• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transcriptome Sequencing Provides Evidence of Genetic Assimilation in a Toad-Headed Lizard at High Altitude

    2021-09-27 11:25:44WeizhaoYANGTaoZHANGZhongyiYAOXiaolongTANGandYinQI
    Asian Herpetological Research 2021年3期

    Weizhao YANG ,Tao ZHANG ,Zhongyi YAO ,Xiaolong TANG and Yin QI*

    1Chengdu Institute of Biology,Chinese Academy of Sciences,Chengdu 610041,Sichuan,China

    2Department of Biology,Lund University,Lund 22362,Sweden

    3Institute of Biochemistry and Molecular Biology,School of Life Science,Lanzhou University,Lanzhou 730000,Gansu,China

    Abstract Understanding how organisms adapt to the environment is a compelling question in modern evolutionary biology.Genetic assimilation provides an alternative hypothesis to explain adaptation,in which phenotypic plasticity is first triggered by environmental factors,followed by selection on genotypes that reduce the plastic expression of phenotypes.To investigate the evidence of genetic assimilation in a high-altitude dweller,the toad-headed agama Phrynocephalus vlangalii,we conducted a translocation experiment by moving individuals from high-to low-altitude environments.We then measured their gene expression profiles by transcriptome sequencing in heart,liver and muscle,and compared them to two low-altitude species P.axillaris and P.forsythii.The results showed that the general expression profile of P.vlangalii was similar to its viviparous relative P.forsythii,however,the differentially expressed genes in the liver of P.vlangalii showed a distinct pattern compared to both the lowaltitude species.In particular,several key genes (FASN,ACAA2 and ECI2) within fatty acid metabolic pathway were no longer differentially expressed in P.valgnalii,suggesting the loss of plasticity for this pathway after translocation.This study provides evidence of genetic assimilation in fatty acid metabolism that may have facilitated the adaptation to high-altitude for P.vlangalii.

    Keywords genetic assimilation,gene expression,plasticity,Phrynocephalus vlangalii

    1.Introduction

    Elucidating the mechanisms of adaptation is a compelling question in modern evolutionary biology (Rose,2001;Smith and Eyre-Walker,2002).In the past decades,a “mutation-first evolution” model was widely accepted to explain the process of adaptation,in which mutations linked to fit phenotypes are under natural selection,resulting in changes in phenotype frequencies,and ultimately,adaptation (Carroll,2008).However,a “plasticity-first evolution” model has also been proposed in which phenotypic plasticity is first triggered by environmental factors,followed by selection on genotypes influencing the plastic expression of phenotypes through genetic accommodation (Moczek

    et al

    .,2011;Jones and Robinson,2018).Genetic assimilation is a special case of such process,where the initially plastic phenotypes are gradually fixed,leading to reduced phenotypic plasticity and only adaptive phenotypes,even without environmental stimuli (Waddington,1953;Pigliucci,2006).Although a number of studies have shown evidence of genetic assimilation,such as cases in

    Drosophila melanogaster

    (Dworkin,2005;Ghalambor

    et al

    .,2010) and

    Spea bombifrons

    (Levis and Pfennig,2019),the role of genetic assimilation in adaptive evolution remains unclear and controversial.Gene expression profiles provide an excellent tool to investigate genetic assimilation in evolution.In general,phenotypic plasticity springs from environmentally sensitive regulation of gene expression,which alters the profiles of gene expression (Colinet and Hoffmann,2012;Beaman

    et al

    .,2016).As plastic phenotypes may evolve in response to selection with increased or decreased levels of plasticity,the gene expression associated with the phenotypes may evolve as well (Renn and Schumer,2013).Thus,variable patterns of gene expression mirror the evolution of phenotypic plasticity.In the case of genetic assimilation,plastically expressed genes in response to the environment may finally become fixed (Scoville and Pfrender,2010;Renn and Schumer,2013).Previous studies that have used gene expression profiles as a tool to investigate the pattern of genetic assimilation have mainly focused on eurociality in the honeybee (Toth

    et al

    .,2007;Bloch and Grozinger,2011);host specialization in

    Drosophila

    (Matzkin

    et al

    .,2006;Matzkin,2012);and character displacement in spadefoot toads (Levis

    et al

    .,2017).Toad-headed agamas (genus

    Phrynocephalus

    ) at the Qinghai-Tibetan Plateau (Huey,1982;Zhao

    et al

    .,1982) provide an excellent model system to study genetic assimilation.As true dwellers of high-altitude environments,as high as 5 300 m above sea level (a.s.l),this group has experienced a long-term adaptive evolution under several extreme stressors,including hypobaric hypoxia,low ambient temperatures,and strong UV radiation (Scheinfeldt and Tishkoff,2010;Cheviron and Brumfield,2011).Phylogenetic studies indicated that a total of six high-altitude species in this genus formed a monophyletic viviparous clade,including another low-altitude species,

    P.forsythii

    (Figure 1A;Guo

    et al

    .,2002;Guo and Wang,2007;Wang

    et al

    .,2014).

    Figure 1 Translocation experiment and transcriptome sequencing.A:The phylogenetic relationship among Phrynocephalus axillaris,P.forsythii,and P.vlangalii.The red branch indicates the viviparous high-altitude clade leading to P.vlangalii.B:Principal component analysis (PCA) plot for gene expression profiles.C:Heatmap for gene expression profiles among P.vlangalii samples.D,E,and F:Heatmap for gene expression profiles among the three species for heart,liver,and muscle,respectively.In all the comparisons,P.vlangalii was clustered with P.forsythii,consistent with their phylogenetic relationship.

    High-altitude toad-headed agamas have evolved a series of characteristics that underline their adaptations to extremely high-altitude environments.At DNA sequence level,a couple of genes have been identified with signature of positive selection associated with energy metabolism and DNA repair(Yang

    et al

    .,2014;Yang

    et al

    .,2015;Sun

    et al

    .,2018).Accordingly,physiological studies revealed that,compared to low-altitude species,high-altitude toad-headed agamas may have decreased basal metabolic rate and increased the utilization of nutrients(e.g.fatty acid) to balance the energy budget (Tang

    et al

    .,2013;Li

    et al

    .,2016;Zhang

    et al

    .,2018),which is a common strategy for high-altitude adaptation for ectothermic vertebrates (Cooper

    et al

    .,2002;Li

    et al

    .,2016).On the other hand,low-altitude toadheaded agamas exhibited the same direction of plastic response to highland environments (e.g.Tang

    et al

    .,2013).Qi

    et al.

    (unpublished) have conducted an experiment by translocating two low-altitude species

    P.axillaris

    (oviparous) and

    P.forsythii

    (viviparous) to highland environments and measured their transcriptomic,metabolomic,and behavioral responses.The two species showed a similar pattern,in which significantly plastic change occurred for core genes and metabolites within fatty acid metabolic pathway.However,whether the same plasticity still exists in high-altitude agamas remains unknown.For other taxa,several species have shown loss of plasticity while adapting to high-altitudes due to genetic assimilation,such as

    Alnum glutinosa

    (Kort

    et al

    .,2016),and montane butterfly

    Colias eriphyle

    (Kingsolver and Buckley,2017).Therefore,to investigate if toadheaded lizards have experienced the loss of plasticity at highaltitudes could provide new evidence of genetic assimilation in high-altitude adaptation for ectotherms.Here,we present a study to investigate the gene expression profiles and plasticity of a high-altitude species Qinghai toadheaded agama (

    P.vlangalii

    ).This species inhabits in Qinghai-Tibetan Plateau at altitudes ranging from 2000 to 4600 a.s.l.(Zhao

    et al

    .,1999).We implemented a translocation experiment by moving

    P.vlangalii

    individuals from high-to low-altitude environment and measured the gene expression profiles for three organ tissues -heart,liver,and muscle,to investigate the plastic changes in gene expression.In addition,we compared

    P.vlangalii

    to two low-altitude species,

    P.axillaris

    (oviparous) and

    P.forsythii

    (viviparous),and revealed the pattern of expression plasticity for

    P.vlangalii

    that may indicate whether genetic assimilation has contributed to theadaptation to high-altitude environmentfor this species.

    2.Materials and Methods

    2.1.Ethical approval

    All applicable international,national,and/or institutional guidelines for the care and use of animals were strictly followed.All animal sample collection protocols complied with the current laws of China.The sampling and experiment in this study were carried out with permission(Number 2017005) from the Ethical Committee for Animal Experiments in Chengdu Institute of Biology,Chinese Academy of Sciences.

    2.2.Translocation experiment

    A total of 12 male adults of

    P.vlangalii

    were sampled from Zoige,Sichuan Province of China,at an altitude of 3 400 meters a.s.l.All samples were randomly and evenly assigned into an ‘origin group’ and ‘translocation group’.For the origin group,we measured their morphological traits and then performed euthanasia using decapitation and collected tissues of heart,liver,and muscle,by preserved in RNA later (Invitrogen,USA) in the field.For the translocation group,we moved the individuals to a workstation in Chengdu City,Sichuan Province of China,with an altitude of 650 meters a.s.l.All individuals had been kept in an outdoor enclosure similar to their native environment for six weeks to make the individuals acclimate to translocation environment.Then,the same procedure was conducted for the translocation group to collect tissue samples.To alleviate the potential bias stimulated by the environment,the field sites were standardized in three aspects:1) sand obtained from the origin sites of

    P.vlangalii

    to the translocation site as substrate;2) mealworms were provided as food every three days for both sites;and 3) fishing net above enclosures to reduce the risks of bird predation.

    2.3.Transcriptome sequencing

    Total RNA was extracted from each tissue sample according to TRIzol protocols(Invitrogen,USA).Transcriptome sequencing was implemented on Illumina HiSeq 2500 platform with paired-end 150 base pair (bp) by Novogene (Beijing,China).Sequence data were deposited in NCBI Short Reads Archive (SRA) with BioProject accession number PRJNA718616.Raw sequence reads were first cleaned by removing the adapter sequences and low-quality base calls using a Novogene pipeline.Trimmomatic v0.35(Bolger

    et al

    .,2014) was used to trim the reads with LEADING:3,TRAILING:3,SLIDINGWINDOW:4:5,MINLEN:70,and default parameters.We checked for reads quality before and after filtering with FASTQC version 0.11.8 (Andrews,2010).One individual with all three types of tissues (E1,K1,and Q1;details in Table S1) was used for

    de novo

    assembly of transcriptome via Trinity v2.8.4 after

    in silico

    read normalization (Grabherr

    et al

    .,2011;Haas

    et al

    .,2013).We then used kallisto version 0.44.0 (Bray

    et al

    .,2016) to quantify the abundance of the assembly and build the transcripts expression matrices.Assembled transcripts with ‘transcripts per million transcripts’ (TPM) less than three were filtered to generate the final assembly for each species.To compare to other two low-altitude species

    P.axillaris

    and

    P.forsythii

    (Qi

    et al

    .,unpublished),a best reciprocal hit (BRH)method was applied to identify 1:1:1 orthologous sequences among the three species (Camacho

    et al

    .,2009).

    2.4.Differential expression analysis

    The clean reads for each sample were mapped against the

    P.vlangalii

    transcriptome assembly by using STAR version 2.6 (Dobin

    et al

    .,2013).The number of reads matched to the same transcripts was counted by HTSeq-count tool with the ‘union’ resolution mode (Anders

    et al

    .,2015).The overall similarity among tissue samples was measured by Euclidean distance and visualized by clustering heatmap through ‘pheatmap’ package after regularized log transformation (rlog) of normalized counts via DESeq2 version 1.20 (Love

    et al

    .,2014).Principal component analysis (PCA) was also used to assess the relationship among different samples.Differentially expressed genes (DEGs) were estimated through generalized linear models in edgeR package version 3.22.5(Robinson

    et al

    .,2010;McCarthy

    et al

    .,2012).We adopted a strict criterion to identify DEGs,with fold-value ≥ 2 and adjusted

    P

    -value (FDR) < 0.05.Functional annotation was performed by mapping the transcripts against the UniProtKB/Swiss-Prot database (release“2018_08”) with blast hits E-value cut-off greater than 10.For those transcripts with annotation information,functional over-representations of DEGs were performed using the clusterProfiler package (Yu

    et al

    .,2012) in R with annotation to GO category and KEGG pathway database.The minimum number of genes required for each test of a given category was 5.All tests were corrected by false discovery rate (FDR).To compare the plastic pattern with

    P.axillaris

    and

    P.forsythii

    for genes associated with fatty acid metabolism,we also checked the expression profiles of 12 diagnostic genes (Table S2),which showed differential expression in liver for the two low-altitude species,including key genes regulating the synthesis (Fatty Acid Synthase,FASN) and catabolic process (Acetyl-Coenzyme A Acyltransferase 2,ACAA2,and Enoyl-CoA Delta Isomerase 2,ECI2) of fatty acid.We calculated the absolute fold change of expression from low-to high-altitude for those genes among the three species,and tested the significance of differences by two-tailed Student’s

    t

    test.

    3.Results

    3.1.Transcriptome sequencing

    A total of 44 793 768-70 718 484 raw reads were generated for

    P.vlangalii

    by Illumina sequencing.After filtering,42 722 956-67 578 714 reads were retained.One sample (R6) was excluded from the following analyses due to low quality of sequencing.Overall,36 336 transcripts were obtained with N50 size of 2 232 bp and mean length of 1 093 bp.By BRH method,8 892 orthologous transcripts were identified among

    P.axillaris

    ,

    P.forsythii

    ,and

    P.vlangalii

    .

    3.2.Gene expression profile

    Both principal component analysis (PCA) and clustering analysis demonstrated that each tissue type presented a distinct expression signature and all samples were unambiguously grouped by tissue origin (Figure 1B).Within each tissue,samples were also separated by origin and translocation groups.In addition,samples from heart and muscle expressed closer than from liver,which may reflect that a large part of the heart is composed of cardiac muscle tissue(Figure 1C).By comparing the expression profiles of

    P.vlangalii

    to the other two low-altitude species

    P.axillaris

    and

    P.forsythii

    ,we found that the

    P.vlangalii

    was closer to

    P.forsythii

    in all the three tissues,consistent with their phylogenetic relationship(Figure 1D,E,F).

    3.3.Differential expression analysis

    Given low-altitude samples as reference,a total of 875 differentially expressed genes(DEGs) were identified in the heart for

    P.vlangalii

    ,with 400 down-regulated and 475 up-regulated.Similarly,688 DEGs were identified in muscle,with 345 down-regulated and 343 up-regulated.We identified 1 220 DEGs in liver,the greatest number of DEGs among all three tissues,with 612 downregulated and 608 up-regulated.

    Through functional annotation,we found that no GO category and KEGG pathway was over-represented by DEGs in heart.A total of 41 GO categories and 13 KEGG pathways were identified over-represented by DEGs in liver (Figure S1).Network clustering of the GO categories indicated that most of the categories were associated with monocarboxylic acid metabolic process,which could be linked to antibiotic catabolic process and detoxification (Figure 2A).In muscle,7 GO categories and 1 KEGG were over-represented by DEGs(Figure S2),which were associated with extracellular matrix organization and carbohydrate derivative catabolic process.

    For the 12 diagnostic genes associated with fatty acid metabolism,the absolute fold change of expression in liver of

    P.vlangalii

    was significantly lower (ΔlogFC=0.8300) than that of

    P.axillaris

    (ΔlogFC=2.1298;

    P-value

    =2.84×10) and

    P.forsythii

    (ΔlogFC=1.7397;

    P-value

    =1.31×10),along with no significant difference between the latter two species (

    P-value

    =0.44) (Figure 2B).In addition,none of the key genes FASN,ACAA2 and ECI2 was differentially expressed between low-and high-altitude(Figure 2C).

    4.Discussion

    In this study,we conducted a translocation experiment by moving

    P.vlangalii

    from a high-to low-altitude environment and measured their expression profiles and plasticity via transcriptome sequencing.Our results clearly illustrated that each tissue type of

    P.vlangalii

    presented an unambiguous expression signature,with hundreds of DEGs up-regulated or down-regulated in each tissue,respectively.In comparison to the other two low-altitude species

    P.axillaris

    (oviparous) and

    P.forsythii

    (viviparous),although the expression profile of

    P.vlangalii

    was still closer to

    P.forsythii

    ,DEGs in liver exhibited a distinct pattern from the other two species,with reduced plasticity in expression of genes associated with fatty acid metabolism.A common strategy for ectothermic vertebrates in response to extreme environments at high-altitude is to suppress basal metabolism and increase utilization of nutrients to balance the energy budget (Cooper

    et al

    .,2002;Li

    et al

    .,2016;Zhang

    et al

    .,2018).Tang

    et al.

    (2013) revealed that a high-altitude toadheaded agama,

    P.erythrurus

    ,behaved similarly,with lower mitochondrial respiratory rate but higher fat utilization in liver compared to a low-altitude species

    P.przewalskii

    .Qi

    et al.

    (unpublished) further found that both oviparous (

    P.axillaris

    )and viviparous (

    P.forsythii

    ) species in this genus showed a very similar plastic pattern of gene expression and metabolites associated with fatty acid metabolism in liver by translocating from low-to high-altitude.However,our study suggests that the true high-altitude species

    P.vlangalii

    has a distinct pattern.Although the general expression profile of

    P.vlangalii

    was still closer to

    P.forsythii

    ,consistent with their phylogenetic relationship,DEGs in liver of

    P.vlangalii

    were mostly concentrated in functional categories like monocarboxylic acid metabolic process,antibiotic catabolic process and detoxification.Furthermore,the expression patterns of 12 diagnostic genes associated with fatty acid metabolism,which showed significantly differentially expression in

    P.axillaris

    and

    P.forsythii

    ,illustrated reduced plastic expression in

    P.vlangalii

    ,including key genes FASN,ACAA2,and ECI2.FASN gene encodes an enzyme fatty acid synthase that plays a core role in fatty acid synthesis (Jayakumar

    et al

    .,1995);ACAA2 and ECI2 encode proteins which are key mitochondrial enzymes involved in beta-oxidation,a step in the catabolic process of fatty acid(Abe

    et al

    .,1993;Geisbrecht

    et al

    .,1999).None of these genes were differentially expressed between low-and high-altitude groups for

    P.vlangalii

    ,suggesting no significant difference in fatty acid metabolism after translocation.The result indicated that

    P.vlangalii

    may have lost the capacity of plasticity in fatty acid metabolism due to genetic assimilation.Plasticity in fatty acid metabolism is thought to contribute to maintaining life activities for organisms moving to high altitude (Hammond

    et al

    .,2001;Storz

    et al

    .,2010;Refsnider

    et al

    .,2018).As a true dweller adapted to high altitude,

    P.vlangalii

    may have evolved other traits to trade-off the reduction of capacity for plasticity in fatty acid metabolism,similar to the case of

    P.erythrurus

    (Tang

    et al

    .,2013).However,the detailed mechanism for

    P.vlangalii

    still needs further research.Our study provided special evidence of genetic assimilation that may have facilitated the high-altitude adaptation for

    P.vlangalii

    .Genetic assimilation refers to the process in which initially plastic phenotypes are gradually fixed,leading to reduced phenotypic plasticity and only adaptive phenotypes,even without environmental stimuli (Waddington,1953;Pigliucci,2006).At gene expression level,plastically expressed genes may finally become fixed,given that gene expression mirrors phenotypic plasticity (Scoville and Pfrender,2010;Renn and Schumer,2013).Genetic assimilation provides an alternative hypothesis to explain the mechanism of adaptive evolution,where phenotypic plasticity is first triggered by environmental factors,followed by selection on genotypes influencing the plastic expression of phenotypes (Moczek

    et al

    .,2011;Jones and Robinson,2018).In fact,species such as

    Alnum glutinosa

    (Kort

    et al

    .,2016) and

    Colias eriphyle

    (Kingsolver and Buckley,2017) also showed similar loss of plasticity in adaptation to high-altitude environments,which indicated that the genetic assimilation might be an effective way for organisms to adapt to extreme environments.However,more studies especially on modeling of phenotypic plasticity are still required to elucidate the role of genetic assimilation in adaptation.

    Acknowledgements

    We are grateful to Cuoke,Erga,X.Qiu,Y.Wu,and X.Zhu for logistic assistance in field station,and J.Ramos for English language editing.We have obtained the permits from Zoige National Wetland Nature Reserve,where we have a long-term field research station on ecology and evolution of lizards.This work was supported by National Natural Science Foundation of China (No.31501855) and the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) with Grant No.2019QZKK0402.

    Appendix

    Figure S1 Top 20 GO categories over-represented by DEGs in liver.

    Figure S2 GO categories over-represented by DEGs in muscle.

    Table S1 Sample information.

    Table S2 Diagnostic genes associated with fatty acid metabolism.

    欧美性猛交╳xxx乱大交人| 亚洲在线自拍视频| 午夜精品在线福利| 久99久视频精品免费| 欧美zozozo另类| 超碰av人人做人人爽久久| 成人午夜高清在线视频| 激情 狠狠 欧美| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 汤姆久久久久久久影院中文字幕 | 欧美不卡视频在线免费观看| 国产伦一二天堂av在线观看| 亚洲在线自拍视频| 久久久欧美国产精品| 波多野结衣巨乳人妻| 国产成人午夜福利电影在线观看| 国产午夜精品论理片| 日韩成人伦理影院| 国产淫语在线视频| 亚洲人成网站在线观看播放| 国产久久久一区二区三区| 欧美成人免费av一区二区三区| 精品久久久久久电影网 | 在线免费观看的www视频| 99久久中文字幕三级久久日本| 七月丁香在线播放| 99久久中文字幕三级久久日本| 免费不卡的大黄色大毛片视频在线观看 | 韩国高清视频一区二区三区| 人妻系列 视频| 欧美一区二区亚洲| 久久这里只有精品中国| 国产午夜精品久久久久久一区二区三区| 中文欧美无线码| 精品国产三级普通话版| 午夜a级毛片| 久久这里只有精品中国| 日韩欧美三级三区| 久久这里只有精品中国| 美女黄网站色视频| 亚洲av成人av| 乱人视频在线观看| 国产精品精品国产色婷婷| or卡值多少钱| 久久久精品欧美日韩精品| 一夜夜www| 97热精品久久久久久| 亚洲欧美日韩卡通动漫| 色播亚洲综合网| 毛片一级片免费看久久久久| 国产精品久久久久久av不卡| 久久久国产成人免费| 男人和女人高潮做爰伦理| 国产真实乱freesex| 能在线免费观看的黄片| 国产亚洲一区二区精品| 国产一级毛片在线| 亚洲av不卡在线观看| 亚洲美女搞黄在线观看| 国产综合懂色| 国产成人a区在线观看| 免费人成在线观看视频色| 成人午夜精彩视频在线观看| 精品久久久久久久人妻蜜臀av| 在线播放无遮挡| 一个人看视频在线观看www免费| 亚洲国产精品合色在线| 看十八女毛片水多多多| 你懂的网址亚洲精品在线观看 | 亚洲av熟女| 一边摸一边抽搐一进一小说| 久久久国产成人免费| 久久精品夜色国产| 国产成人aa在线观看| 久久99热6这里只有精品| 亚洲精品456在线播放app| 成年av动漫网址| av黄色大香蕉| 亚洲三级黄色毛片| 一级毛片aaaaaa免费看小| 久久精品国产亚洲av涩爱| 欧美不卡视频在线免费观看| 国语自产精品视频在线第100页| av.在线天堂| 91午夜精品亚洲一区二区三区| 国产亚洲5aaaaa淫片| 少妇人妻一区二区三区视频| 日韩人妻高清精品专区| 亚洲精品自拍成人| 91av网一区二区| 爱豆传媒免费全集在线观看| 欧美一区二区亚洲| 亚洲婷婷狠狠爱综合网| 一级毛片我不卡| 一级av片app| 国产精品伦人一区二区| 老师上课跳d突然被开到最大视频| 一级爰片在线观看| 内射极品少妇av片p| 免费无遮挡裸体视频| www.av在线官网国产| 男人和女人高潮做爰伦理| 日韩 亚洲 欧美在线| 婷婷色av中文字幕| 高清在线视频一区二区三区 | 亚洲国产精品合色在线| 日本免费在线观看一区| 国产av在哪里看| 成人国产麻豆网| 国产亚洲91精品色在线| or卡值多少钱| 女人十人毛片免费观看3o分钟| 亚洲五月天丁香| 熟女人妻精品中文字幕| 女的被弄到高潮叫床怎么办| 天堂影院成人在线观看| 欧美97在线视频| 免费av观看视频| 不卡视频在线观看欧美| 美女脱内裤让男人舔精品视频| 久久热精品热| 蜜臀久久99精品久久宅男| 男女下面进入的视频免费午夜| 成年女人永久免费观看视频| 我要搜黄色片| 性色avwww在线观看| 最近的中文字幕免费完整| 99久久人妻综合| 色5月婷婷丁香| 国产精品1区2区在线观看.| 黄色日韩在线| 国产乱人视频| 美女国产视频在线观看| 嫩草影院精品99| 欧美成人a在线观看| 三级国产精品片| 一级爰片在线观看| 伊人久久精品亚洲午夜| 国产精品一区二区性色av| 最新中文字幕久久久久| 亚洲18禁久久av| 搡老妇女老女人老熟妇| 亚洲成人久久爱视频| av黄色大香蕉| 欧美激情国产日韩精品一区| 小说图片视频综合网站| 国产三级在线视频| 国产高清视频在线观看网站| 99国产精品一区二区蜜桃av| 亚洲国产色片| 国产在线一区二区三区精 | 全区人妻精品视频| 黄片wwwwww| 久久人人爽人人爽人人片va| 六月丁香七月| 国产精品蜜桃在线观看| 亚洲成av人片在线播放无| 日本免费在线观看一区| 国产不卡一卡二| 一级毛片久久久久久久久女| 人妻少妇偷人精品九色| 亚洲欧美精品综合久久99| 日韩视频在线欧美| 亚洲性久久影院| 一区二区三区高清视频在线| 成人三级黄色视频| 欧美一区二区国产精品久久精品| 男人的好看免费观看在线视频| 国产v大片淫在线免费观看| 麻豆一二三区av精品| 人人妻人人澡人人爽人人夜夜 | 一个人看视频在线观看www免费| 两个人的视频大全免费| 久久久久久伊人网av| 免费观看性生交大片5| 能在线免费观看的黄片| 国产免费又黄又爽又色| 老司机影院毛片| av国产免费在线观看| 久久久久久国产a免费观看| 亚洲av免费高清在线观看| 别揉我奶头 嗯啊视频| 中文资源天堂在线| 亚洲国产高清在线一区二区三| 日本免费一区二区三区高清不卡| 久久99热这里只有精品18| 国产高清国产精品国产三级 | 国产精品熟女久久久久浪| 亚洲欧美精品综合久久99| 国产色婷婷99| 国产精品一区二区在线观看99 | 日韩国内少妇激情av| 男的添女的下面高潮视频| 色吧在线观看| av视频在线观看入口| 精品无人区乱码1区二区| 久久久精品大字幕| 白带黄色成豆腐渣| 久久99蜜桃精品久久| 国产av不卡久久| 91在线精品国自产拍蜜月| 亚洲国产精品成人久久小说| 直男gayav资源| 亚洲最大成人中文| 91午夜精品亚洲一区二区三区| 免费av毛片视频| 卡戴珊不雅视频在线播放| 在线免费观看不下载黄p国产| 国产大屁股一区二区在线视频| 久久久久久久久久成人| 国内少妇人妻偷人精品xxx网站| 丰满人妻一区二区三区视频av| 国产高清有码在线观看视频| 成人性生交大片免费视频hd| 亚洲图色成人| 97超碰精品成人国产| 国内精品美女久久久久久| 亚洲欧美成人综合另类久久久 | 观看免费一级毛片| 亚洲av二区三区四区| 国产不卡一卡二| 日本av手机在线免费观看| 能在线免费观看的黄片| 久久久精品大字幕| 欧美激情久久久久久爽电影| 欧美又色又爽又黄视频| 久久精品影院6| 禁无遮挡网站| 91久久精品电影网| 日本五十路高清| 国产乱人视频| 色综合亚洲欧美另类图片| 国产精品爽爽va在线观看网站| 性色avwww在线观看| 久久久久久久国产电影| 97超碰精品成人国产| 欧美一区二区精品小视频在线| 国产精品,欧美在线| 淫秽高清视频在线观看| 亚洲高清免费不卡视频| 日韩一区二区三区影片| av专区在线播放| 永久网站在线| 亚洲怡红院男人天堂| 国产成人福利小说| 一级毛片我不卡| 91精品伊人久久大香线蕉| 国产精品久久久久久精品电影小说 | 精品不卡国产一区二区三区| 久久久久精品久久久久真实原创| 超碰av人人做人人爽久久| 中文字幕精品亚洲无线码一区| 国产激情偷乱视频一区二区| ponron亚洲| 国产黄a三级三级三级人| 乱系列少妇在线播放| 青春草视频在线免费观看| 1000部很黄的大片| 精品久久国产蜜桃| 亚洲欧美中文字幕日韩二区| 国产精品野战在线观看| 日韩一本色道免费dvd| 变态另类丝袜制服| 国产真实乱freesex| 精品国内亚洲2022精品成人| 1000部很黄的大片| 亚洲精品国产成人久久av| 久久久国产成人精品二区| 免费无遮挡裸体视频| 看非洲黑人一级黄片| 一二三四中文在线观看免费高清| 免费黄网站久久成人精品| 波野结衣二区三区在线| 亚洲综合色惰| 欧美色视频一区免费| 在线播放无遮挡| 国产不卡一卡二| 一本久久精品| 美女被艹到高潮喷水动态| 国产亚洲5aaaaa淫片| 69av精品久久久久久| 精品久久久久久久久久久久久| 国产成人精品久久久久久| 麻豆国产97在线/欧美| 成人性生交大片免费视频hd| 天堂影院成人在线观看| 久久精品夜色国产| 久久亚洲国产成人精品v| 日本免费在线观看一区| 亚洲欧美日韩无卡精品| 黑人高潮一二区| 毛片一级片免费看久久久久| 国产中年淑女户外野战色| 女的被弄到高潮叫床怎么办| 国产久久久一区二区三区| 亚洲性久久影院| 亚洲最大成人中文| 国产成人精品久久久久久| 日韩av不卡免费在线播放| 日韩三级伦理在线观看| 日韩av在线大香蕉| 国产人妻一区二区三区在| 中文字幕人妻熟人妻熟丝袜美| 欧美人与善性xxx| 亚洲精品乱码久久久久久按摩| 亚洲av男天堂| 在线观看美女被高潮喷水网站| 中文乱码字字幕精品一区二区三区 | av播播在线观看一区| 亚州av有码| 性色avwww在线观看| 免费黄网站久久成人精品| 一个人看视频在线观看www免费| 永久免费av网站大全| 国产精品av视频在线免费观看| 青春草亚洲视频在线观看| 亚洲av免费高清在线观看| av线在线观看网站| 亚洲精品乱码久久久v下载方式| 亚洲丝袜综合中文字幕| 国产午夜福利久久久久久| 国产高清视频在线观看网站| 午夜激情欧美在线| 国产探花在线观看一区二区| .国产精品久久| 久久精品久久久久久噜噜老黄 | 舔av片在线| 国产午夜精品久久久久久一区二区三区| 天美传媒精品一区二区| 成人性生交大片免费视频hd| 日本一本二区三区精品| 亚洲图色成人| 国产白丝娇喘喷水9色精品| eeuss影院久久| 五月玫瑰六月丁香| 熟女人妻精品中文字幕| 国产成人午夜福利电影在线观看| 精品酒店卫生间| 亚洲欧美精品专区久久| 国产伦精品一区二区三区视频9| 国产精品久久久久久精品电影| 97热精品久久久久久| 国产亚洲一区二区精品| 秋霞伦理黄片| av免费观看日本| av卡一久久| 在线免费观看不下载黄p国产| 91精品一卡2卡3卡4卡| 亚洲电影在线观看av| 亚洲精品成人久久久久久| 狂野欧美激情性xxxx在线观看| 99久国产av精品国产电影| 黄色欧美视频在线观看| 国产精品久久久久久久电影| 亚洲怡红院男人天堂| 噜噜噜噜噜久久久久久91| videossex国产| 一级av片app| 国产伦在线观看视频一区| 亚洲av中文av极速乱| 我的女老师完整版在线观看| 国产精品美女特级片免费视频播放器| 午夜精品一区二区三区免费看| 国产熟女欧美一区二区| 亚洲av男天堂| 99热6这里只有精品| 欧美高清成人免费视频www| 日韩av在线免费看完整版不卡| 超碰av人人做人人爽久久| 婷婷色av中文字幕| 人妻制服诱惑在线中文字幕| 美女黄网站色视频| 最近手机中文字幕大全| 久久久精品大字幕| 大话2 男鬼变身卡| 日本免费a在线| 亚洲一区高清亚洲精品| av.在线天堂| 日本猛色少妇xxxxx猛交久久| 亚洲人与动物交配视频| 色综合色国产| 精品一区二区免费观看| 能在线免费观看的黄片| 国产一区有黄有色的免费视频 | 国产成人福利小说| 成人无遮挡网站| 国产在线男女| 免费看a级黄色片| 亚洲va在线va天堂va国产| 久久久久久久亚洲中文字幕| 精品国产露脸久久av麻豆 | 丝袜喷水一区| 国产极品天堂在线| 免费观看人在逋| 丝袜喷水一区| 1000部很黄的大片| 超碰av人人做人人爽久久| 精品人妻一区二区三区麻豆| 小说图片视频综合网站| 亚洲一级一片aⅴ在线观看| 国产精品国产三级国产专区5o | 全区人妻精品视频| 亚洲最大成人av| 欧美丝袜亚洲另类| 天堂av国产一区二区熟女人妻| 亚洲av中文av极速乱| 国产黄色小视频在线观看| 精品国内亚洲2022精品成人| 人人妻人人澡欧美一区二区| 91精品伊人久久大香线蕉| 亚洲精品一区蜜桃| 亚洲电影在线观看av| 国产亚洲最大av| 国产精品国产三级国产专区5o | 欧美激情国产日韩精品一区| 久久久久久久久久久免费av| 日韩中字成人| 老司机影院成人| 久久亚洲国产成人精品v| 亚洲电影在线观看av| 日日干狠狠操夜夜爽| 99久久人妻综合| 国产精品国产高清国产av| 国产精品日韩av在线免费观看| 欧美成人免费av一区二区三区| 午夜福利高清视频| 18禁在线播放成人免费| 亚洲美女搞黄在线观看| 欧美日韩综合久久久久久| 青青草视频在线视频观看| 亚洲精品一区蜜桃| 2021天堂中文幕一二区在线观| 免费观看性生交大片5| 国产成人a区在线观看| 男人舔女人下体高潮全视频| 在现免费观看毛片| 国产精品一区二区三区四区免费观看| 亚洲怡红院男人天堂| 久久99热6这里只有精品| 99九九线精品视频在线观看视频| 午夜精品在线福利| 成人高潮视频无遮挡免费网站| 国内揄拍国产精品人妻在线| 在现免费观看毛片| 国产白丝娇喘喷水9色精品| 五月玫瑰六月丁香| 精品久久久久久成人av| 久久精品91蜜桃| 国产国拍精品亚洲av在线观看| 欧美另类亚洲清纯唯美| 在线a可以看的网站| 久久精品影院6| av黄色大香蕉| 成年女人看的毛片在线观看| 一级毛片电影观看 | 久久精品熟女亚洲av麻豆精品 | 午夜激情欧美在线| 亚洲国产日韩欧美精品在线观看| 亚洲国产精品sss在线观看| 国产麻豆成人av免费视频| 国产亚洲午夜精品一区二区久久 | 中文精品一卡2卡3卡4更新| 18禁裸乳无遮挡免费网站照片| 成人欧美大片| 日本五十路高清| 久久人人爽人人爽人人片va| 热99re8久久精品国产| 少妇高潮的动态图| 成人漫画全彩无遮挡| 久久精品国产亚洲av天美| 精品一区二区三区人妻视频| 少妇猛男粗大的猛烈进出视频 | 国产精品伦人一区二区| 大话2 男鬼变身卡| 噜噜噜噜噜久久久久久91| 日本一本二区三区精品| 亚洲精品乱码久久久久久按摩| 能在线免费看毛片的网站| 亚洲丝袜综合中文字幕| 午夜a级毛片| 91精品国产九色| 亚洲av日韩在线播放| 最近中文字幕高清免费大全6| 人人妻人人看人人澡| 精华霜和精华液先用哪个| 午夜福利视频1000在线观看| 精品久久久久久久人妻蜜臀av| 国产成人免费观看mmmm| 非洲黑人性xxxx精品又粗又长| 日日摸夜夜添夜夜添av毛片| 黄片wwwwww| 国产片特级美女逼逼视频| 国产成人午夜福利电影在线观看| АⅤ资源中文在线天堂| 国产单亲对白刺激| 免费观看在线日韩| 色综合站精品国产| 九九爱精品视频在线观看| 天天躁夜夜躁狠狠久久av| 少妇的逼好多水| 人妻系列 视频| 天天一区二区日本电影三级| 国产亚洲91精品色在线| 青春草国产在线视频| 色网站视频免费| 观看美女的网站| 啦啦啦韩国在线观看视频| 91午夜精品亚洲一区二区三区| 深爱激情五月婷婷| 高清在线视频一区二区三区 | 国产一区二区在线观看日韩| 日韩欧美精品免费久久| 亚洲无线观看免费| 免费不卡的大黄色大毛片视频在线观看 | 内射极品少妇av片p| 亚洲内射少妇av| 国产单亲对白刺激| av在线观看视频网站免费| 免费观看人在逋| 在线播放国产精品三级| 国产av码专区亚洲av| 国产高清有码在线观看视频| 久久久久久久久久成人| 欧美性猛交╳xxx乱大交人| 在线播放无遮挡| av在线天堂中文字幕| 免费av观看视频| 我要搜黄色片| 日韩,欧美,国产一区二区三区 | 国产又色又爽无遮挡免| 中文字幕熟女人妻在线| 中国美白少妇内射xxxbb| 中文字幕熟女人妻在线| 国产乱人偷精品视频| 国产av在哪里看| 一区二区三区四区激情视频| 久久久国产成人精品二区| 久久热精品热| 国产成人aa在线观看| 国产午夜精品论理片| 2021天堂中文幕一二区在线观| 插阴视频在线观看视频| 中国美白少妇内射xxxbb| 久久这里只有精品中国| 干丝袜人妻中文字幕| 国产亚洲5aaaaa淫片| 免费观看的影片在线观看| 日韩在线高清观看一区二区三区| 亚洲成人中文字幕在线播放| 大香蕉97超碰在线| 内射极品少妇av片p| a级毛片免费高清观看在线播放| 亚洲av不卡在线观看| 免费一级毛片在线播放高清视频| 国产极品天堂在线| 91久久精品国产一区二区三区| 男人和女人高潮做爰伦理| 99热这里只有精品一区| 久久久久久久久久成人| 亚洲成色77777| 国产乱人视频| 欧美三级亚洲精品| av免费观看日本| 美女内射精品一级片tv| 亚洲,欧美,日韩| 久久久成人免费电影| 好男人在线观看高清免费视频| 国产成人一区二区在线| 爱豆传媒免费全集在线观看| 亚洲国产成人一精品久久久| 精品人妻偷拍中文字幕| 日韩av在线大香蕉| 青春草视频在线免费观看| 午夜福利高清视频| 搡老妇女老女人老熟妇| 国产精品人妻久久久久久| 国产精品人妻久久久影院| 韩国av在线不卡| 精品不卡国产一区二区三区| 免费大片18禁| 国产精品人妻久久久久久| 淫秽高清视频在线观看| 精品人妻一区二区三区麻豆| 日韩av在线免费看完整版不卡| av卡一久久| 国产亚洲精品av在线| 亚洲18禁久久av| 蜜桃久久精品国产亚洲av| www日本黄色视频网| 乱码一卡2卡4卡精品| 2021天堂中文幕一二区在线观| 久久人人爽人人片av| 亚洲成人av在线免费| 视频中文字幕在线观看| 国产淫语在线视频| 亚洲av男天堂| 久久精品国产鲁丝片午夜精品| 色综合亚洲欧美另类图片| 99热全是精品| 三级国产精品欧美在线观看| 国产在视频线精品| 三级国产精品欧美在线观看| 69av精品久久久久久| 91精品一卡2卡3卡4卡| 最近最新中文字幕免费大全7| 婷婷色av中文字幕| 又粗又爽又猛毛片免费看| 在线免费十八禁| 国产在线男女| 国产欧美另类精品又又久久亚洲欧美| 免费看日本二区| 极品教师在线视频| 在线a可以看的网站| 国产黄色小视频在线观看| 99久久九九国产精品国产免费|