• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Complete Mitochondrial Genome of the Steppe Ribbon Racer (Psammophis lineolatus):The First Representative from the Snake Family Psammophiidae and its Phylogenetic Implications

    2021-09-27 11:25:42MinliCHENJinlongLIUJunLINaWUandXianguangGUO
    Asian Herpetological Research 2021年3期

    Minli CHEN ,Jinlong LIU ,Jun LI ,Na WU and Xianguang GUO

    1Chengdu Institute of Biology,Chinese Academy of Sciences,Chengdu 610041,Sichuan,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3College of Life Science and Technology,Xinjiang University,Urumqi 830046,Xinjiang,China

    Abstract Comparisons of vertebrate mitochondrial genomes (mitogenomes) may yield significant insights into the evolution of organisms and genomes.However,no complete mitogenome from the snake family Psammophiidae has been reported.In this study,we sequenced and annotated the complete mitogenome ofPsammophis lineolatus,representing the first mitogenome of Psammophiidae.The total length is 17 166 bp,consisting of 13 protein-coding genes (PCGs),22 transfer RNAs (tRNAs),two ribosomal RNAs (12S rRNA and 16S rRNA),and duplicate control regions (CRs).This gene arrangement belongs to the Type III pattern,which is a widely shared gene order in Alethinophidian snakes.All tRNAs exhibit cloverleaf structures with the exception of tRNA-SerAGY and tRNA-Pro,which lack a dihydrouridine (DHU) arm/stem and TΨC loop,respectively.The 13 PCGs include five start codons (ATG,GTG,ATA,ATT,and ATC),two complete stop codons(TAA and AGG),and two incomplete stop codon (T--and TA-).In addition,the Ka/Ks ratios indicate that all PCGs had undergone a strong purifying selection.Four types of CR domains rearrangement occurred among eight species of Elapoidea.The phylogenetic reconstructions with both Bayesian inference and maximum likelihood methods support the placement of Psammophiidae in the Elapoidea superfamily,with Homalopsidae being the sister taxon to Elapoidea and Colubroidea.However,the sister taxon of Psammophiidae is unclear due to the availability of Elapoidea mitogenomes being limited to the family Elapidae.More mitogenomes from different taxonomic groups in Elapoidea are needed to better understand the phylogenetic relationships within Elapoidea.

    Keywords mitochondrial genome,phylogenetic relationships,Psammophis lineolatus,Psammophiidae,purifying selection

    1.Introduction

    During the last four decades,sequences of the mitochondrial genomes (mitogenomes) of thousands of Metazoan species have been produced and are freely available in GenBank (https://www.ncbi.nlm.nih.gov/genbank/).Approximately two thirds of these sequences are from vertebrates.These sequences have been successfully applied to phylogenetic analyses at both shallow and deep levels (e.g.,Berntet al.,2013a;Knauset al.,2011),as well as for analyses of mitogenome organization and evolution (e.g.,Berntet al.,2013b;Boore,1999;Mauroet al.,2006).As the number of mitogenome sequences continues to increase,it has become clear that,rearrangements of several transfer RNA genes (tRNAs) are quite common (e.g.,Mauroet al.,2006;Pereira,2000;Xiaet al.,2016),even though gene arrangement is quite stable across many vertebrates.Overall,most vertebrate mitogenomes contain the same 37 genes (two for rRNAs,13 for proteins and 22 for tRNAs),but their order is variable among -and to a lesser extent,within -major groups (Berntet al.,2013;Boore,1999;Pereira,2000).Accordingly,comparisons of vertebrate mitochondrial genomes may lead to significant insights into the evolution both of organisms and of genomes.

    Snakes,which are members of the suborder Serpentes in Squamata,are an example of a group having a dynamic mitogenome structure.Currently,there are over 3700 recognized snake species,comprising two major clades:Scolecophidia (blind snakes) and Alethinophidia (Uetzet al.,2020).Scolecophidia are small fossorial snakes that feed mainly on ants and termites.Alethinophidia includes Henophidia(primitive snakes) and Caenophidia (advanced snakes;including~80% of extant snakes) (Vidal and Hedges,2002a).Some unique characteristics have been reported in the mitogenomes of snakes,including duplicate control regions (CRs),gene order rearrangements,shorter tRNA genes,and other shortened genes (Chen and Zhao,2009;Douglas and Gower,2010;Jianget al.,2007).To date,11 types of rearrangement patterns have been detected in snake mitogenomes (Type I,II,III,III-A,III-B,III-B1,III-C,III-D,III-E,III-F,III-G) (Qianet al.,2018).Among these,Type III is characterized by duplication of the CR and translocation of the tRNA-Leu gene;it is also the most common gene arrangement,extensively distributed in Alethinophidia.These arrangements are thought to involve three main processes:gene loss,translocation and duplication (Qianet al.,2018).Although a few convergent gene rearrangements have been observed in vertebrate mtDNAs,many derived genomic rearrangements are clearly useful as phylogenetic makers(thus,synapomorphic characters) for the identification of monophyletic groups (Boore and Brown,1998;Okajima and Kumazawa,2010;Xiaet al.,2014).Therefore,mitogenome data will contribute to our phylogenetic understanding of snakes,as well as the evolutionary implications of their mitogenomic rearrangements.

    As of October 1,2020,there were 188 complete mitogenomes of snakes present in the NCBI RefSeq database (Pruittet al.,2007),covering 124 snake species.However,no complete mitogenome from the family Psammophiidae (formerly the subfamily Psammophiinae;Bourgeois,1968) has ever been reported.This family comprises a natural group occurring throughout Africa,the Middle East,Madagascar,southern Europe and south-central Asia (Dowling and Duellman,1978;Kellyet al.,2003;Kellyet al.,2009),and currently consists of eight genera and 55 extant species (Uetzet al.,2020).Many studies of Psammophiidae have focused on systematics based on morphological features (Bourgeois,1968;Dowling and Duellman,1978;Zaher,1999).Although there are some molecular studies,most are based on limited mitochondrial DNA fragments and/or nuclear genes (Gravlun,2001;Kellyet al.,2008;Kellyet al.,2009;Lawsonet al.,2005;Nagyet al.,2003;Vidal and Hedges,2002b).

    In this study,we produced for the first time the complete mitogenome sequence ofthe Steppe Ribbon Racer,Psammophis lineolatus(Brandt,1838),a representative of the family Psammophiidae.As noted by Qianet al.(2018),the Type III mitogenome rearrangement is the most prevalent and widely occurring in Elapidae.Given that Psammophiidae is closely related to Elapidae among the major snake families-both belonging to the Elapoidea superfamily (Figueroaet al.,2016;Kellyet al.,2009;Zaheret al.,2019) -we predict that the mitogenome arrangement ofP.lineolatuswould belong to the Type III pattern.In addition,we used the mitogenome to infer the phylogenetic position of Psammophiidae in the major lineages of the advanced snakes.

    2.Materials and Methods

    2.1.Sample collection and DNA extractionAP.lineolatusspecimen was captured by hand in Buerjin County (47.559316°N,87.056509°E),Xinjiang Uygur Autonomous Region,China in July 2019.A piece of liver was dissected from the snake,which has been euthanized with an overdose of sodium pentobarbital delivered by intraperitoneal injection.Both the liver sample and voucher specimen (Field number GXG311) were fixed in 95% ethanol,and deposited at the herpetological collection,Chengdu Institute of Biology,Chinese Academy of Sciences.Total genomic DNA was extracted using the TIANamp Genomic DNA Kit (TIANGEN,Beijing,China) following the manufacturer’s instructions,and stored at -20°C.The amount and quality of the extracted DNA were assessed through electrophoresis in a 0.8% agarose gel with GoldView (Solarbio,Beijing,China).

    2.2.PCR amplification and sequencingTwenty pairs of primers (Table S1) were designed to amplify the complete mitogenome,based on published mitogenomes from Elapidae(GenBank accession number:EU579523,GU045453).The polymerase chain reaction (PCR) amplification was carried out in volumes of 25 μL consisting of 2 μL template DNA (~ 40 ng/μL),2.5 μL dNTPs (0.2 mmol/L each),1.5 μL MgSO4(1.5 mmol/L),2.5 μL buffer of KOD-plus neo (TOYOBO,Shanghai,China),0.5 μL KOD-plus neo (1.0 U/μL),0.75 μL each primer (0.3 μmol/L),and 14.5 μL ultrapure water.Thermal cycling was performed with an initial denaturation at 94°C for 2 min,followed by 32-35 cycles of 98°C for 10 s,45-60°C (depending on the primers)for 30 s,and 68°C for 60-90 s;the reaction concluded with a final extension of 7 min at 68°C,then stored at 4°C.The PCR products were assessed using 1% agarose gel electrophoresis,purified,and sequenced with the PCR primers and internal primers generated by primer walking.All fragments were sequenced on an ABI 3730 automated sequencer (Applied Biosystems,Inc.) at TsingKe Biotech (Beijing,China).

    2.3.Genome assembly,annotation and analysisMitochondrial DNA fragments were assembled to create the complete mitochondrial genome using the SeqMan II program included in the Lasergene software package (DNAStar Inc.,Madison,USA).The complete mitogenome was submitted to GenBank using the software of Sequin v15.10 (http://www.ncbi.nlm.nih.gov/Sequin/).The boundaries of the proteincoding genes (PCGs) and ribosomal RNA genes (rRNAs) were identified using NCBI-BLAST (http://blast.ncbi.nlm.nih.gov)and MITOS Web Server (http://mitos2.bioinf.uni-leipzig.de/index.py) (Berntet al.,2013c).The tRNAs and their potential cloverleaf structures were predicted using tRNAscan-SE Search Server v1.21 (http://lowelab.ucsc.edu/tRNAscan-SE/) (Lowe and Chan,2016),and verified by aligning them with other snakes.The size of the CR was confirmed by the boundaries of tRNAs and by sequence comparison with previously reported snake mitogenomes.A circular mitogenomic map was generated using OGDRAW v1.3.1 (Greineret al.,2019).Base composition and the relative synonymous codon usage (RSCU) values were calculated using MEGA v7.0 (Kumaret al.,2016).Strand asymmetry was calculated using the formulae:AT-skew=(A-T)/(A+T);GC-skew=(G -C)/(G+C) (Perna and Kocher,1995).

    Ka/Ks is the ratio of the number of nonsynonymous substitutions per nonsynonymous site (Ka) to the number of synonymous substitutions per synonymous site (Ks) (Hurst,2002).This ratio is considered to be a good indicator of selective pressure at the sequence level (Yang and Bielawski,2000) and has been used to identify PCGs under positive and purifying selection in a wide range of organisms (Hurst,2009).In general,positive selection yields a Ka/Ks ratio greater than 1.Conversely,if purifying selection occurs,the Ka/Ks ratio is less than 1,which would lead to a decrease in diversity at the amino acid level.Therefore,to determine the direction of natural selection (positive or purifying) of the PCGs at the molecular level,we calculated the Ka/Ks ratio of each PCG betweenP.lineolatusand three Elapidae snakes (Bungarus multicinctus,Naja najaandOphiophagus Hannah) using DnaSP v6.12.03 (Rozaset al.,2017).

    2.4.Phylogenetic reconstructionPhylogenetic analyses were conducted using the mitochondrial genome (excluding the CR) to infer the placement of Psammophiidae within the advanced snakes (Table S2).Complete gene sequences from representatives of the major snake families were chosen following a recent study (Qianet al.,2018),and were retrieved from GenBank.Each gene was extracted from the whole mitogenome,then separately aligned in batches with MAFFT v7.263 (Katoh and Standley,2013) using ‘-auto’ strategy and normal alignment mode.In total,37 mitochondrial genes were combined from 71 taxa using SeaView v5.0.1 (Gouyet al.,2010),which formed a dataset of 15 838bpin length.Considering that Henophidia is closely related to Caenophidia (Streicher and Wiens,2016;Yanet al.,2008),six Henophidia snake species,representing six families,were chosen as outgroup taxa (Table S2).Among these,Tropidophiidae and Aniliidae were used to root the trees based on two recent publications (Qianet al.,2018;Streicher and Wiens,2016).

    Prior to the phylogenetic analyses,optimal combinations of partitioning schemes and nucleotide substitution models were determined with PartitionFinder v2.1.1 (Lanfearet al.,2017),using the “greedy” algorithm and the Akaike information criterion.The branch lengths of alternative partitions were linked and the “mrbayes” model was used to estimate the best substitution model for IQ-TREE and MrBayes.The best-fit substitution models and partitioning schemes for each gene are given in Table S3.

    Phylogenetic analyses were performed with Bayesian inference (BI) and maximum likelihood (ML) methods.Bayesian phylogenies were inferred using MrBayes v3.2.6 (Ronquistet al.,2012) under partitioned models.Two independent runs were conducted with four Markov Chain Monte Carlo (MCMC) for 10,000,000 generations with parameters and topologies sampled every 1000 generations.When the average standard deviation of split frequencies reached a value of less than 0.01,the initial 25% trees were discarded as burn-in and the remaining trees were used to calculate Bayesian posterior probabilities (PP).Maximum likelihood analyses were conducted in IQ-TREE v1.6.12 (Nguyenet al.,2015) under the models selected for each identified partition.We assessed nodal support using 5000 bootstrap pseudoreplicates via the ultrafast-bootstrap (UFBoot)(Minhet al.,2013) method.Nodes with UFBoot ≥ 95 were considered to be well-supported (Minhet al.,2013;Wilcoxet al.,2002).Finally,the trees were visualized and edited in FigTree v1.4.2 (http://tree.bio.ed.ac.uk/software/figtree) and PowerPoint.

    3.Results and Discussion

    3.1.Genome structure,organization and compositionThe complete sequence of the mitogenome ofP.lineolatus(accession number MT991050) is a traditional circular,double-strain DNA molecule (Figure 1).It contains 37 genes with 13 PCGs,two rRNA genes,and 22 tRNA genes but two control regions(CR I,CR II) (Table 1).However,the tRNA-LeuUUR(Leu2) gene was translocated;in most vertebrates,it is between 16S rRNA and ND1,but in snakes it is between tRNA-Ile and tRNA-Gln(Figure 1).The gene order is in agreement with the Type III pattern designated by Qianet al.(2018).The majority of the 37 genes were encoded by the heavy-strand,except the ND6 gene and eight tRNAs (tRNA-Gln,Ala,Asn,Cys,Tyr,Ser2,Glu,Pro).The intergenic spacers were 33 bp,ranging from 1 to 9 bp in size;the longest (9 bp) was located between ND6 and tRNAGlu.Overlapping nucleotides were found between six pairs of genes,with the length varying from 1 to 25 bp;the largest was located between tRNA-Val and 16S rRNA.

    Figure 1 Mitochondrial map of Psammophis lineolatus.Genes encoded on the heavy or light strand are indicated on the outside or inside of the circular mitogenome map,respectively,showing the direction of transcription.The tRNAs are denoted by color and labeled according to the three-letter amino acid codes.

    The whole mitogenome ofP.lineolatusis 17 166 bp in length (Table 1),with A 32%,G 15.5%,T 23.5%,C 29% (Table 2).The strand bias of nucleotide composition of metazoans mtiogenomes are usually measured by AT-skews and GCskews (Perna and Kocher,1995).The AT-skew and GC-skew of the mitogenome are 0.154 and -0.305,respectively (Table 2),indicating As and Cs are more abundant than Ts and Gs.The nucleotide composition ofP.lineolatusis obviously inclined to A/T.

    3.2.Protein-coding genes and codon usageThe total length of the PCGs in mitogenome ofP.lineolatuswas 11 255 bp,which consisted of seven NADH dehydrogenases (ND1-ND6 and ND4L),three cytochrome c oxidases (COX1-COX3),two ATPases (ATP6 and ATP8) and one cytochromeb(Cyt b) (Table 1).Herein,five-type starting codons for PCGs were adopted:most start with ATG (COX2,ATP8,ATP6,COX3,ND4L,ND4,ND5,ND6,Cytb),while ND1 with ATA,ND2 with ATT,COX1 with GTG and ND3 with ATC.The majority of the PCGs terminated with TAA,while COX1 used AGG.Five (ND2,COX2,COX3,ND3 and Cytb) terminated with incomplete T,presumably transformed into complete stop codons through post-transcriptional polyadenylation (Ojalaet al.,1981).

    Table 1 Complete mitochondrial genome of Psammophis lineolatus and traits of codon as well as anticodon.

    Thirteen PCGs contained 3 589 codons without termination codons.The most frequently used amino acids are Leu1 (7.4%),Ser2 (6.3%),and Gly (4.1%),whereas the least common amino acids are Glu (1.8%),Cys (1.7%),Trp (0.18%) (Table 3).The RSCU refers to the relative frequency of each codon to code a specific amino acid,which could measure the bias of codon usage.The RSCU for the mitochondrial PCGs inP.lineolatusexhibited an over-usage of A and T at the third codon positions.Among them,AAA-Lys (1.46),CCU-Pro (1.43),ACU-Thr (1.39) and UCA-Ser2 (1.39) are the most frequently used codons.The least frequent codons are ACG-Thr (0.36),CCG-Pro (0.39) and GCGAla (0.49) (Table 3).The AT content of the 12 PCGs (excluding ND6 in the light-strand) is 54.9%;the AT-skew and GC-skew are 0.15 and -0.336,respectively (Table 2),which is also a similar trend in other snakes (Debuyet al.,2012;Wanget al.,2012).

    3.3.Transfer and ribosomal RNAsTwenty-two tRNAs were obtained from the complete mitochondrial ofP.lineolatus.The tRNAs ranged from 57 to 73 bp,and the total length was 1436 bp.There was a positive AT-skew,except in the light-strand tRNA (Table 1;Table 2).The skew analysis of tRNA indicatedthe use of As and Cs in the heavy-strand,while there was an obvious bias toward the use of Ts and Gs in the light-strand(Table 2).All of the tRNAs were able to fold into a typical cloverleaf structure,with the exception of tRNA-SerAGYand tRNA-Pro,which lacked a dihydrouridine (DHU) arm/stem and TΨC loop,respectively (Figure 2).Lacking the DHU arm/stem is likely related to a compensation mechanism for tRNA transport function -a phenomenon that has been proposed in lizards (Maceyet al.,1997;Yuet al.,2018) and toads (Caiet al.,2020).The T arm contraction of snake mitochondrial tRNA has been reported (Kumazawaet al.,1996),and is also notable inP.lineolatusmitochondrial tRNA genes,most of which are less than 5 bp (tRNA-Ala,Asp,Glu,His,Lys,Thr) or have only 2-3 bp (tRNA-Gly,Met,Phe).These results suggest that the simplification of mitochondrial tRNA is subject to evolutionary pressure (Kumazawaet al.,1996).

    Table 2 Composition and skewness of P.lineolatus mitogenome.

    Since there is no reported complete mitogenome in Psammophiidae,we identified the boundaries of rRNA genes based on their relative location in the mitogenome.The 12S rRNA and 16S rRNA genes are 925 bp and 1509 bp in length,respectively,and generally separated by tRNA-Val (Table 1).The AT content of 12S rRNA is 54.9%,and 57.6% in 16S rRNA ofP.lineolatus(Table 2).The AT-skew of 12S rRNA and 16S rRNA are positive and greater than the GC-skew,suggesting that there are more As and Cs than Ts and Gs (Table 2).

    3.4.Control regionDuplicate CRs were found inP.lineolatusmitogenome.The first CR (CR I;1022 bp) was located between tRNA-Pro and tRNA-Phe.To date,this is the most typical position reported for the CR of vertebrate mtDNA.The second CR (CR II;1012 bp) was located between tRNA-Ile and tRNA-LeuUUR(Leu2) (Figure 1;Table 1).Both CRs were highly conserved in sequence similarity,which could be explained by concerted evolutionary mechanism (Kumazawaet al.,1998).All of their skew values were negative,indicating more Ts and Cs than As and Gs (Table 2).

    Three conservative functional domains were observed in both CRs:C-rich,termination-associated sequences (TASs) and conserved sequence blocks (CSBs).The C-rich sequence may facilitate formation of the D-loop by decelerating the extension of heavy-strand synthesis (Kumazawaet al.,1998).The CSBs play an important role in the CR of all organisms,which are associated with the start sites for DNA synthesis.It has been thought that TAS elements are associated with stop sites for DNA synthesis,and have been found near the 3' terminus of the D-loop (Dodaet al.,1981).Generally,each control region could find a CSB that presents a CSB-1-CSB-2-CSB-3 arrangement.On the other hand,one or more TASs can appear,and can include forward or reverse complementary sequences.In this study,four types of CR domains arrangements were observed in the Elapoidea species (Figure 3;Table S4),and each conserved domain appears only once,rather than,repeatedly.Type A occurred inP.lineolatus;Types B and C were assigned toNajaspp.andO.hannah,respectively;and Type D was assigned toBungarusspp.andMicrurus fulvius.These four arrangement types were mostly caused by the change in position of TAS2 and the presence or absence of CSB-2.However,CSB-2cannot be found inP.lineolatus,M.fulviusandBungarusspp.A similar finding was reported in previous studies (Dong and Kumazawa,2005;Kumazawa,2004).At present,the mechanism determining the presence or absence of CSB-2,and whether it has phylogenetic significance,is still unclear.The motif sequence of CSB-1 was highly similar in snake species,while the CSB-3 motif was rarely conserved in previous studies(Kumazawaet al.,1996;Kumazawaet al.,1998;Dong and Kumazawa,2005;Douglaset al.,2006).Hence,the recognition of CSB-3 was very difficult or ambiguous.Comparison of the CSB-3 motif ofNaja atra(Qian,2018) and the two CRs ofP.lineolatusand the other Elapidae snakes (Figure 3;Table S4)revealed that the CSB-3 motif is identical inP.lineolatusandNajaspp.,but slightly different in other Elapidae.Notably,the CSB-3 motif ofN.atrawas located between TAS1 and CSB-1 to form a CSB-3-CSB-1-CSB-2 order (Qian,2018) rather than the common CSB-1-CSB-2-CSB-3 structure.This arrangement was different than that reported in previous studies of snakes(Kumazawaet al.,1998;Dong and Kumazawa,2005;Douglaset al.,2006) and other vertebrates (Sbisaet al.,1997).The TAS motifs of the eight species (incorporating TAS1 and TAS2) were almost identical to those reported in other snakes (Kumazawaet al.,1998).No tandem repeats were discovered,while a poly T sequence (5'-TTTTTTT-3') was detected at both CRs within Elapoidea.These length variations are only seen in regions of simple repeats of a nucleotide or dinucleotide,suggesting that replicational slippage (Levinson and Gutman,1987) plays a role in creating length mutations.

    Figure 2 Putative secondary structures of the 22 tRNAs identified in the mitogenome of Psammophis lineolatus.The tRNAs are labeled with their corresponding three-letter amino acid codes.Dashed line (-) indicates Watson-Crick base pairing and solid dots (·) between G and U pairs mark canonical base pairings appearing in RNA.

    Figure 3 Arrangement of the mitochondrial control region structure of eight snake species of the Elapoidea superfamily,with the typical arrangement of vertebrates for comparsion.Green represents other regions of the control region.Type A:Psammophis lineolatus.Type B:Naja naja,Naja kaouthia,Naja atra.Type C:Ophiophagus Hannah.Type D:Micrurus fulvius,Bunganus fasciatus and Bunganus multioinctus.

    Figure 4 Non-synonymous (Ka) and synonymous (Ks) substitution ratio of comparisons between Psammophis lineolatus and the other three Elapidae species.BM:Bungarus multicinctus;NN:Naja naja;OH:Ophiophagus hannah;PL:P.lineolatus.

    Table 3 Genetic code,amino acid composition and relative synonymous codon usage (RSCU) for the mitochondrial protein-coding genes ofP.lineolatus.

    3.5.Ka/Ks ratioThe Ka/Ks ratios of the 13 PCGs varied from 0.027 to 0.680,but were always less than 1,indicating that these genes are evolving under purifying selection (Figure 4).Within all compared mitogenomes,the highest average of Ka/Ks ratio was observed for ATP8,while COX1 had the lowest ratio.ATP8 was indicated to be under positive or relaxed selection pressure,which has also been reported in other vertebrates(Sunet al.,2020).On the other hand,the low Ka/Ks ratio of COX1 is indicative of strong purifying selection,which is in accordance with results reported inPythonsnakes (Dubeyet al.,2012).Importantly,the Ks value of COX2 forP.lineolatus-B.multicinctus(PL-BM) was not applicable.This arose because the Jukes and Cantor correction cannot be calculated when the proportion of differences is equal or higher than 0.75 (Rozaset al.,2017).

    Figure 5 A majority-rule consensus tree inferred from Bayesian inference using MrBayes v3.2,based on the combined data set of RNA genes and protein-coding genes.The phylogenetic position of Psammophiidae is highlighted in gray.Numbers beside the nodes indicate Bayesian posterior probabilities (PP) and ML ultrafast bootstrap values (UFBoot),respectively.Branch lengths represent means of posterior distribution.Family/superfamily/group assignments are listed.Types III to III-G correspond to the nine types of mitochondrial gene arrangement patterns as designated in Qian et al. (2018).

    3.6.Phylogenetic analysesBoth BI and ML approaches provided identical and well-supported tree topologies.Thus,only the BI tree is presented,which includes PP as well as UFBoot from ML (Figure 5).With limited taxon sampling,monophyly of the Caenophidia (advanced snakes) was recovered with strong support (PP=1.0;UFBoot=100),which is largely consistent with results of recent studies (Greineret al.,2019;Pyronet al.,2011;Pyronet al.,2014;Reederet al.,2015;Wienset al.,2012;Zheng and Wiens,2016).In the Caenophidia,Acrochordidae was recovered as the sister taxon,followed successively by Xenodermatidae,Viperidae,Homalopsidae,Elapoidea and Colurbroidae.These results also align with recent studies (Streicher and Wiens,2016;Zaheret al.,2019).Monophyly of both the Elapoidea and Colurbroidae superfamilies was recovered with strong support (PP=1.0;UFBoot=100).Notably,in the sampled lineages,Psammophiidae was clustered into the Elapoidea superfamily (PP=1.0;UFBoot=100).Nevertheless,according to recent phylogenetic studies (Figueroaet al.,2016;Kellyet al.,2009;Zaheret al.,2019),which were based on analyses of a few mitochondrial and/or nuclear genes,the sister taxon of Psammophiidae is unclear.Thus,it is necessary to add more taxa and mitogenome sequences to explore the phylogenetic relationships of the advanced snakes in general,and to resolve the phylogenetic position of Psammophiidae in Elapoidea in particular.

    AcknowledgmentsWe thank Prof.Dali Chen (Sichuan University) and Mr.Song Wang for assistance with fieldwork in Xinjiang Uygur Autonomous Region,China.We also thank two anonymous referees for comments that improved the clarity of an earlier version of this manuscript.We are grateful to Dr.Jacquelin De Faveri for English editing.This study was supported by the National Natural Science Foundation of China (Nos.31672270,32070433).Jun Li was supported by grant from the National Natural Science Foundation of China(No.31560591).

    Appendix

    Table S1 PCR primers for amplification of the complete mitochondrial genome of Psammophis lineolatus.

    References

    Kumazawa Y.,Endo H.2004.Mitochondrial genome of the Komodo dragon:Efficient sequencing method with reptile-oriented primers and novel gene rearrangements.DNA Res,11:115-125

    Table S2 Summary of taxonomic groups used in this study,including GenBank accession numbers

    Continued Table S2

    References

    Castoe T.A.,de Koning A.P.J.,Kim H.M.,Gu W.,Noonan B.P.,Naylor G.,Jiang Z.,Parkinson C.L.,Pollock D.D.2009.Evidence for an ancient adaptive episode of convergent molecular evolution.Proc Natl Acad Sci USA,106(22):8986-8991

    Chen N.,Zhao S.2009.New progress in snake mitochondrial gene rearrangement.Mitochondrial DNA,20(4):69-71

    Dong S.,Kumazawa Y.2005.Complete mitochondrial DNA sequences of six snakes:phylogenetic relationships and molecular evolution of genomic features.J Mol Evol,61(1):12-22

    Douglas D.A,Jank A.,Arnason U.2006.A mitogenomic study on the phylogenetic position of snakes.Zool Scr,35(6):545-558

    Hall J.B.,Cobb V.A.,Cahoon A.B.2013.The complete mitochondrial DNA sequence ofCrotalus horridus(timber rattlesnake).Mitochondrial DNA,24(2):94-96

    Han X.,Zhao S.,Xu C.2015.Sequence and organization of the complete mitochondrial genome of theUssuri mamushi(Gloydius ussuriensis).Mitochondrial DNA A,27:2617-2618

    He M.,Feng J.,Zhao E.2010.The complete mitochondrial genome of the Sichuan hot-spring keel-back (Thermophis zhaoermii;Serpentes:Colubridae) and a mitogenomic phylogeny of the snakes.Mitochondrial DNA,21(1):8-18

    Huang X.,Zhang L.,Pan T.,Zhang B.2014.Mitochondrial genome ofProtobothrops dabieshanensis(Squamata:Viperidae:Crotalinae).Mitochondrial DNA,25(5):337-338

    Jang K.H.,Hwang U.W.2011.Complete mitochondrial genome of the black-headed snakeSibynophis collaris(Squamata,Serpentes,Colubridae).Mitochondrial DNA,22(4):77-79

    Jiang Z.J.,Castoe T.A.,Austin C.C.,Burbrink F.T.,Herron M.D.,McGuire J.A.,Parkinson C.L.,Pollock D.D.2007.Comparative mitochondrial genomics of snakes:extraordinary substitution rate dynamics and functionality of the duplicate control region,BMC Evol Biol,7:123

    Li E.,Feng D.,Yan P.,Xue H.,Chen J.,Wu X.2014.The complete mitochondrial genome ofOocatochus rufodorsatus(Reptilia,Serpentes,Colubridae).Mitochondrial DNA,25(6):449-450

    Li E.,Sun F.,Zhang R.,Chen J.,Wu X.2016.The complete mitochondrial genome of the striped-tailed rat-snake,Orthriophis taeniurus(Reptilia,Serpentes,Colubridae).Mitochondrial DNA,27(1):599-600

    Liu P.,Zhao W.2015.The complete mitochondrial genome of the Amur rat-snakeElaphe schrenckii(Squamata:Colubridae).Mitochondrial DNA A,27(4):2529-2530

    Liu P.,Zhao W.2016.Sequencing and analysis of the complete mitochondrial genome ofElaphe anomala(Squamata:Colubridae).Mitochondrial DNA A,27(6):2742-2743

    Mulcahy D.G.,Macey J.R.2009.Vicariance and dispersal form a ring distribution in nightsnakes around the Gulf of California.Mol Phylogenet Evol,53(2):537-546

    Mulcahy D.G.,Marúnez-Gómez J.E.,Aguirre-León G.,Cervantes-Pasqualli J.A.,Zug G.R.2014.Rediscovery of an endemic vertebrate from the remote Islas Revillagigedo in the Eastern Pacific Ocean:the Clarión nightsnake lost and found.PLoS ONE,9(5):e97682

    Oh D.J.,Han S.H.,Kim B.S.,Yang K.S.,Kim T.W.,Koo K.S.,Chang M.H.,Oh H.S.,Jung Y.H.2015.Mitochondrial genome sequence ofSibynophis chinensis(Squamata,Colubridae).Mitochondrial DNA,26(2):315-316

    Qian L.,Wang H.,Yan J.,Pan T.,Jiang S.,Rao D.,Zhang B.2018.Multiple independent structural dynamic events in the evolution of snake mitochondrial genomes.BMC Genomics,19:354

    Singchat W.,Areesirisuk P.,Sillapaprayoon S.,Muangmai N.,Srikulnath K.2019.Complete mitochondrial genome of Siamese cobra (Naja kaouthia) determined using next-generation sequencing.Mitochondrial DNA B,4(1):577-578

    Song T.,Zhang C,,Zhang L.,Huang X.,Hu C.,Xue C.,Zhang B.2015.Complete mitochondrial genome ofTrimeresurus albolabris(Squamata:Viperidae:Crotalinae).Mitochondrial DNA,26(2):291-292

    Sun F.H.2017.Revealing the complete mitochondrial genome ofThermophis baileyiWall,1907 (Reptilia:Colubridae) through the nextgeneration sequencing.Mitochondrial DNA B,2(2):391-392

    Sun H.,Li E.,Sun L.,Yan P.,Xue H.,Zhang F.,Wu X.2017.The complete mitochondrial genome of the greater green snakeCyclophiops major(Reptilia,Serpentes,Colubridae).Mitochondrial DNA B,2(1):309-310

    Wan R.,Liu S.,Xu Q.,Yue B.,Zhang X.2016.The complete mitochondrial genome of theElaphe perlacea(Squamata:Colubridae).Mitochondrial DNA,27(1):12-13

    Wang X.H.2014.Systematics ofOligodon ningshaanensisYuan,1983 and primary study on its malacophagous behaviour.Doctoral Dissertation,Chengdu Institute of Biology,Chinese Academy of Sciences (In Chinese with English abstract)

    Xu C.,Mu Y.,Kong Q.,Xie G.,Guo Z.,Zhao S.2016a.Sequencing and analysis of the complete mitochondrial genome ofElaphe davidi(Squamata:Colubridae).Mitochondrial DNA A,27(4):2383-2384

    Xu C.,Xie F.,Liu Y.,Zhao S.,Wang Y.,Ma T.,Zhao T.2015a.Sequencing and analysis of the complete mitochondrial genome ofGloydius saxatilis(Squamata:Viperidae:Crotalinae).Mitochondrial DNA A,27(4):2361-2362

    Xu C.,Zhao S.,Han X.2016b.Sequence and organization of the complete mitochondrial genome ofHebius vibakari ruthvenifrom China.Mitochondrial DNA A,27(4):2661-2662

    Xu C.,Zhao S.,Li C.,Dou H.2015b.The complete mitochondrial genome ofGloydius intermedius(Squamata:Viperidae:Crotalinae) from China.Mitochondrial DNA,27(4):2373-2374

    Yan J.,Li H.,Zhou K.2008.Evolution of the mitochondrial genome in snakes:Gene rearrangements and phylogenetic relationships.BMC Genomics,9:569-569

    Yan L.,Geng Z.,Yan P.,Wu X.2016.The complete mitochondrial genome ofElaphe bimaculata(Reptilia,Serpentes,Colubridae).Mitochondrial DNA A,27(2):1285-1286

    Zhou B.,Ding C.,Duan Y.,Hui G.2016.The complete mitochondrial genome sequence ofPtyas mucosus.Mitochondrial DNA B,1(1):193-194

    Table S3 Best-fit models and partitioning schemes selected by PartitionFinder 2.

    Table S4 Structure traits of the mitochondrial DNA complete control region (D-loop,CR) in Psammophis lineolatus and seven snake species of the family Elapidae.

    Continued Table S4

    Continued Table S4

    久久欧美精品欧美久久欧美| 大型黄色视频在线免费观看| 国产色爽女视频免费观看| 嫁个100分男人电影在线观看| 日韩欧美一区二区三区在线观看| 国产毛片a区久久久久| 欧美极品一区二区三区四区| 久久久久久久精品吃奶| 久久天躁狠狠躁夜夜2o2o| 99精品欧美一区二区三区四区| 免费在线观看影片大全网站| 麻豆一二三区av精品| 非洲黑人性xxxx精品又粗又长| 深爱激情五月婷婷| 五月伊人婷婷丁香| 一个人看的www免费观看视频| 99热这里只有精品一区| 成人无遮挡网站| 国产欧美日韩精品亚洲av| 久久精品人妻少妇| 国产精品 欧美亚洲| 国产成人av教育| 国产一区二区三区在线臀色熟女| 亚洲欧美日韩无卡精品| 欧美日韩精品网址| 级片在线观看| 欧美日韩福利视频一区二区| 国产精品自产拍在线观看55亚洲| 亚洲成人中文字幕在线播放| 免费av不卡在线播放| 欧美一级a爱片免费观看看| 99热6这里只有精品| 尤物成人国产欧美一区二区三区| 99riav亚洲国产免费| 深夜精品福利| 国产乱人视频| 国产探花极品一区二区| 色尼玛亚洲综合影院| 国产精品 欧美亚洲| 国产亚洲精品久久久com| 久久精品综合一区二区三区| 国产午夜精品久久久久久一区二区三区 | 日本免费一区二区三区高清不卡| 久久精品国产综合久久久| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品久久国产高清桃花| 亚洲熟妇熟女久久| 村上凉子中文字幕在线| 免费av不卡在线播放| 午夜视频国产福利| 亚洲第一欧美日韩一区二区三区| 高清毛片免费观看视频网站| 久久精品综合一区二区三区| 九九热线精品视视频播放| 国产精品av视频在线免费观看| 久久欧美精品欧美久久欧美| 午夜免费成人在线视频| 国产乱人伦免费视频| 国产精品电影一区二区三区| 女人被狂操c到高潮| 国产成人av激情在线播放| 午夜免费激情av| 深爱激情五月婷婷| 精品国产美女av久久久久小说| 日韩欧美 国产精品| 欧美日韩瑟瑟在线播放| 中文字幕久久专区| 很黄的视频免费| 欧美成人一区二区免费高清观看| 欧美一区二区国产精品久久精品| 久久亚洲精品不卡| 成人国产一区最新在线观看| 激情在线观看视频在线高清| 男人舔奶头视频| 每晚都被弄得嗷嗷叫到高潮| 国产伦一二天堂av在线观看| 国产高清videossex| 国产日本99.免费观看| 18美女黄网站色大片免费观看| 精品久久久久久久毛片微露脸| 久久精品国产亚洲av香蕉五月| 又粗又爽又猛毛片免费看| 国产精品99久久99久久久不卡| 99久久精品一区二区三区| 亚洲精品乱码久久久v下载方式 | 国产精品,欧美在线| 免费观看人在逋| 免费人成视频x8x8入口观看| 一进一出抽搐gif免费好疼| 久久久久亚洲av毛片大全| 亚洲真实伦在线观看| 黄色女人牲交| 噜噜噜噜噜久久久久久91| 搡老妇女老女人老熟妇| 给我免费播放毛片高清在线观看| 欧美中文日本在线观看视频| 午夜精品一区二区三区免费看| 欧美乱色亚洲激情| 日韩中文字幕欧美一区二区| 亚洲 国产 在线| 亚洲美女黄片视频| 国产一区在线观看成人免费| av国产免费在线观看| 国产精品香港三级国产av潘金莲| 亚洲av免费在线观看| 高清日韩中文字幕在线| 两个人看的免费小视频| 国产精品久久久久久久久免 | 91字幕亚洲| 在线观看免费视频日本深夜| 看黄色毛片网站| 观看免费一级毛片| 91在线观看av| 亚洲 欧美 日韩 在线 免费| 免费无遮挡裸体视频| 9191精品国产免费久久| 日本一本二区三区精品| 欧美极品一区二区三区四区| 97超级碰碰碰精品色视频在线观看| 久久人妻av系列| 在线观看免费午夜福利视频| 国模一区二区三区四区视频| 五月伊人婷婷丁香| 午夜免费男女啪啪视频观看 | 精品99又大又爽又粗少妇毛片 | 久久精品91蜜桃| 一本综合久久免费| 国产在线精品亚洲第一网站| 欧美3d第一页| 黄片大片在线免费观看| 欧美性感艳星| 亚洲国产欧洲综合997久久,| 99国产精品一区二区三区| 中文字幕人妻熟人妻熟丝袜美 | 人妻夜夜爽99麻豆av| 757午夜福利合集在线观看| 国产在线精品亚洲第一网站| 国产单亲对白刺激| 一本一本综合久久| 欧美zozozo另类| 亚洲成人中文字幕在线播放| 久久久精品欧美日韩精品| 日韩 欧美 亚洲 中文字幕| 精品一区二区三区av网在线观看| 国产成人av教育| 亚洲五月天丁香| 日韩精品青青久久久久久| 成人精品一区二区免费| 女警被强在线播放| 嫩草影院入口| 叶爱在线成人免费视频播放| 91麻豆精品激情在线观看国产| 欧美日本亚洲视频在线播放| 成人特级黄色片久久久久久久| 搞女人的毛片| 欧美最黄视频在线播放免费| 91麻豆av在线| 国产精品美女特级片免费视频播放器| 久久久久久久精品吃奶| 亚洲av日韩精品久久久久久密| 97超视频在线观看视频| 舔av片在线| www.色视频.com| 每晚都被弄得嗷嗷叫到高潮| 伊人久久精品亚洲午夜| 久久久久久久亚洲中文字幕 | 国产三级黄色录像| 久久婷婷人人爽人人干人人爱| 精品一区二区三区人妻视频| 国产亚洲精品一区二区www| 观看免费一级毛片| 成年免费大片在线观看| 天天躁日日操中文字幕| 久久久久久国产a免费观看| 3wmmmm亚洲av在线观看| 国产爱豆传媒在线观看| 伊人久久精品亚洲午夜| 亚洲人成网站高清观看| 国产精品乱码一区二三区的特点| 亚洲一区二区三区不卡视频| 午夜福利18| 在线观看免费视频日本深夜| 黄色日韩在线| 欧美精品啪啪一区二区三区| 香蕉久久夜色| 国产亚洲精品一区二区www| 亚洲av中文字字幕乱码综合| 久久久精品大字幕| 国产高清videossex| 精品日产1卡2卡| 老司机午夜福利在线观看视频| 美女高潮的动态| 又爽又黄无遮挡网站| 久久草成人影院| 少妇的逼好多水| 五月玫瑰六月丁香| 露出奶头的视频| 欧美乱妇无乱码| 午夜免费激情av| 午夜精品在线福利| 禁无遮挡网站| 亚洲国产色片| 热99re8久久精品国产| 国内精品久久久久久久电影| 免费在线观看亚洲国产| 国产69精品久久久久777片| 狂野欧美激情性xxxx| 一卡2卡三卡四卡精品乱码亚洲| 熟女少妇亚洲综合色aaa.| 亚洲久久久久久中文字幕| 尤物成人国产欧美一区二区三区| 国产综合懂色| 久久久精品大字幕| 国产伦精品一区二区三区四那| 中文字幕高清在线视频| 亚洲精品国产精品久久久不卡| 床上黄色一级片| 天天添夜夜摸| 国产成人av教育| 麻豆国产av国片精品| 久99久视频精品免费| 亚洲成a人片在线一区二区| 欧美一级毛片孕妇| 国产久久久一区二区三区| 观看免费一级毛片| 日日摸夜夜添夜夜添小说| 亚洲国产日韩欧美精品在线观看 | 色播亚洲综合网| 久久6这里有精品| 十八禁人妻一区二区| 最近在线观看免费完整版| 亚洲人成伊人成综合网2020| 国产精品久久久久久久久免 | 欧美成人性av电影在线观看| 99久久无色码亚洲精品果冻| 美女cb高潮喷水在线观看| 国产精品美女特级片免费视频播放器| 桃色一区二区三区在线观看| 人妻久久中文字幕网| 色老头精品视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 欧美日本亚洲视频在线播放| 精品国产三级普通话版| 天堂动漫精品| 听说在线观看完整版免费高清| 国产精品久久久久久人妻精品电影| 毛片女人毛片| 美女 人体艺术 gogo| 亚洲第一欧美日韩一区二区三区| 尤物成人国产欧美一区二区三区| 国产探花在线观看一区二区| 好看av亚洲va欧美ⅴa在| 黄色日韩在线| 国产爱豆传媒在线观看| 97人妻精品一区二区三区麻豆| 国产精品久久久人人做人人爽| 少妇的逼好多水| а√天堂www在线а√下载| 桃红色精品国产亚洲av| 热99re8久久精品国产| 欧美另类亚洲清纯唯美| 人妻丰满熟妇av一区二区三区| 午夜福利在线观看吧| 夜夜夜夜夜久久久久| 午夜视频国产福利| 欧美不卡视频在线免费观看| 国产免费一级a男人的天堂| 日韩成人在线观看一区二区三区| 久久精品国产清高在天天线| 国产一区二区亚洲精品在线观看| 狠狠狠狠99中文字幕| 男人和女人高潮做爰伦理| 欧美丝袜亚洲另类 | 3wmmmm亚洲av在线观看| www.999成人在线观看| 国产黄色小视频在线观看| 午夜免费激情av| 国产69精品久久久久777片| 制服人妻中文乱码| 搡老熟女国产l中国老女人| 久久国产精品影院| 午夜福利在线在线| 色综合亚洲欧美另类图片| 久久久国产精品麻豆| 好男人在线观看高清免费视频| 又爽又黄无遮挡网站| 国语自产精品视频在线第100页| 国内少妇人妻偷人精品xxx网站| 一a级毛片在线观看| 哪里可以看免费的av片| 69av精品久久久久久| 欧美日韩一级在线毛片| 内地一区二区视频在线| 看黄色毛片网站| 国产亚洲精品久久久久久毛片| 国产高潮美女av| 婷婷六月久久综合丁香| 嫩草影院精品99| 禁无遮挡网站| 老司机福利观看| 真人做人爱边吃奶动态| 日本成人三级电影网站| 村上凉子中文字幕在线| 亚洲熟妇中文字幕五十中出| 岛国在线免费视频观看| 99精品久久久久人妻精品| 国产成人啪精品午夜网站| 午夜日韩欧美国产| 亚洲人成网站在线播放欧美日韩| 国产真实伦视频高清在线观看 | 亚洲精品一卡2卡三卡4卡5卡| 国产av在哪里看| www.999成人在线观看| 一个人观看的视频www高清免费观看| 18禁黄网站禁片午夜丰满| 日韩欧美国产在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 日韩欧美 国产精品| 一进一出好大好爽视频| 90打野战视频偷拍视频| 俺也久久电影网| 亚洲av不卡在线观看| 日韩欧美在线乱码| 成人特级黄色片久久久久久久| 欧美bdsm另类| 99国产综合亚洲精品| 亚洲人成电影免费在线| 国产在视频线在精品| 少妇熟女aⅴ在线视频| 亚洲av成人不卡在线观看播放网| 黄片小视频在线播放| 岛国在线免费视频观看| 97超级碰碰碰精品色视频在线观看| 亚洲人成网站高清观看| 婷婷精品国产亚洲av| 亚洲国产精品999在线| 成人高潮视频无遮挡免费网站| 97人妻精品一区二区三区麻豆| 90打野战视频偷拍视频| 久久久色成人| 观看免费一级毛片| 精品福利观看| 少妇人妻一区二区三区视频| 欧美一区二区国产精品久久精品| 青草久久国产| 国内久久婷婷六月综合欲色啪| 免费看光身美女| 国产三级在线视频| 亚洲精品国产精品久久久不卡| 美女cb高潮喷水在线观看| 国产久久久一区二区三区| 亚洲最大成人中文| 欧美日本亚洲视频在线播放| 欧美一区二区国产精品久久精品| 午夜精品在线福利| 国产又黄又爽又无遮挡在线| h日本视频在线播放| 国产一区二区在线观看日韩 | 一进一出抽搐动态| 亚洲在线观看片| 一区二区三区激情视频| 热99在线观看视频| 欧美在线一区亚洲| 日日摸夜夜添夜夜添小说| 久久99热这里只有精品18| 女人被狂操c到高潮| 午夜福利在线观看免费完整高清在 | 90打野战视频偷拍视频| 精品熟女少妇八av免费久了| 免费观看精品视频网站| 色哟哟哟哟哟哟| 亚洲18禁久久av| 免费观看的影片在线观看| 午夜久久久久精精品| 又紧又爽又黄一区二区| 久久久成人免费电影| 亚洲精华国产精华精| 亚洲精品乱码久久久v下载方式 | 噜噜噜噜噜久久久久久91| 国产成人av教育| 看黄色毛片网站| 欧美+亚洲+日韩+国产| 色综合站精品国产| 成人av在线播放网站| 国产伦精品一区二区三区四那| 国内少妇人妻偷人精品xxx网站| 变态另类丝袜制服| 成人av在线播放网站| 可以在线观看毛片的网站| 此物有八面人人有两片| 性色avwww在线观看| 久久国产精品人妻蜜桃| 成年女人看的毛片在线观看| 日本精品一区二区三区蜜桃| 青草久久国产| 午夜精品一区二区三区免费看| 国内精品美女久久久久久| АⅤ资源中文在线天堂| 欧美日韩福利视频一区二区| 真人做人爱边吃奶动态| 波多野结衣高清无吗| 亚洲av电影在线进入| 成年免费大片在线观看| 久久精品国产亚洲av涩爱 | 欧美一级毛片孕妇| 手机成人av网站| 99久久精品热视频| 桃红色精品国产亚洲av| 亚洲欧美日韩高清在线视频| 色哟哟哟哟哟哟| 国产亚洲欧美在线一区二区| 亚洲人成伊人成综合网2020| 好看av亚洲va欧美ⅴa在| 一级a爱片免费观看的视频| 国产高清有码在线观看视频| 亚洲人成网站在线播| 亚洲欧美日韩无卡精品| 99国产精品一区二区蜜桃av| 色尼玛亚洲综合影院| 九九在线视频观看精品| 国产高清视频在线观看网站| 操出白浆在线播放| 亚洲国产日韩欧美精品在线观看 | 国产麻豆成人av免费视频| 91在线观看av| 一a级毛片在线观看| 午夜老司机福利剧场| 欧美一级a爱片免费观看看| 中文字幕av成人在线电影| 日韩欧美国产一区二区入口| 欧美日韩中文字幕国产精品一区二区三区| 非洲黑人性xxxx精品又粗又长| 国产午夜精品论理片| 床上黄色一级片| 久久久久精品国产欧美久久久| 亚洲精品在线美女| 久久精品综合一区二区三区| 欧美黄色淫秽网站| 亚洲专区中文字幕在线| 午夜福利视频1000在线观看| 亚洲av中文字字幕乱码综合| 国产午夜精品久久久久久一区二区三区 | 中文字幕av在线有码专区| 成人三级黄色视频| 免费看十八禁软件| 窝窝影院91人妻| 人人妻人人澡欧美一区二区| 91久久精品国产一区二区成人 | 黄色日韩在线| 精品国产超薄肉色丝袜足j| 琪琪午夜伦伦电影理论片6080| 女人被狂操c到高潮| 亚洲精品一卡2卡三卡4卡5卡| 国产精品一区二区三区四区久久| 免费在线观看亚洲国产| 日韩精品中文字幕看吧| 美女高潮喷水抽搐中文字幕| 非洲黑人性xxxx精品又粗又长| 成人高潮视频无遮挡免费网站| 丰满人妻一区二区三区视频av | xxx96com| www.色视频.com| 99久久精品国产亚洲精品| 成年版毛片免费区| 欧美黑人欧美精品刺激| 99久久精品国产亚洲精品| 国产黄片美女视频| 国产av不卡久久| 亚洲第一欧美日韩一区二区三区| 国产老妇女一区| 亚洲av电影在线进入| 亚洲精品乱码久久久v下载方式 | 日韩欧美精品免费久久 | 欧美一级a爱片免费观看看| 国产野战对白在线观看| 亚洲精品久久国产高清桃花| 看片在线看免费视频| 久久精品夜夜夜夜夜久久蜜豆| 真人一进一出gif抽搐免费| 欧美绝顶高潮抽搐喷水| 97超视频在线观看视频| e午夜精品久久久久久久| 婷婷精品国产亚洲av| 久久久久久久午夜电影| 99热这里只有精品一区| ponron亚洲| 天天躁日日操中文字幕| 天堂av国产一区二区熟女人妻| av欧美777| 51国产日韩欧美| 在线a可以看的网站| a级毛片a级免费在线| 中文字幕av在线有码专区| 黄片小视频在线播放| 国产亚洲欧美98| 精品国产超薄肉色丝袜足j| 香蕉丝袜av| 欧美一级a爱片免费观看看| 亚洲成人中文字幕在线播放| 1024手机看黄色片| 日韩精品中文字幕看吧| 欧美一区二区国产精品久久精品| 亚洲不卡免费看| 午夜福利在线在线| 一本久久中文字幕| 亚洲一区二区三区不卡视频| 亚洲18禁久久av| 亚洲avbb在线观看| 在线观看av片永久免费下载| 久久亚洲真实| 中文资源天堂在线| 十八禁网站免费在线| 熟女少妇亚洲综合色aaa.| 中文字幕av成人在线电影| 中国美女看黄片| 香蕉久久夜色| 少妇的逼好多水| 精品久久久久久久久久久久久| 亚洲自拍偷在线| 最近在线观看免费完整版| 国产精品98久久久久久宅男小说| 精品久久久久久久毛片微露脸| 国产 一区 欧美 日韩| 18禁黄网站禁片免费观看直播| 亚洲成人久久爱视频| 国产视频一区二区在线看| 一夜夜www| 看黄色毛片网站| av在线天堂中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 长腿黑丝高跟| 级片在线观看| 中文字幕人成人乱码亚洲影| 99热6这里只有精品| 精品一区二区三区人妻视频| 久久天躁狠狠躁夜夜2o2o| 又黄又粗又硬又大视频| 久久久久久国产a免费观看| 国产 一区 欧美 日韩| 成人三级黄色视频| 无人区码免费观看不卡| 精品一区二区三区视频在线观看免费| 久久久久久久精品吃奶| 久久久久免费精品人妻一区二区| 天堂√8在线中文| 亚洲天堂国产精品一区在线| 久久精品国产自在天天线| 国产视频内射| 久久久久久人人人人人| 黄片大片在线免费观看| 国语自产精品视频在线第100页| 免费大片18禁| 日韩欧美在线乱码| 国产黄a三级三级三级人| 黑人欧美特级aaaaaa片| 久久婷婷人人爽人人干人人爱| 狂野欧美激情性xxxx| 午夜免费成人在线视频| 日韩有码中文字幕| 成年女人看的毛片在线观看| 18美女黄网站色大片免费观看| 欧美精品啪啪一区二区三区| av在线天堂中文字幕| 中文字幕av在线有码专区| 九色成人免费人妻av| 亚洲人成网站高清观看| 香蕉av资源在线| 国产成人a区在线观看| 麻豆国产97在线/欧美| 九色国产91popny在线| 丰满的人妻完整版| 国产精品久久电影中文字幕| 五月伊人婷婷丁香| 国产成人欧美在线观看| 国产男靠女视频免费网站| 国产真实乱freesex| 人妻夜夜爽99麻豆av| 午夜精品在线福利| 动漫黄色视频在线观看| 俺也久久电影网| 国产老妇女一区| 在线观看午夜福利视频| 亚洲专区国产一区二区| 国产精品 国内视频| 欧美激情久久久久久爽电影| 欧美成人性av电影在线观看| 国产精品乱码一区二三区的特点| 欧美日韩乱码在线| 国产精品亚洲美女久久久| 叶爱在线成人免费视频播放| 欧美乱码精品一区二区三区| 天天添夜夜摸| 好看av亚洲va欧美ⅴa在| av在线天堂中文字幕| 欧美日韩国产亚洲二区| 欧美性猛交╳xxx乱大交人| 久久久久免费精品人妻一区二区| 最近视频中文字幕2019在线8| 9191精品国产免费久久| 亚洲性夜色夜夜综合| 欧美日韩国产亚洲二区| 午夜亚洲福利在线播放| 免费看光身美女| 久久久久久久精品吃奶| 精品福利观看| 18美女黄网站色大片免费观看| 麻豆成人av在线观看| 亚洲精品久久国产高清桃花| 在线天堂最新版资源| 精品欧美国产一区二区三| 国产午夜精品久久久久久一区二区三区 | 亚洲自拍偷在线| 蜜桃亚洲精品一区二区三区| 色噜噜av男人的天堂激情| 亚洲不卡免费看|