• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modulated Dust-Acoustic Wave Packets in an Opposite Polarity Dusty Plasma System

    2019-03-12 02:41:40JahanChowdhuryMannanandMamun
    Communications in Theoretical Physics 2019年3期

    S.Jahan,N.A.Chowdhury, A.Mannan, and A.A.Mamun

    Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh

    (Received September 12, 2018; revised manuscript received October 23, 2018)

    Abstract The nonlinear propagation of the dust-acoustic bright and dark envelope solitons in an opposite polarity dusty plasma (OPDP)system (composed of non-extensive q-distributed electrons, iso-thermal ions, and positively as well as negatively charged warm dust)has been theoretically investigated.The reductive perturbation method (which is valid for a small, but finite amplitude limit)is employed to derive the nonlinear Schr?dinger equation.Two types of modes, namely, fast and slow dust-acoustic (DA)modes, have been observed.The conditions for the modulational instability (MI)and its growth rate in the unstable regime of the DA waves are significantly modified by the effects of non-extensive electrons, dust mass, and temperatures of different plasma species, etc.The implications of the obtained results from our current investigation in space and laboratory OPDP medium are briefly discussed.

    Key words: dust-acoustic waves, opposite polarity, modulational instability, envelope solitons

    1 Introduction

    Now-a-days, the study of dusty plasma (DP)is one of the most rapidly growing branches in plasma physics due to their existence in space, viz., planetary rings,[1]cometary tails,[2]Jupiter’s magnetosphere,[2]lower part of the Earth’s atmosphere[1]and also in laboratory plasmas.[3?7]The DP have generally considered to be an ensemble of negatively charged dust grains,free electrons,and ions.However, the co-existence of opposite polarity(OP)dust grains in plasmas introduces a new DP model called OP DP (OPDP)whose main constituent species are positively and negatively charged warm massive dust grains.[2,6]The exclusive property of this OPDP, which makes it completely unique from other plasmas(viz.,electron ion and electron-positron plasmas), is that the ratio of the size of positively charged dust grains to that of negatively charged dust grains can be smaller[8]or larger[9]or equal to unity.[9]There are three main processes by which dust grains become positively charged: (a)Secondary emission of electrons from the surface of the dust grains; (b)Thermionic emission induced by the radiative heating; (c)Photoemission in the presence of a flux of ultraviolet photons.[1,10]

    The researchers have focused on wave dynamics,specifically, dust-acoustic (DA)waves (DAWs), dustacoustic rogue waves (DARWs), and dust ion-acoustic waves(DIAWs)in understanding electrostatic density perturbations and potential structures (viz., shock, soliton,envelope solitons,[11?12]and rogue waves[13?15])in DP.Raoet al.[14]first theoretically predicted the existence of very low frequency DAWs (where the inertia is provided by the dust mass and restoring force is provided by the thermal pressure of electrons and ions)in comparison with the electron and ion thermal velocities and this theoretical prediction has been conclusively verified by Barkenet al.[4]There is also direct evidence for the co-existence of both positively and negatively charged dust grains in different regions of space plasmas(viz.,cometary tails,[2]upper mesosphere,[2]and Jupiter’s magnetosphere,[10]etc.)and laboratory devices (viz., direct current and radiofrequency discharges,[1]plasma processing reactors,[16]fusion plasma devices,and solid-fuel combustion products,[1]etc).The novelty of this OPDP has attracted numerous authors[17?21]to investigate the linear and nonlinear propagation of electrostatic waves.Sayed and Mamun[2]studied the finite solitary potential structures that exist in OPDP.El-Taibany[17]examined the DAWs in inhomogeneous four component OPDP, and observed that only compressive soliton is created corresponding to fast DA mode.

    In space and astro-physical situations, if the plasma species move very fast compared to their thermal velocities[22]then the Maxwellian distribution is no longer valid to explain the dynamics of these plasma species.For that reason, Tsallis proposed the non-extensive statistics,[23]which is the generalisation of Boltzmann-Gibbs-Shannon entropy.The importance of Tsallis statistics is that it can easily describe the long range interactions of the electron-ion in DP system.[13?15]The research regarding modulational instability (MI)of DAWs in nonlinear and dispersive mediums has been increasing significantly due to their existence in astrophysics, space physics[11?15]as well as in application in many laboratory situations.[11]A large number of researchers have used the nonlinear Schr?dinger equation (NLSE), which governs the dynamics of the DAWs, to study the formation of the envelope solitons or rogue waves[13?15]in DP.Bainset al.[13]investigated the MI of the DAWs in non-extensive DP.Moslemet al.[14]have studied the MI of the DAWs in three component DP in presence of the non-extensive electrons and ions, and have found that the threshold wave number(kc)increases withq.Duanet al.[19]have investigated the criteria for MI of the DAWs and the formation of envelope solitons in OPDP.Zaghbeeret al.[20]have reported DARWs in a four component OPDP.Gillet al.[21]have studied MI of DAWs in a four component OPDP,and have found that the presence of positive dust grains significantly modify the domain of the MI and localized envelope solitons.To the best knowledge of the authors,no attempt has been made to study the MI and corresponding dark and bright envelope solitons associated with the DAWs in a four component OPDP in presence of OP warm adiabatic dust grains.The aim of the present investigation is therefore to extend the work of Gillet al.[21]by examining the conditions for the MI of the DAWs (in which inertia is provided by the OP warm dust masses and restoring force is provided by the thermal pressure ofq-distributed electrons and iso-thermal ions)in four component OPDP.

    The manuscript is organized as the following fashion:The governing equations of our plasma model are provided in Sec.2.The NLSE is derived in Sec.3.The stability of DAWs is examined in Sec.4.Envelope solitons is presented in Sec.5.Finally, a brief discussion is provided in Sec.6.

    2 Model Equations

    In this paper, we consider a collisionless, fully ionized,unmagnetized four component dusty plasma system composed ofq-distributed electrons (charge?e, massme),iso-thermal ions (charge +e, massmi)and inertial warm negatively charged dust grains (chargeq1=?z1e, massm1)as well as positively charged warm dust grains(chargeq2=+z2e, massm2), wherez1(z2)is the charge state of the negatively (positively)charged warm dust particles.The negatively and positively charged warm dust grains can be displayed by continuity and momentum equations,respectively, as:

    wheren1(n2)is the number densities of the negatively(positively)charged warm dust grains;t(x)is the time(space)variable;u1(u2)is the fluid speed of the negatively (positively)charged warm dust species;eis the magnitude of the charge of the electron;φis the electrostatic wave potential;p1(p2)is the adiabatic pressure of the negatively(positively)charged warm dust grains.The system is enclosed through Poisson’s equation as

    whereniandneare, respectively, the ion and electron number densities.The quasi-neutrality condition at equilibrium can be written as

    whereni0,n20,ne0, andn10are the equilibrium number densities of the iso-thermal ions, positively charged warm dust grains,q-distributed electrons, and negatively charged warm dust grains, respectively.Now, in terms of normalized variables,namely,N1=n1/n10,N2=n2/n20;U1=u1/Cd1(withCd1being the sound speed of the negatively charged warm dust grains);U2=u2/Cd1,?=eφ/kBTi(withTibeing the temperature of the isothermal ion);T=tωpd1(withωpd1being the plasma frequency of the negatively charged warm dust grains);X=x/λDd1(withλDd1being the Debye length of the negatively charged warm dust grains);Cd1=(z1kBTi/m1)1/2,ωpd1= (4πe2z21n10/m1)1/2,λDd1= (kBTi/4πe2z1n10)1/2;p1=p10(n1/n10)γ(withp10being the equilibrium adiabatic pressure of the negatively charged warm dust grains andγ= (N+ 2)/N, whereNis the degree of freedom, for one-dimensional case,N= 1 so thatγ= 3);p10=n10kBT1(withT1being the temperature of the negatively charged warm dust grains andkBis the Boltzmann constant);p2=p20(n2/n20)3(withp20being the equilibrium adiabatic pressure of the positively charged warm dust grains)andp20=n20kBT2(withT2being the temperature of the positively charged warm dust particles).After normalization, the governing equations (1)–(5)can be written as

    whereσ1=T1/z1Ti,σ2=m1T2/z1m2Ti,α=m1z2/m2z1,β=z2n20/z1n10,andμi=ni0/z1n10.It may be noted here that we have considered for our numerical analysism1> m2,n10> n20, andTe,Ti ?T1,T2.The number densities of the non-extensiveq-distributed[15]electron can be given by the following normalized equation

    whereδ=Ti/Te(withTebeing the temperature of the non-extensiveq-distributed electron andTe > Ti)andqis the non-extensive parameter describing the degree of non-extensivity, i.e.,q= 1 indicates the Maxwellian distribution, whereasq <1 refers to the super-extensivity,and the opposite conditionq >1 corresponds to the subextensivity.[15]The number densities of the iso-thermally distributed[15]ion can be represented as

    Now,by substituting Eqs.(12)and(13)into Eq.(11),and extending up to the third order in?, we can obtain

    where

    The left hand side of Eq.(14)is the contribution of electron and ion species.

    3 Derivation of the NLSE

    We will use the reductive perturbation method(RPM)to derive the NLSE for studying the MI of the DAWs in OPDP.Now, the stretched co-ordinate[15]can be defined as

    whereVgis the envelope group velocity and?is a small but real parameter.The dependent variables[15]can be written as

    where Υ=kX ?ωTandk(ω)is the carrier wave number (frequency).The derivative operators in the above equations are considered as follows:

    Now, by substituting Eqs.(15)–(23)into Eqs.(7)–(10),and Eq.(14)and collecting power term of?, the first order approximation(m=1)with the first harmonic(l=1)provides the following relation

    whereλ=3σ1andθ=3σ2.Now, these equations can be reduced to the following pattern

    whereA=ω2?θk2andS=λk2?ω2.Therefore, the dispersion relation for the DAWs can be written as

    whereG= (λk2+θk2+θγ1+λγ1+αβ+ 1),H=(k2+γ1)/k2, andM=k2(θλk2+θγ1λ+θ+αβλ).The conditionG2>4HMmust be satisfied in order to obtain real and positive values ofω.Normally, two types of DA modes exist, namely, fast (ωf)and slow (ωs)DA modes according to the positive and negative sign of Eq.(33).Now,we have studied the dispersion properties by depictingωwithkin Figs.1 and 2 which clearly indicates that(a)The fast DA mode exponentially increases withkfor its lower range,but a saturation starts after a certain value ofk; (b)The value ofωfincreases exponentially with the increasing values ofz2for fixed value ofz1,n20, andn10(see in Fig.1); (c)On the other hand, the slow DA mode linearly increases withk; (d)Theωsdecreases with the increase ofz2for the fixed value ofz1,n20,andn10(see in Fig.2).This result agrees with the result of previous published work.[6,18]It is important to mention that in fast DA mode, both positive and negative warm dust species oscillate in phase with electrons and ions.Whereas in slow DA mode, only one of the inertial massive dust components oscillate in phase with electrons and ions,but the other species are in anti-phase with them.[15]Next, with the help of second-order(m=2 withl=1)equations, we obtain the expression ofVgas

    Fig.1 The variation of ωf with k for different values of β, along with α= 1.2, δ= 0.3, μi= 1.4, σ1= 0.0001,σ2=0.001, and q=1.8.

    Fig.2 The variation of ωs with k for different values of β, along with α= 1.2, δ= 0.3, μi= 1.4, σ1= 0.0001,σ2=0.001, and q=1.8.

    From the next order of?, we can get the secondharmonic mode of the carrier wave withm=2 andl=2 as

    where

    Now, we consider the expressions for (m= 3,l= 0)and(m=2,l=0), which lead to the zeroth harmonic modes.

    Finally, we get

    where

    Now, we can obtain the standard NLSE from the third harmonic(m=3,l=1)modes with the help of Eqs.(29)–(44)which can be written as

    where Φ=for simplicity and the dispersion (P)and nonlinear (Q)coefficient are, respectively, written as

    where

    4 Stability DAWs

    The DAWs are modulationally stable against external perturbation whenP/Q <0.On the other hand,whenP/Q >0, the DAWs are modulationally unstable against external perturbation.WhenP/Q →±∞, the corresponding value ofk(=kc)is called the critical or threshold wave number(kc)for the onset of MI.The variation ofP/Qwithkforμiandαare shown in Figs.3 and 4, respectively, which clearly indicate that (a)The value ofkcincreases with the increase ofni0for fixed value ofz1andn10; (b)On the other hand,kcvalue decreases with the increase ofm2for fixed value ofm1,z2, andz1.The growth rate (Γ)of the modulationally unstable region for the DAWs(whenP/Q>0 and<=(2Q||2/P)1/2)can be written as[6,11?12,15,18]

    Fig.3 The variation of P/Q with k for different values ofμi,along with α=1.2,β=0.07,δ=0.3,σ1=0.0001,σ2=0.001, q=1.8, and ωf.

    Fig.4 The variation of P/Q with k for different values of α,along with β=0.07,δ=0.3,μi=1.4,σ1=0.0001,σ2=0.001, q=1.8, and ωs.

    Now,we have graphically shown how the Γ varies withfor different values ofαandqin Figs.5–9.It is obvious from Figs.5–7 that (a)Within three limits ofq(q= 1,q=+ve,andq=?ve),the maximum value of Γ increases with the increases in the value ofz2for fixed valuesz1,m1,andm2(viaα); (b)So, the effects of theαon the maximum value of the growth rate is independent from the various limits ofq.The physics of this result is that the nonlinearity, which leads to increase the maximum value of the growth rate of DAWs, increases with the increase in the values ofα.

    Fig.5 The variation of Γ with for different values of α(when q=1.0), along with β=0.07, δ=0.3, μi=1.4,σ1=0.0001, σ2=0.001, =0.5, k=0.6, and ωf.

    Fig.6 The variation of Γ with for different values of α(when q=1.5), along with β=0.07, δ=0.3, μi=1.4,σ1=0.0001, σ2=0.001, =0.5, k=0.6, and ωf.

    Fig.7 The variation of Γ with for different values of α(when q=?0.6), along with β=0.07, δ=0.3, μi=1.4,σ1=0.0001, σ2=0.001, =0.5, k=0.6, and ωf.

    The effects of non-extensivity of the electrons on the MI growth rate can be observed from Figs.8 and 9,and it is obvious from these figures that(a)The maximum value of Γ decreases (decreases)with the increase in the values ofqfor the limits ofq >1 (q <1); (b)So, the variation of Γ with respect tois independent on the sign of theq.This result agrees with the result of previous published work.[18]

    Fig.8 The variation of Γ with for q (q > 1), along with α= 1.2, β= 0.07, δ= 0.3, μi= 1.4, σ1= 0.0001,σ2=0.001, =0.5, k=0.6, and ωf.

    Fig.9 The variation of Γ with for q (q < 1), along with α= 1.2, β= 0.07, δ= 0.3, μi= 1.4, σ1= 0.0001,σ2=0.001, =0.5, k=0.6, and ωf.

    5 Envelope Solitons

    The bright(whenP/Q>0)and dark(whenP/Q<0)envelope solitonic solutions, respectively, can be written as[24?27]

    whereψ0indicates the envelope amplitude,Uis the traveling speed of the localized pulse,Wis the pulse width which can be written asand ?0is the oscillating frequency forU=0.The bright (by using Eq.(47))and dark (by using Eq.(48))envelope solitons are depicted in Figs.10 and 11, respectively.

    Fig.10 The variation of Re(Φ)with ξ for k=0.6(bright envelope solitons), along with α=1.2, β=0.07, δ=0.3,μi= 1.4, σ1= 0.0001, σ2= 0.001, τ= 0, ψ0= 0.008,q=1.5, ?0=0.4, U=0.4, and ωf.

    Fig.11 The variation of Re(Φ)with ξ for k=0.2(dark envelope solitons), along with α=1.2, β=0.07, δ=0.3,μi= 1.4, σ1= 0.0001, σ2= 0.001, τ= 0, ψ0= 0.008,q=1.5, ?0=0.4, U=0.4, and ωf.

    6 Discussion

    We have studied an unmagnetized realistic space dusty plasma system consists ofq-distributed electrons, isothermal ions, positively charged warm dust grains as well as negatively charged warm dust grains.The RPM is used to derive the NLSE.The results that have been found from our investigation can be summarized as follows:

    (i)The fast DA mode increases exponentially withz2for fixed value ofz1,n20, andn10(viaβ).On the other hand, the slow DA mode linearly decreases with the increase ofz2for the fixed value ofz1,n20, andn10(viaβ).

    (ii)The DAWs is modulationally stable (unstable)in the range of values ofkin which the ratioP/QisP/Q<0(P/Q>0).

    (iii)The value ofkcincreases with the increase ofni0for fixed value ofz1andn10(viaμiand for fast mode).On the other hand,kcvalue decreases with the increase ofm2for fixed value ofm1,z2, andz1(viaαand for slow mode).

    (iv)The value of Γ increases withαfor fixed value ofq(within three ranges ofq, namely,q >1,q= 1, andq <1).So, the variation of Γ withαis independent of possible values ofq.

    (v)The maximum value of Γ decreases (decreases)with the increase in the values ofqfor the limitsq >1(q <1).So, the growth rate is independent on the sign of theq.

    The results of our present investigation will be useful in understanding the nonlinear phenomena both in space (viz., Jupiters magnetosphere,[2]upper mesosphere,and comets tails,[2]etc.)and laboratory (viz., direct current and radio-frequency discharges, plasma processing reactors, fusion plasma devices,[1]and solid-fuel combustion products,[1]etc.)plasma system containingqdistributed electrons, iso-thermal ions, negatively and positively charged massive warm dust grains in OPDP medium.

    黄色配什么色好看| 国产淫语在线视频| 免费观看的影片在线观看| 偷拍熟女少妇极品色| 2018国产大陆天天弄谢| 免费不卡的大黄色大毛片视频在线观看 | 久久亚洲国产成人精品v| 九九爱精品视频在线观看| 最近2019中文字幕mv第一页| 欧美xxxx黑人xx丫x性爽| 国产成人福利小说| 国产精品久久久久久精品电影| 在线天堂最新版资源| 免费av观看视频| 中文字幕人妻熟人妻熟丝袜美| 91精品国产九色| 麻豆精品久久久久久蜜桃| 久久国内精品自在自线图片| 嫩草影院新地址| 天堂√8在线中文| 日韩不卡一区二区三区视频在线| 久久久午夜欧美精品| 亚洲av二区三区四区| 国产成人午夜福利电影在线观看| 国产大屁股一区二区在线视频| 国产69精品久久久久777片| 大片免费播放器 马上看| 久久综合国产亚洲精品| 亚洲欧洲日产国产| 国产成人精品婷婷| 热99在线观看视频| 国产 亚洲一区二区三区 | 亚洲美女视频黄频| 日韩制服骚丝袜av| 亚洲精品色激情综合| 淫秽高清视频在线观看| 国产高清有码在线观看视频| 春色校园在线视频观看| 男人爽女人下面视频在线观看| 久久久色成人| 亚洲成人久久爱视频| 久久精品国产亚洲网站| 久热久热在线精品观看| 亚洲精品456在线播放app| 午夜福利成人在线免费观看| 成人二区视频| 99久国产av精品| 精品人妻一区二区三区麻豆| 亚洲人成网站高清观看| 天堂网av新在线| 成人综合一区亚洲| 精品久久久噜噜| 日韩视频在线欧美| 大又大粗又爽又黄少妇毛片口| 80岁老熟妇乱子伦牲交| 赤兔流量卡办理| 免费av观看视频| 秋霞伦理黄片| 看黄色毛片网站| 国产成人午夜福利电影在线观看| 色5月婷婷丁香| 赤兔流量卡办理| 看黄色毛片网站| 日韩在线高清观看一区二区三区| 免费人成在线观看视频色| 日韩电影二区| 久久久a久久爽久久v久久| 午夜久久久久精精品| 国产乱人偷精品视频| 99久久人妻综合| 欧美成人午夜免费资源| 国产乱人偷精品视频| 80岁老熟妇乱子伦牲交| av在线老鸭窝| 亚洲三级黄色毛片| 午夜视频国产福利| 亚洲性久久影院| av在线亚洲专区| 欧美+日韩+精品| 网址你懂的国产日韩在线| 久久久久久久久久久免费av| 大香蕉久久网| 黄色日韩在线| 伦理电影大哥的女人| 日韩,欧美,国产一区二区三区| 白带黄色成豆腐渣| 网址你懂的国产日韩在线| 亚洲色图av天堂| h日本视频在线播放| 嫩草影院精品99| 亚洲欧美成人综合另类久久久| 欧美bdsm另类| 亚洲欧美成人综合另类久久久| 少妇被粗大猛烈的视频| 哪个播放器可以免费观看大片| 哪个播放器可以免费观看大片| 亚洲欧洲国产日韩| 日本wwww免费看| 日韩三级伦理在线观看| 婷婷六月久久综合丁香| av国产免费在线观看| eeuss影院久久| 日韩伦理黄色片| 日韩中字成人| 黄片wwwwww| 免费播放大片免费观看视频在线观看| 亚洲美女视频黄频| 亚洲怡红院男人天堂| 日韩精品有码人妻一区| 亚洲综合色惰| 亚洲18禁久久av| 夫妻午夜视频| 色哟哟·www| 欧美另类一区| 热99在线观看视频| 精品熟女少妇av免费看| 欧美日韩一区二区视频在线观看视频在线 | 国产精品av视频在线免费观看| 亚洲欧美成人综合另类久久久| 亚洲国产色片| 亚洲欧美日韩卡通动漫| 偷拍熟女少妇极品色| 嫩草影院精品99| 欧美另类一区| 视频中文字幕在线观看| 91在线精品国自产拍蜜月| 观看美女的网站| 国产精品久久视频播放| 亚洲精品国产av成人精品| 男插女下体视频免费在线播放| 最近手机中文字幕大全| 一二三四中文在线观看免费高清| 一个人免费在线观看电影| 少妇裸体淫交视频免费看高清| av在线播放精品| 丝袜美腿在线中文| 一个人观看的视频www高清免费观看| 亚洲欧美日韩卡通动漫| 亚洲综合精品二区| 国产精品久久久久久精品电影小说 | 亚洲av免费高清在线观看| 熟女人妻精品中文字幕| 99热全是精品| 欧美 日韩 精品 国产| 在线观看人妻少妇| 99热这里只有是精品50| 青春草视频在线免费观看| 日韩视频在线欧美| 麻豆成人午夜福利视频| 一区二区三区四区激情视频| 一区二区三区四区激情视频| 男女视频在线观看网站免费| 一个人观看的视频www高清免费观看| 美女cb高潮喷水在线观看| 久久精品夜色国产| 建设人人有责人人尽责人人享有的 | 日本av手机在线免费观看| 久久6这里有精品| 18禁在线无遮挡免费观看视频| 精品欧美国产一区二区三| 久久韩国三级中文字幕| 能在线免费观看的黄片| 国产成人aa在线观看| 少妇熟女欧美另类| 国产单亲对白刺激| 亚洲不卡免费看| 成年女人在线观看亚洲视频 | 老师上课跳d突然被开到最大视频| 国产乱人偷精品视频| 十八禁国产超污无遮挡网站| 国产免费又黄又爽又色| 久久久久久久久中文| 波多野结衣巨乳人妻| 十八禁网站网址无遮挡 | 特级一级黄色大片| 亚洲成色77777| av天堂中文字幕网| 国产精品蜜桃在线观看| 欧美 日韩 精品 国产| 直男gayav资源| 日韩视频在线欧美| 小蜜桃在线观看免费完整版高清| 人妻一区二区av| 亚洲性久久影院| 免费av不卡在线播放| 国产有黄有色有爽视频| 夜夜看夜夜爽夜夜摸| 精品人妻偷拍中文字幕| 日韩伦理黄色片| 高清av免费在线| 日本爱情动作片www.在线观看| 亚洲婷婷狠狠爱综合网| 欧美成人一区二区免费高清观看| 亚洲综合精品二区| 久久久色成人| 欧美3d第一页| 丝瓜视频免费看黄片| 三级国产精品片| 免费黄色在线免费观看| 免费看日本二区| 成人美女网站在线观看视频| 亚洲,欧美,日韩| 久久久久久久久久久免费av| 成人毛片60女人毛片免费| 男的添女的下面高潮视频| 国产真实伦视频高清在线观看| 99久久中文字幕三级久久日本| 又粗又硬又长又爽又黄的视频| 听说在线观看完整版免费高清| 国产精品久久视频播放| 亚洲欧美一区二区三区国产| 丝瓜视频免费看黄片| 青春草视频在线免费观看| 伦理电影大哥的女人| 22中文网久久字幕| 97人妻精品一区二区三区麻豆| 精品国产三级普通话版| 色综合站精品国产| 最近中文字幕高清免费大全6| 国产精品嫩草影院av在线观看| 国产精品国产三级国产专区5o| 午夜久久久久精精品| 亚洲国产日韩欧美精品在线观看| 网址你懂的国产日韩在线| 人妻夜夜爽99麻豆av| 国产av在哪里看| 亚州av有码| 色播亚洲综合网| 亚洲欧美中文字幕日韩二区| 亚洲图色成人| kizo精华| 精品国产露脸久久av麻豆 | 国产黄色免费在线视频| 亚洲一级一片aⅴ在线观看| 欧美性猛交╳xxx乱大交人| 久久韩国三级中文字幕| 五月天丁香电影| 国产一级毛片在线| 亚洲在线自拍视频| 精品一区二区三卡| 欧美激情国产日韩精品一区| 亚洲,欧美,日韩| 你懂的网址亚洲精品在线观看| 国产一级毛片七仙女欲春2| 精品人妻偷拍中文字幕| 日韩欧美精品v在线| 国产 亚洲一区二区三区 | 亚洲18禁久久av| 我要看日韩黄色一级片| 69人妻影院| 五月天丁香电影| 晚上一个人看的免费电影| 美女被艹到高潮喷水动态| 欧美+日韩+精品| 精品一区二区三区人妻视频| 国产一区二区三区综合在线观看 | 青春草国产在线视频| 18禁动态无遮挡网站| 亚洲无线观看免费| 99视频精品全部免费 在线| 亚洲成人精品中文字幕电影| 黑人高潮一二区| 激情五月婷婷亚洲| 六月丁香七月| 精品一区二区三区视频在线| 蜜桃久久精品国产亚洲av| 国产又色又爽无遮挡免| 插逼视频在线观看| 婷婷色综合大香蕉| 久久精品综合一区二区三区| 欧美成人一区二区免费高清观看| 干丝袜人妻中文字幕| 精品久久久久久久人妻蜜臀av| .国产精品久久| 日本与韩国留学比较| 精品人妻视频免费看| 亚洲av福利一区| 18禁在线无遮挡免费观看视频| 干丝袜人妻中文字幕| 国产色婷婷99| 午夜精品国产一区二区电影 | 青春草亚洲视频在线观看| 免费观看的影片在线观看| 99热这里只有是精品50| 午夜福利成人在线免费观看| 亚洲人成网站高清观看| 一级毛片黄色毛片免费观看视频| 亚洲成人中文字幕在线播放| 亚洲精品国产成人久久av| 日本欧美国产在线视频| 如何舔出高潮| 在线播放无遮挡| 国产精品一区二区性色av| 久久99热这里只有精品18| 欧美性感艳星| 麻豆成人午夜福利视频| 极品少妇高潮喷水抽搐| 国产午夜精品论理片| 国产高潮美女av| 99久久中文字幕三级久久日本| 观看美女的网站| 最近2019中文字幕mv第一页| 天堂影院成人在线观看| 欧美高清成人免费视频www| 国产熟女欧美一区二区| 国产一级毛片七仙女欲春2| 免费播放大片免费观看视频在线观看| 免费大片18禁| 亚洲精品第二区| 国产午夜精品论理片| 成人毛片60女人毛片免费| 少妇被粗大猛烈的视频| 亚洲av一区综合| av女优亚洲男人天堂| 欧美高清性xxxxhd video| 99re6热这里在线精品视频| 亚洲精品久久久久久婷婷小说| 日韩大片免费观看网站| 超碰av人人做人人爽久久| 亚洲国产色片| 可以在线观看毛片的网站| 色综合色国产| 街头女战士在线观看网站| 免费电影在线观看免费观看| 欧美性猛交╳xxx乱大交人| 蜜桃亚洲精品一区二区三区| 内地一区二区视频在线| 国产精品一区二区性色av| 99九九线精品视频在线观看视频| 免费看av在线观看网站| 波多野结衣巨乳人妻| 欧美三级亚洲精品| 国产一区二区在线观看日韩| 免费看美女性在线毛片视频| 国产精品国产三级国产专区5o| a级一级毛片免费在线观看| 日本-黄色视频高清免费观看| 一级毛片 在线播放| 18禁在线无遮挡免费观看视频| 亚洲国产成人一精品久久久| 99re6热这里在线精品视频| 免费高清在线观看视频在线观看| or卡值多少钱| 日韩 亚洲 欧美在线| 国产探花在线观看一区二区| 三级国产精品欧美在线观看| 亚洲一级一片aⅴ在线观看| 69av精品久久久久久| 91精品国产九色| 日日摸夜夜添夜夜添av毛片| 久久99精品国语久久久| 丰满乱子伦码专区| 99久国产av精品国产电影| 又爽又黄a免费视频| 亚洲色图av天堂| 日韩中字成人| 国产黄色小视频在线观看| 亚洲精品中文字幕在线视频 | 777米奇影视久久| 最近手机中文字幕大全| 国产色婷婷99| 成人毛片a级毛片在线播放| 精品午夜福利在线看| 老司机影院成人| 免费观看精品视频网站| 三级国产精品欧美在线观看| 亚洲av福利一区| 久久久久网色| 成人欧美大片| 国产女主播在线喷水免费视频网站 | 七月丁香在线播放| 最后的刺客免费高清国语| 欧美97在线视频| 国产av在哪里看| 国产黄色小视频在线观看| 亚洲精品456在线播放app| 久久久久免费精品人妻一区二区| 神马国产精品三级电影在线观看| 乱人视频在线观看| 免费看av在线观看网站| 黄色配什么色好看| 久久久久精品久久久久真实原创| 天天躁日日操中文字幕| av黄色大香蕉| 肉色欧美久久久久久久蜜桃 | 久久99热这里只有精品18| 卡戴珊不雅视频在线播放| 精品久久久久久久久久久久久| 国产 一区精品| 国产精品一区www在线观看| 中文资源天堂在线| 国产亚洲91精品色在线| 国产精品伦人一区二区| 欧美精品一区二区大全| videossex国产| 中国美白少妇内射xxxbb| 国产精品人妻久久久影院| 欧美极品一区二区三区四区| 日本免费在线观看一区| 亚洲国产精品成人久久小说| 免费看不卡的av| 国产精品久久久久久精品电影| 简卡轻食公司| 久久久久免费精品人妻一区二区| 日韩三级伦理在线观看| 精品99又大又爽又粗少妇毛片| 亚洲精品乱码久久久久久按摩| 欧美日韩国产mv在线观看视频 | 久久久精品94久久精品| 女人被狂操c到高潮| 久久久久久久久久久免费av| 久久99热这里只有精品18| 能在线免费看毛片的网站| 亚洲在线自拍视频| ponron亚洲| 国产高清国产精品国产三级 | 国产女主播在线喷水免费视频网站 | 69人妻影院| 欧美成人午夜免费资源| 精品不卡国产一区二区三区| 免费电影在线观看免费观看| 精品欧美国产一区二区三| 日韩一区二区视频免费看| 午夜福利在线在线| 搡老妇女老女人老熟妇| 狠狠精品人妻久久久久久综合| 亚洲av二区三区四区| 99久久中文字幕三级久久日本| 国产精品嫩草影院av在线观看| 午夜免费男女啪啪视频观看| 91aial.com中文字幕在线观看| 日韩av在线大香蕉| 十八禁国产超污无遮挡网站| 麻豆久久精品国产亚洲av| 91久久精品国产一区二区三区| 蜜桃亚洲精品一区二区三区| 三级经典国产精品| 777米奇影视久久| 国产一级毛片在线| 高清午夜精品一区二区三区| 欧美另类一区| 成人亚洲精品av一区二区| 免费观看在线日韩| 最近视频中文字幕2019在线8| 亚洲av在线观看美女高潮| 国内少妇人妻偷人精品xxx网站| 91在线精品国自产拍蜜月| av在线老鸭窝| 免费看a级黄色片| 久久午夜福利片| a级一级毛片免费在线观看| 免费观看a级毛片全部| 久久久久九九精品影院| 国产午夜精品一二区理论片| 男女下面进入的视频免费午夜| 亚洲四区av| 高清视频免费观看一区二区 | 最近的中文字幕免费完整| 国产精品一区二区三区四区免费观看| 高清av免费在线| 免费少妇av软件| 我的女老师完整版在线观看| 一二三四中文在线观看免费高清| 99热6这里只有精品| 国产乱人偷精品视频| 亚洲精品亚洲一区二区| 国产一区二区在线观看日韩| 午夜老司机福利剧场| 亚洲国产日韩欧美精品在线观看| 身体一侧抽搐| 国产黄片视频在线免费观看| 精品久久久久久久久久久久久| 91久久精品电影网| 亚洲精品国产成人久久av| 成年免费大片在线观看| 欧美日韩一区二区视频在线观看视频在线 | 精品熟女少妇av免费看| 国产高清三级在线| 99久久人妻综合| 大陆偷拍与自拍| 看非洲黑人一级黄片| 少妇裸体淫交视频免费看高清| 欧美3d第一页| 国产探花极品一区二区| 久久国产乱子免费精品| av女优亚洲男人天堂| 少妇熟女aⅴ在线视频| 舔av片在线| 欧美 日韩 精品 国产| 国产一级毛片七仙女欲春2| a级毛片免费高清观看在线播放| 国产精品国产三级国产专区5o| 欧美区成人在线视频| 精品久久国产蜜桃| 久久久久久久久久久丰满| 纵有疾风起免费观看全集完整版 | 国产精品三级大全| 久久国内精品自在自线图片| 人人妻人人看人人澡| 色综合亚洲欧美另类图片| 麻豆成人午夜福利视频| 亚洲最大成人中文| 爱豆传媒免费全集在线观看| 精品人妻熟女av久视频| 波野结衣二区三区在线| 亚洲精品乱久久久久久| 在现免费观看毛片| 女人久久www免费人成看片| 日韩三级伦理在线观看| 亚洲欧美一区二区三区国产| 精品国产一区二区三区久久久樱花 | 人人妻人人澡人人爽人人夜夜 | 婷婷色综合大香蕉| 午夜福利视频精品| 亚洲三级黄色毛片| 免费电影在线观看免费观看| 麻豆成人午夜福利视频| 内射极品少妇av片p| 久久久久久伊人网av| 欧美日韩视频高清一区二区三区二| 欧美日韩亚洲高清精品| 成人亚洲欧美一区二区av| 亚洲精品色激情综合| 六月丁香七月| 亚洲最大成人中文| 色综合亚洲欧美另类图片| 久99久视频精品免费| 国产伦在线观看视频一区| 日本猛色少妇xxxxx猛交久久| 成人二区视频| 亚洲第一区二区三区不卡| 欧美日韩视频高清一区二区三区二| 日韩一区二区视频免费看| 啦啦啦韩国在线观看视频| 亚洲乱码一区二区免费版| 精品久久久久久久末码| 国产淫语在线视频| 欧美高清成人免费视频www| 在线观看一区二区三区| 国产老妇伦熟女老妇高清| 不卡视频在线观看欧美| 我要看日韩黄色一级片| 99热这里只有是精品在线观看| 亚洲精品一二三| 看非洲黑人一级黄片| 久久人人爽人人片av| 黄色配什么色好看| 日韩三级伦理在线观看| 少妇熟女欧美另类| 少妇熟女aⅴ在线视频| 精品一区二区免费观看| 国产淫片久久久久久久久| 国产伦在线观看视频一区| 久久精品国产自在天天线| 麻豆成人午夜福利视频| 国产精品.久久久| 亚洲伊人久久精品综合| 亚洲成人久久爱视频| 久久久久久久久久久免费av| 综合色丁香网| 一区二区三区免费毛片| 日韩一区二区视频免费看| av播播在线观看一区| 最近中文字幕高清免费大全6| 欧美变态另类bdsm刘玥| 成人国产麻豆网| 水蜜桃什么品种好| 亚洲国产日韩欧美精品在线观看| 中文精品一卡2卡3卡4更新| 天堂俺去俺来也www色官网 | 欧美人与善性xxx| 久久久久久伊人网av| 建设人人有责人人尽责人人享有的 | 日韩成人av中文字幕在线观看| 韩国高清视频一区二区三区| 久久热精品热| 国产成人a∨麻豆精品| 国产精品美女特级片免费视频播放器| 国产成人一区二区在线| www.色视频.com| 最近的中文字幕免费完整| 欧美激情久久久久久爽电影| 少妇的逼好多水| 丝瓜视频免费看黄片| 少妇被粗大猛烈的视频| 亚洲精品国产av成人精品| 一级爰片在线观看| 亚洲熟女精品中文字幕| 国产综合精华液| 高清在线视频一区二区三区| 国内少妇人妻偷人精品xxx网站| 午夜福利网站1000一区二区三区| av在线播放精品| 大香蕉久久网| 亚洲欧美清纯卡通| 久久精品国产亚洲av涩爱| 亚洲国产最新在线播放| 免费av不卡在线播放| 99热全是精品| 国产黄频视频在线观看| 99热这里只有是精品50| 综合色av麻豆| 国产伦理片在线播放av一区| 午夜老司机福利剧场| 高清午夜精品一区二区三区| 女人被狂操c到高潮| 日韩中字成人| av专区在线播放| 激情 狠狠 欧美| 亚洲国产高清在线一区二区三| 成人性生交大片免费视频hd| 又大又黄又爽视频免费| 老师上课跳d突然被开到最大视频| 欧美一区二区亚洲| 亚洲不卡免费看|