• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temperature-dependent Photoluminescence Properties of Cs0.05FA0.79MA0.16PbI2.52Br0.48 Perovskite Thin Film

    2021-10-09 10:27:00ZHANGQiongWUYuejiaFENGYanqinSUNLiweiDAIJun
    發(fā)光學(xué)報(bào) 2021年9期

    ZHANG Qiong, WU Yue-jia, FENG Yan-qin, SUN Li-wei, DAI Jun

    (School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China)

    *Corresponding Author, E-mail: daijun@just.edu.cn

    Abstract: This paper reports the temperature-dependent photoluminescence properties of Cs0.05FA0.79MA0.16PbI2.52-Br0.48 perovskite thin film. The Cs0.05FA0.79MA0.16PbI2.52Br0.48 perovskite thin film was prepared by one-step spin coating with chlorobenzene anti-solvent treatment, and the surface morphology and crystallization quality were characterized. The X-ray diffraction(XRD) indicates that the Cs0.05FA0.79MA0.16PbI2.52Br0.48 has a typical tetragonal perovskite structure. The perovskite film has a uniform and dense surface, and the grain size is about 300 nm. The photoluminescence intensity was measured in the temperature range of 5-200 K. The photoluminescence spectra show a continuous blue shift of about 9.36 nm, and there is no reversal redshift induced by phase transition. The photoluminescence intensity shows a bi-exponential quenching with the increase of temperature, and two thermal activation energies are obtained by Arrhenius equation. The optical bandgap is fitted by the Bose-Einstein double harmonic oscillator model, and the non-renormalized bandgap energy, the energies of acoustic phonon and optical phonon were fitted. The photoluminescence broadening mechanism was studied by the Segall formula. At 10 K and 100 K, the photoluminescence is mainly from exciton recombination, while at 200 K, the radiation recombination is mainly from free-to-bound and donor-acceptor pairs, which means the defect associated photoluminescence arises at high temperature. The detailed optical parameters in our paper can provide a physical foundation for further optimization of perovskite optoelectronic devices.

    Key words: perovskite thin film; photoluminescence; exciton-phonon interaction

    1 Introduction

    In recent years, with the significant improvement of the performance of organic-inorganic metal halide perovskite solar cells, perovskite semiconductor was regarded as the ideal photovoltaic material to substitute the traditional silicon. Meanwhile, perovskite semiconductor materials also present excellent advantages in the light-emitting diodes, lasers and photodetectors. Therefore, semiconductor perovskite materials attract tremendous attention in the field of optoelectronics. The performance of optoelectronics devices strongly depends on the basic properties of carriers, such as the exciton binding energy, diffusion length, carrier-phonon interaction, and so on. Except for the organic-inorganic halide perovskite MAPbX3[1-2]and pure inorganic perovskite CsPbX3[3-4], scientists found many kinds of multiple cation perovskite CsFAMAPbI3[5]can present higher power conversion efficiency than the MAPbI3and CsPbI3perovskite solar cell[6-9], so the CsFAMAPbI3is widely accepted as the active layer for the solar cell, and the Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3achieves the best efficiency of 20.48%[10]. Usu-ally, the MAPbI3perovskite bandgap changes with temperature, and phase transition can take place at about 120 K[11-13], which leads to the photoluminescence center reversal redshift. However, the temperature-dependent bandgap, photoluminescence profile and the carrier-phonon interaction have not been studied for such mixed cation perovskite CsFAMAPb-(I/Br)3.

    In this paper, the optical properties of the Cs0.05FA0.79MA0.16PbI2.52Br0.48perovskite thin film with the reported highest power conversion efficiency was investigated. The Cs0.05FA0.79MA0.16PbI2.52Br0.48thin film was fabricated by spin-coating method, and the X-ray diffraction(XRD) and field-emission scanning electron microscope(FE-SEM) were measured to characterize the structure. The temperature-dependent photoluminescence center wavelength presents continuous blueshift as the temperature changes from 5 K to 200 K. The photoluminescence linewidth presents broadening as the temperature increases. The exciton binding energy, non-renormalization bandgap energy, electron-phonon coupling coefficient, optical and acoustic phonon energy are systematically studied.

    2 Experiments

    Formamidinium iodide(FAI) and methylammonium bromide(MABr) were bought from Dyesol. Lead iodide(PbI2) and lead bromide(PbBr2) were bought from Sigma-Aldrich. Cesium iodide(CsI) was bought from Alfa Aesar. The perovskite precursor solutions were prepared by dissolving CsI(0.057 mol·L-1), FAI(1.16 mol·L-1), PbI2(1.24 mol·L-1), MABr(0.23 mol·L-1) and PbBr2(0.238 mol·L-1) in the mixed solvent of DMF∶DMSO=4∶1(volume ratio). The solution was stirred at 60 ℃ for 10 h and then filtered through a polytetrafluoroethylene filter(pore diameter 0.22 μm).

    Indium-tin oxide glass substrates were sonicated for 15 min with detergent, deionized water, acetone and anhydrous ethanol, respectively. The substrates are dried by nitrogen, then cleaned in the UV-ozone cleaner for 15 min. The cleaned substrates were transferred to a nitrogen glove box. The perovskite precursor solution was spin-coated on ITO substrates with 6 000 r/min for 30 s in a nitrogen glove box, at the 20th second, dip 200 μL chlorobenzene quickly to improve the perovskite crystalline quality. Then the obtained Cs0.05FA0.79MA0.16PbI2.52Br0.48perovskite thin film was annealed at 100 ℃ on the heating plate for 30 min.

    Under the irradiation of Cu Kα(λ=0.154 056 nm), XRD of the Cs0.05FA0.79-MA0.16PbI2.52Br0.48thin film was measured by Bruker D8 superior diffractometer, and the morphology of the sample was measured by scanning electron microscope(Zeiss SURRA-40). The sample was positioned in a quartz optical cavity, refrigerated to 5 K through liquid nitrogen cryogenic system(Janis 150c), excited by means of 325 nm laser, then temperature was adjusted from 5 K to 200 K, and the photoluminescence spectra was amassed by means of a spectrometer geared up with CCD(SP 2500i, Acton).

    3 Results and Discussion

    Fig.1(a) shows SEM image of Cs0.05FA0.79-MA0.16PbI2.52Br0.48perovskite thin film and the scale bar is 3 μm. The complete film is composed of uniform and dense perovskite layer, and the grain size is about 300 nm.

    Fig.1 SEM image(a), AFM image(b) and XRD pattern(c) of Cs0.05FA0.79MA0.16PbI2.52Br0.48 perovskite thin film.

    Fig.1(b) shows the AFM image of as-fabricated film with the root mean square roughness of 36.9 nm. Fig.1(c) shows the XRD pattern of Cs0.05-FA0.79MA0.16PbI2.52Br0.48perovskite thin film coated on ITO substrates. In the X-ray diffraction pattern, except for the diffraction from the ITO substrate and PbI2, the other Bragg signals can be assigned to tetragonal perovskite phases. The obvious peak at 12.73° indicates that there is excess lead iodide(PbI2) in the solutions of Cs0.05FA0.79MA0.16PbI2.52-Br0.48precursor and the peaks at 14.16°, 20.06°, 24.61°, 28.49°, 31.88°, 35.33°, 40.68°, 43.2° and 50.31° can be assigned to the scattering from (001),(011),(111),(002),(012),(112),(022),(003) and (222) crystal plane of the layered perovskite[14-17]. The signals of 14.16°, 20.06° and 24.61°(2θCu radiation) were observed from the X-ray diffraction patterns. The PbI2signal is widely presented in the perovskite samples due to the excessive PbI2in the precursor solutions[16,18-19].

    Fig.2 (a)Temperature-dependent photoluminescence spectra of as-fabricated film. (b)Normalized photoluminescence spectra of (a). (c)Rrelationship between photoluminescence intensity and reciprocal of temperature.

    The exciton-phonon interaction is examined by measuring the photoluminescence spectra in the temperature vary ofT=5~200 K as proven in Fig.2(a) and (b). Fig.2(a) and (b) show the temperature-dependent unnormalized and normalized photoluminescence spectra of the Cs0.05FA0.79MA0.16PbI2.52-Br0.48perovskite thin film. In addition, a 9.36 nm blueshift of photoluminescence peak position from 781.07 nm to 771.71 nm is observed, and accompanied by a slight broadening of FWHM from 19.4 nm to 34.32 nm. The blueshift reflects the lattice deformation potential and exciton-phonon coupling[20], and it is related to the photoluminescence emission of bound excitons on the short wavelength side. For the pure FAPbI3or MAPbI3, the phase transition temperature is about at 120 K. Here the Cs and Br doping may change the crystal structure[21]. It may be the reason of the absence of phase transition phenomenon.

    Fig.2(c) shows the relationship between photoluminescence intensity and reciprocal of temperature, which can be fitted by the Arrhenius equation[22]:

    (1)

    whereI(T) andI(0) are the emission intensity at the temperaturesTand 0 K,C1andC2are the relative weight of the two quenching processes,kBis Boltzmann constant,E1andE2are the activation energies related with the nonradiative recombination process.E1andE2obtained by fitting are 123.45 meV and 10.73 meV respectively. The highE1is considered as the potential barrier between the localized potential minima and the non-radioactive recombination centers, and the lowE2might be attributed localized exciton binding energy[23-25].

    The Bose-Einstein double oscillator model only considers the relative contributions of acoustic phonon and optical phonon, but does not consider the sum of all possible phonon in Brillouin zone, and depends on the fact that the electron-phonon contribution symbols given by the two oscillators are opposite[26]. The model is used to analyze the bandgap change, and described as follows[27]:

    (2)

    whereE0is non-renormalized bandgap energy,AacandAoptrepresent the relative weight of oscillators (or the electron-phonon coupling coefficients),ωacandωoptare the acoustic and optical phonon energies, andMacandMoptare the relative atomic masses of the oscillator.

    Fig.3(a) shows the temperature-dependent bandgap of the Cs0.05FA0.79MA0.16PbI2.52Br0.48perovskite thin film. The model provides an excellent fit(red solid line) to the experimental data obtained for the film across the temperature range studied. The best fitting parameters were obtained asE0=1.639 eV,Aac=3.485,Aopt=-12.99,ωac=50.65 meV andωopt=285.42 meV. The non-renormalized bandgapE0is reasonable, and it is thought between 1.62 eV and 1.65 eV[15,28-29]. As shown in Fig.3(a), the bandgap of Cs0.05FA0.79MA0.16-PbI2.52Br0.48increases non-linearly with the temperature, and the contribution of optical phonon and acoustic phonon to bandgap obeys the Bose-Einstein distribution.

    The total photoluminescence emission broadening can be described by the sum of three broadening contributions given by the Segall expression as follows[30]:

    Γ(T)=Γinh+ΓAC+ΓLO,

    (3)

    (4)

    whereΓinhis the non-uniform expansion constant caused by exciton-exciton interaction and crystal disorder, which is independent of temperature. In the second term (ΓAC),φACrepresents the phonon coupling coefficient of exciton-phonon interaction, which is mainly related to the temperature-dependent deformation potential interaction. The third term (ΓLO),φLOis the exciton-longitudinal optical phonon coupling coefficient or Fr?hlich coupling coefficient, which is related to the Bose-Einstein distribution of LO phonons given as 1/(e(ELO/kT)-1)[26]. Here,ELOis the energy of the LO phonons,kis the Boltzmann constant.

    Fig.3(b) shows the temperature-dependent FWHM of the Cs0.05FA0.79MA0.16PbI2.52Br0.48perovskite thin film. The contribution to broadening from acoustic phonon and LO phonon is also plotted. The FHWM

    Fig.3 (a)Temperature-dependent photoluminescence bandgap of Cs0.05FA0.79MA0.16PbI2.52Br0.48perovskite thin film. The experimental data(black squares) are fitted using a Bose-Einstein two-oscillator model(red solid line). At the same time, the relative contributions of non-renormalized bandgap energy(horizontal purple dashed line) and lead-like phonon(green dotted line) and X-like optical phonon(blue dotted line) to energy drift are given. (b)Temperature-dependent FWHM for Cs0.05FA0.79MA0.16PbI2.52Br0.48perovskite thin film. The black squares are the experimental data fitted using Segall expression(red solid line). The temperature-dependent the photoluminescence exciton linewidth broadening arising from acoustic phonon interplayΓ(T)=Γinh+ΓAC(blue dash-dot line), LO phonon interplayΓ(T)=Γinh+ΓLO(purple dash-dot line), inhomogeneous broadening termΓ(T)=Γinh(horizontal green dotted line). (c)Photoluminescence spectra evolution with the laser power at 10 K. (d)Relationship between photoluminescence intensity and incident laser power at 10, 100, 200 K.

    broadening by the contribution of acoustic phonon increases linearly with the temperature, while LO phonon is on the contrary. It indicates the strong exciton-phonon interactions in Cs0.05FA0.79MA0.16-PbI2.52Br0.48perovskite thin film. The best fitted parameters by equation (4) areΓinh=39.19 meV,φAC=88.93 μeV·K-1,φLO=81.67 meV andELO=32.77 meV.

    With the increase of laser power at 10 K, there is no blueshift or redshift in photoluminescence spectra as shown in Fig.3(c). Fig.3(d) shows the relationship between excitation power and photoluminescence intensity at 10, 100, 200 K. The photoluminescence intensityIexponentially increasing with excitation powerPcould be expressed as

    I∝Pγ,

    (5)

    here the parameterγcan reflect the carrier recombination processes physically. Ifγ=1, it indicates that the radiation recombination is dominant[31]. If 1<γ<2, the photoluminescence is mainly from exciton-like recombination, and ifγ<1, the photoluminescence might be from free-to-bound and donor-acceptor pairs recombination[4]. Here the fittedγare 1.006 3 and 1.013 2 at 10 K and 100 K, respectively, which means the photoluminescence is from exciton recombination. While the fittedγ=0.998 6 at 200 K indicates the radiation recombination is mainly from free-to-bound and donor-acceptor pairs, which means the defect associated photoluminescence arises at high temperature[31].

    4 Conclusion

    In this paper, the temperature-dependent photoluminescence properties of Cs0.05FA0.79MA0.16PbI2.52-Br0.48perovskite thin film treated with chlorobenzene were studied. The temperature-dependent photoluminescence reveals the effect of exciton-phonon coupling. With the increase of temperature, the photoluminescence shows blue-shift and bi-exponential quenching. The activation energiesE1andE2fitted by Arrhenius equation are 123.45 meV and 10.73 meV respectively. The bandgap fitted by the Bose-Einstein double harmonic oscillator model gives the non-renormalized bandgap energy 1.639 eV, and the non-uniform expansion and exciton-phonon coupling coefficients of the photoluminescence were obtained by Segall expression fitting. At 10 K and 100 K, the photoluminescence of Cs0.05FA0.79MA0.16PbI2.52Br0.48is dominated by the exciton recombination, while at 200 K, the photoluminescence is donated by free-to-bound and donor-acceptor pairs, which indicates that the photoluminescence related to defects is produced at high temperature.

    Response Letter is available for this paper at:http://cjl.lightpublishing.cn/thesisDetails#10.37188/CJL.20210195.

    国产片特级美女逼逼视频| 亚洲人与动物交配视频| 亚洲欧美日韩卡通动漫| 狂野欧美激情性bbbbbb| 亚洲第一av免费看| 成人亚洲精品一区在线观看 | 丝袜喷水一区| 亚洲精品中文字幕在线视频 | 嫩草影院新地址| 国产免费视频播放在线视频| 最近手机中文字幕大全| 亚洲va在线va天堂va国产| 日本一二三区视频观看| 建设人人有责人人尽责人人享有的 | 久久综合国产亚洲精品| 我要看黄色一级片免费的| 日本黄色片子视频| 亚洲精品中文字幕在线视频 | 日韩亚洲欧美综合| 国产老妇伦熟女老妇高清| 少妇人妻精品综合一区二区| 老师上课跳d突然被开到最大视频| 欧美变态另类bdsm刘玥| 亚洲国产高清在线一区二区三| 一区二区三区精品91| 少妇人妻久久综合中文| 国产高清国产精品国产三级 | 在线播放无遮挡| 黄色日韩在线| 日韩人妻高清精品专区| av国产免费在线观看| 97超视频在线观看视频| 日韩强制内射视频| 亚洲四区av| 我要看黄色一级片免费的| 一级片'在线观看视频| 亚洲三级黄色毛片| 亚洲国产日韩一区二区| 亚洲av国产av综合av卡| 国产亚洲5aaaaa淫片| 久久久久久久久大av| 搡老乐熟女国产| 欧美日韩国产mv在线观看视频 | 日产精品乱码卡一卡2卡三| 亚洲伊人久久精品综合| 午夜免费鲁丝| 少妇熟女欧美另类| a级一级毛片免费在线观看| 在线观看免费视频网站a站| 夫妻性生交免费视频一级片| 中文天堂在线官网| 色婷婷av一区二区三区视频| 国产精品女同一区二区软件| 亚洲四区av| 精品99又大又爽又粗少妇毛片| 国产日韩欧美在线精品| 精品国产露脸久久av麻豆| 亚洲精品日韩在线中文字幕| 免费不卡的大黄色大毛片视频在线观看| 又大又黄又爽视频免费| 天天躁夜夜躁狠狠久久av| 亚洲欧美一区二区三区黑人 | 伊人久久精品亚洲午夜| 欧美日韩一区二区视频在线观看视频在线| 国产亚洲5aaaaa淫片| 亚洲av福利一区| 国产视频首页在线观看| 亚洲综合精品二区| 美女视频免费永久观看网站| 久久精品国产亚洲av涩爱| 亚洲经典国产精华液单| 一区在线观看完整版| 最新中文字幕久久久久| 日本爱情动作片www.在线观看| 久久久久网色| 久久久久网色| 丝袜喷水一区| 女性生殖器流出的白浆| 久久国产乱子免费精品| 久久久精品94久久精品| 91在线精品国自产拍蜜月| 欧美xxxx性猛交bbbb| 又黄又爽又刺激的免费视频.| 国产在线免费精品| 欧美日韩视频精品一区| 黑人猛操日本美女一级片| 乱系列少妇在线播放| 亚洲精品一区蜜桃| 99国产精品免费福利视频| 成人亚洲欧美一区二区av| 一个人看视频在线观看www免费| 男的添女的下面高潮视频| 一本色道久久久久久精品综合| 91在线精品国自产拍蜜月| 最近2019中文字幕mv第一页| 亚洲精品一区蜜桃| 国产精品国产av在线观看| 18+在线观看网站| 在线播放无遮挡| 亚洲经典国产精华液单| 又大又黄又爽视频免费| 久久 成人 亚洲| 一级黄片播放器| 日韩 亚洲 欧美在线| 色视频www国产| 欧美成人午夜免费资源| 欧美+日韩+精品| 人妻夜夜爽99麻豆av| 亚洲美女黄色视频免费看| 欧美变态另类bdsm刘玥| 国产爽快片一区二区三区| 日韩欧美一区视频在线观看 | 久久青草综合色| 少妇 在线观看| 国产日韩欧美在线精品| 免费观看在线日韩| www.色视频.com| 嫩草影院新地址| 国产片特级美女逼逼视频| videos熟女内射| 国产精品.久久久| 精品人妻视频免费看| 国产亚洲最大av| 18禁在线播放成人免费| 国模一区二区三区四区视频| 秋霞在线观看毛片| 国产高潮美女av| 色综合色国产| 街头女战士在线观看网站| 精品久久久久久久久亚洲| 国产男女内射视频| 在线免费十八禁| 精品亚洲成国产av| 你懂的网址亚洲精品在线观看| 少妇丰满av| 久久ye,这里只有精品| 91精品国产国语对白视频| 久久人人爽人人片av| 黄色欧美视频在线观看| 在线看a的网站| 亚洲国产精品专区欧美| 国产国拍精品亚洲av在线观看| 一边亲一边摸免费视频| 丰满少妇做爰视频| 丝瓜视频免费看黄片| 国产精品99久久久久久久久| 在线观看免费日韩欧美大片 | 特大巨黑吊av在线直播| 亚洲欧美日韩另类电影网站 | 中文字幕精品免费在线观看视频 | 欧美亚洲 丝袜 人妻 在线| 1000部很黄的大片| 国产毛片在线视频| 亚洲欧美成人精品一区二区| 精品久久久噜噜| 大香蕉97超碰在线| 王馨瑶露胸无遮挡在线观看| 美女福利国产在线 | av在线app专区| 色视频www国产| 久久久久精品性色| 久久久久久久国产电影| 2021少妇久久久久久久久久久| 日本欧美国产在线视频| 建设人人有责人人尽责人人享有的 | 大陆偷拍与自拍| 国产成人freesex在线| 久久久欧美国产精品| 最近2019中文字幕mv第一页| 男女免费视频国产| 黄色一级大片看看| 色5月婷婷丁香| 成人亚洲欧美一区二区av| 亚洲精品乱码久久久久久按摩| 日韩av在线免费看完整版不卡| 一区在线观看完整版| 五月玫瑰六月丁香| 亚洲精品久久久久久婷婷小说| h日本视频在线播放| 免费大片黄手机在线观看| 日韩国内少妇激情av| 丰满乱子伦码专区| 亚洲成人av在线免费| 欧美激情国产日韩精品一区| 十八禁网站网址无遮挡 | 久久亚洲国产成人精品v| 国产成人精品一,二区| 免费黄网站久久成人精品| 国产91av在线免费观看| 丰满少妇做爰视频| 插阴视频在线观看视频| 大片免费播放器 马上看| 亚洲国产欧美人成| 日本av手机在线免费观看| 性色avwww在线观看| 成年免费大片在线观看| 又黄又爽又刺激的免费视频.| 色5月婷婷丁香| 交换朋友夫妻互换小说| 欧美精品一区二区免费开放| av一本久久久久| 最后的刺客免费高清国语| 久久精品久久久久久久性| 亚洲人成网站在线播| 亚洲精品一二三| 国产成人精品久久久久久| 国产精品一及| 国精品久久久久久国模美| 国产视频内射| 精品久久久噜噜| 天堂中文最新版在线下载| 少妇人妻久久综合中文| 丰满迷人的少妇在线观看| 国产成人午夜福利电影在线观看| 蜜桃在线观看..| 丰满迷人的少妇在线观看| 2022亚洲国产成人精品| 日本午夜av视频| 日本黄大片高清| 街头女战士在线观看网站| 国产女主播在线喷水免费视频网站| 国产精品偷伦视频观看了| 国产精品国产三级国产av玫瑰| 大片电影免费在线观看免费| 国产精品爽爽va在线观看网站| 日韩大片免费观看网站| 日本爱情动作片www.在线观看| 搡老乐熟女国产| 偷拍熟女少妇极品色| 精品一区二区三卡| 男人狂女人下面高潮的视频| 精品久久久精品久久久| 六月丁香七月| 国产 精品1| 精品亚洲成a人片在线观看 | a级毛色黄片| 免费观看性生交大片5| 成人特级av手机在线观看| 午夜福利视频精品| 下体分泌物呈黄色| 美女视频免费永久观看网站| 国产精品国产av在线观看| 一个人免费看片子| 日韩一区二区视频免费看| kizo精华| 高清午夜精品一区二区三区| 肉色欧美久久久久久久蜜桃| www.av在线官网国产| 99re6热这里在线精品视频| av天堂中文字幕网| 欧美老熟妇乱子伦牲交| 99re6热这里在线精品视频| 九草在线视频观看| 少妇精品久久久久久久| 国产欧美日韩一区二区三区在线 | 精品人妻偷拍中文字幕| 免费观看av网站的网址| 日产精品乱码卡一卡2卡三| 欧美老熟妇乱子伦牲交| 久久这里有精品视频免费| 91狼人影院| 亚洲国产精品999| 中文资源天堂在线| 夫妻性生交免费视频一级片| 国产成人精品福利久久| 国产永久视频网站| 日产精品乱码卡一卡2卡三| 男女边吃奶边做爰视频| 免费av中文字幕在线| 男女下面进入的视频免费午夜| 成人影院久久| 国产片特级美女逼逼视频| 男人添女人高潮全过程视频| 欧美老熟妇乱子伦牲交| 精品人妻偷拍中文字幕| 亚洲怡红院男人天堂| 一级片'在线观看视频| 少妇人妻 视频| 精品久久久久久久久av| 嫩草影院新地址| 天美传媒精品一区二区| 水蜜桃什么品种好| 少妇精品久久久久久久| 亚洲欧美一区二区三区黑人 | 免费少妇av软件| 日本黄大片高清| 亚洲精品国产色婷婷电影| 少妇 在线观看| 日韩一区二区视频免费看| 国产av码专区亚洲av| 国产乱人视频| 日日撸夜夜添| 高清不卡的av网站| 国产视频内射| 亚洲av成人精品一区久久| 日韩,欧美,国产一区二区三区| 这个男人来自地球电影免费观看 | 免费黄色在线免费观看| 极品教师在线视频| 亚洲欧美成人精品一区二区| 国产熟女欧美一区二区| av国产免费在线观看| 有码 亚洲区| 美女内射精品一级片tv| 亚洲人与动物交配视频| 干丝袜人妻中文字幕| 观看免费一级毛片| 国产精品不卡视频一区二区| 伦理电影大哥的女人| 国产女主播在线喷水免费视频网站| 美女国产视频在线观看| 大片免费播放器 马上看| 啦啦啦啦在线视频资源| 丝瓜视频免费看黄片| 久久亚洲国产成人精品v| 22中文网久久字幕| 街头女战士在线观看网站| 色吧在线观看| 一二三四中文在线观看免费高清| 韩国av在线不卡| 成人综合一区亚洲| 黄色日韩在线| 日韩伦理黄色片| 国产精品一区二区在线不卡| 日本爱情动作片www.在线观看| 久久久久久久大尺度免费视频| 人人妻人人爽人人添夜夜欢视频 | 日本爱情动作片www.在线观看| 免费观看的影片在线观看| 观看免费一级毛片| 亚洲av日韩在线播放| 一级毛片 在线播放| 最近2019中文字幕mv第一页| 中文字幕久久专区| 最近中文字幕2019免费版| 色吧在线观看| 国产免费视频播放在线视频| 免费黄色在线免费观看| av专区在线播放| 免费人妻精品一区二区三区视频| 免费久久久久久久精品成人欧美视频 | 国产爽快片一区二区三区| 大陆偷拍与自拍| 自拍偷自拍亚洲精品老妇| 国产免费视频播放在线视频| 成人二区视频| 欧美成人精品欧美一级黄| 成人午夜精彩视频在线观看| 人体艺术视频欧美日本| 亚洲av福利一区| 久久精品久久久久久久性| 亚洲国产日韩一区二区| 国产午夜精品久久久久久一区二区三区| 高清av免费在线| 狠狠精品人妻久久久久久综合| 黄色一级大片看看| 亚洲av电影在线观看一区二区三区| av在线app专区| 91aial.com中文字幕在线观看| 国产黄色视频一区二区在线观看| 色网站视频免费| 成人漫画全彩无遮挡| 亚洲人成网站高清观看| 日日啪夜夜撸| 精品久久久久久久末码| 久久亚洲国产成人精品v| 成人国产av品久久久| 国产极品天堂在线| 舔av片在线| 亚洲人成网站高清观看| 少妇人妻 视频| 99热这里只有是精品在线观看| 久久人妻熟女aⅴ| 久久综合国产亚洲精品| 日韩一区二区视频免费看| 亚洲综合色惰| 性色av一级| 老司机影院毛片| 99久久中文字幕三级久久日本| 99久久精品国产国产毛片| 国产精品99久久久久久久久| 国产黄色免费在线视频| 少妇猛男粗大的猛烈进出视频| 亚洲精华国产精华液的使用体验| 中国三级夫妇交换| 干丝袜人妻中文字幕| 色综合色国产| 久久人人爽av亚洲精品天堂 | 哪个播放器可以免费观看大片| 国产亚洲一区二区精品| 卡戴珊不雅视频在线播放| 精品亚洲乱码少妇综合久久| 亚洲精品乱久久久久久| h视频一区二区三区| 日韩av免费高清视频| 免费人成在线观看视频色| 亚洲国产欧美在线一区| 联通29元200g的流量卡| 激情 狠狠 欧美| 高清视频免费观看一区二区| av在线播放精品| 免费大片黄手机在线观看| 国产成人免费无遮挡视频| www.av在线官网国产| 毛片一级片免费看久久久久| 黑丝袜美女国产一区| videossex国产| 一级毛片黄色毛片免费观看视频| 在现免费观看毛片| 这个男人来自地球电影免费观看 | 日本一二三区视频观看| 高清黄色对白视频在线免费看 | 成人高潮视频无遮挡免费网站| 久久6这里有精品| 国产白丝娇喘喷水9色精品| 天天躁日日操中文字幕| 亚洲欧美精品自产自拍| 亚洲欧美日韩另类电影网站 | 亚洲人与动物交配视频| 深夜a级毛片| 国产91av在线免费观看| 丰满人妻一区二区三区视频av| 亚洲第一av免费看| 国产亚洲午夜精品一区二区久久| 亚洲精华国产精华液的使用体验| av在线播放精品| 亚洲成色77777| 国模一区二区三区四区视频| 1000部很黄的大片| 久久人人爽人人片av| 亚洲欧美日韩无卡精品| 高清毛片免费看| 国内揄拍国产精品人妻在线| 国产一区有黄有色的免费视频| 精品午夜福利在线看| 人妻 亚洲 视频| 成人漫画全彩无遮挡| 看免费成人av毛片| 一区二区三区免费毛片| 亚洲av日韩在线播放| 亚洲精品第二区| 亚洲精品日韩av片在线观看| 新久久久久国产一级毛片| 亚洲国产欧美在线一区| 亚洲欧美成人精品一区二区| 国产免费视频播放在线视频| 欧美xxⅹ黑人| a级毛色黄片| 精品国产乱码久久久久久小说| 久久精品国产a三级三级三级| 各种免费的搞黄视频| 免费人成在线观看视频色| 成人18禁高潮啪啪吃奶动态图 | 国产爽快片一区二区三区| 国产精品一及| 亚洲人成网站在线观看播放| 国精品久久久久久国模美| 插逼视频在线观看| 最近的中文字幕免费完整| 亚洲熟女精品中文字幕| 老师上课跳d突然被开到最大视频| 国产在线一区二区三区精| 日本wwww免费看| 国产高清三级在线| 久久ye,这里只有精品| 亚洲最大成人中文| 18禁裸乳无遮挡免费网站照片| 欧美精品一区二区大全| 嘟嘟电影网在线观看| 美女国产视频在线观看| 国产av一区二区精品久久 | 久久毛片免费看一区二区三区| 久久久久久久精品精品| 三级经典国产精品| 亚洲国产色片| 亚洲成人中文字幕在线播放| 乱码一卡2卡4卡精品| 国产精品三级大全| kizo精华| 六月丁香七月| 22中文网久久字幕| 中文字幕制服av| 18禁裸乳无遮挡动漫免费视频| 午夜视频国产福利| 亚洲,一卡二卡三卡| 免费观看在线日韩| 韩国高清视频一区二区三区| 亚洲国产精品专区欧美| 亚洲人成网站在线观看播放| 少妇猛男粗大的猛烈进出视频| 国产成人精品久久久久久| 韩国av在线不卡| 3wmmmm亚洲av在线观看| 国产色爽女视频免费观看| 亚洲精品国产成人久久av| 不卡视频在线观看欧美| 春色校园在线视频观看| 亚洲精品,欧美精品| 国产精品伦人一区二区| 国产成人91sexporn| 中文字幕久久专区| 少妇裸体淫交视频免费看高清| 亚洲成色77777| 国产精品久久久久久精品电影小说 | 97热精品久久久久久| 国产永久视频网站| 久久久久久人妻| 免费久久久久久久精品成人欧美视频 | 亚洲精品日韩av片在线观看| 亚洲av成人精品一区久久| 丰满迷人的少妇在线观看| 色网站视频免费| 少妇人妻精品综合一区二区| 精品久久久久久电影网| 午夜免费男女啪啪视频观看| 午夜日韩欧美国产| 亚洲激情五月婷婷啪啪| 99久久人妻综合| 丰满人妻熟妇乱又伦精品不卡| 女性生殖器流出的白浆| 午夜激情av网站| 国产欧美日韩综合在线一区二区| 国产免费又黄又爽又色| 国产99久久九九免费精品| 亚洲七黄色美女视频| 蜜桃国产av成人99| 一本—道久久a久久精品蜜桃钙片| 另类亚洲欧美激情| 久久精品国产综合久久久| 亚洲av国产av综合av卡| 精品人妻一区二区三区麻豆| 亚洲精品国产色婷婷电影| 精品久久久久久久毛片微露脸 | 韩国精品一区二区三区| 男女边吃奶边做爰视频| 午夜福利免费观看在线| 亚洲五月色婷婷综合| 日韩制服骚丝袜av| 蜜桃在线观看..| 91九色精品人成在线观看| 亚洲人成电影观看| 精品亚洲乱码少妇综合久久| 国产高清videossex| 女人久久www免费人成看片| 一区二区三区乱码不卡18| 人成视频在线观看免费观看| 晚上一个人看的免费电影| 高清av免费在线| av有码第一页| 一级a爱视频在线免费观看| 久久这里只有精品19| 国产不卡av网站在线观看| 天天躁日日躁夜夜躁夜夜| 在线观看免费日韩欧美大片| 国产精品麻豆人妻色哟哟久久| 色视频在线一区二区三区| 大话2 男鬼变身卡| 黄色 视频免费看| 亚洲精品国产一区二区精华液| 欧美日本中文国产一区发布| 精品福利观看| 亚洲伊人久久精品综合| 久久av网站| 在现免费观看毛片| 国产极品粉嫩免费观看在线| 热99久久久久精品小说推荐| 最近手机中文字幕大全| 成人黄色视频免费在线看| 国产精品香港三级国产av潘金莲 | 精品福利永久在线观看| 中文字幕亚洲精品专区| 久久久精品94久久精品| 人体艺术视频欧美日本| 超碰97精品在线观看| 欧美日韩亚洲国产一区二区在线观看 | 中文字幕人妻熟女乱码| 午夜福利一区二区在线看| 精品久久久精品久久久| 午夜av观看不卡| 日韩精品免费视频一区二区三区| 亚洲成人手机| 国产精品偷伦视频观看了| 欧美在线黄色| 丝袜美足系列| 中文欧美无线码| 亚洲第一av免费看| 午夜福利视频精品| 欧美日韩成人在线一区二区| 在线观看一区二区三区激情| 国产成人免费无遮挡视频| 天天躁夜夜躁狠狠久久av| 涩涩av久久男人的天堂| 久久青草综合色| 亚洲激情五月婷婷啪啪| 天天躁狠狠躁夜夜躁狠狠躁| 高清不卡的av网站| 这个男人来自地球电影免费观看| 国产精品久久久av美女十八| 午夜福利视频精品| 久久99精品国语久久久| 亚洲国产看品久久| 美女福利国产在线| 久久性视频一级片| 一区福利在线观看| 一区二区三区乱码不卡18| 69精品国产乱码久久久| 久久毛片免费看一区二区三区| 2021少妇久久久久久久久久久| 又大又黄又爽视频免费| 午夜福利,免费看| 老司机在亚洲福利影院| 精品久久久久久电影网| 日本黄色日本黄色录像| 精品少妇一区二区三区视频日本电影| av又黄又爽大尺度在线免费看|