| 五月天丁香电影| 午夜免费观看性视频| 国产成人精品无人区| 亚洲一级一片aⅴ在线观看| 国模一区二区三区四区视频| 三上悠亚av全集在线观看| 99re6热这里在线精品视频| 国产av码专区亚洲av| 成人国产麻豆网| 亚洲精品国产av蜜桃| 亚洲天堂av无毛| 国产日韩欧美视频二区| 日韩人妻高清精品专区| a级毛片黄视频| 纵有疾风起免费观看全集完整版| 老司机亚洲免费影院| 九九在线视频观看精品| 国产成人a∨麻豆精品| 久久久久国产网址| 国产精品一区二区在线不卡| 亚洲av综合色区一区| 99视频精品全部免费 在线| av天堂久久9| 91成人精品电影| 亚洲激情五月婷婷啪啪| 亚洲,一卡二卡三卡| 国产日韩欧美在线精品| 日本与韩国留学比较| 亚洲精品久久午夜乱码| 九九爱精品视频在线观看| 国产女主播在线喷水免费视频网站| 日本av手机在线免费观看| 欧美一级a爱片免费观看看| 日本av免费视频播放| 一本大道久久a久久精品| 国产伦理片在线播放av一区| 亚洲av.av天堂| 婷婷成人精品国产| 久久久久久久久久久久大奶| 精品卡一卡二卡四卡免费| 另类亚洲欧美激情| 美女内射精品一级片tv| 一级爰片在线观看| 欧美精品国产亚洲| 在线观看免费视频网站a站| 久久人人爽人人爽人人片va| 久久婷婷青草| 日韩强制内射视频| 色5月婷婷丁香| 在线观看国产h片| 十八禁网站网址无遮挡| 亚洲欧美日韩卡通动漫| 国产成人精品在线电影| 精品卡一卡二卡四卡免费| 夜夜看夜夜爽夜夜摸| 国产精品嫩草影院av在线观看| 人成视频在线观看免费观看| 九色亚洲精品在线播放| 欧美日韩成人在线一区二区| 国产精品一二三区在线看| 亚洲天堂av无毛| 高清毛片免费看| 日韩不卡一区二区三区视频在线| 高清毛片免费看| 亚洲av男天堂| 免费少妇av软件| 一级a做视频免费观看| 成人午夜精彩视频在线观看| 久久ye,这里只有精品| 国产成人午夜福利电影在线观看| 免费大片18禁| av有码第一页| 美女福利国产在线| 老司机影院毛片| 99久国产av精品国产电影| 91久久精品电影网| 99热6这里只有精品| 亚洲美女黄色视频免费看| 晚上一个人看的免费电影| 人人妻人人澡人人看| 午夜福利影视在线免费观看| 亚洲av成人精品一区久久| √禁漫天堂资源中文www| 欧美老熟妇乱子伦牲交| 青青草视频在线视频观看| 国产在线免费精品| 一区二区三区免费毛片| 免费观看av网站的网址| 亚洲av免费高清在线观看| 久久免费观看电影| 日韩一区二区三区影片| 国产熟女午夜一区二区三区 | 国产一区二区三区av在线| 成年av动漫网址| 爱豆传媒免费全集在线观看| 久热这里只有精品99| 国产日韩一区二区三区精品不卡 | 又大又黄又爽视频免费| 久久精品国产亚洲av天美| 色吧在线观看| 久热这里只有精品99| 黄色怎么调成土黄色| 大陆偷拍与自拍| 欧美日韩av久久| 亚洲精品久久久久久婷婷小说| 免费看av在线观看网站| 久久久久精品久久久久真实原创| 中文字幕人妻熟人妻熟丝袜美| 国产亚洲欧美精品永久| 尾随美女入室| 超碰97精品在线观看| 婷婷色综合大香蕉| 亚洲国产精品国产精品|