• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Life Histories on Genome Size Variation in Squamata

    2021-09-27 11:25:36ChuanCHENLongJINYingJIANGandWenboLIAO
    Asian Herpetological Research 2021年3期

    Chuan CHEN ,Long JIN ,Ying JIANG and Wenbo LIAO*

    1Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education),China West Normal University,Nanchong 637009,Sichuan,China

    2Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City,China West Normal University,Nanchong 637009,Sichuan,China

    3Institute of Eco-adaptation in Amphibians and Reptiles,China West Normal University,Nanchong 637009,Sichuan,China

    Abstract Genome size changes significantly among taxonomic levels,and this variation is often related to the patterns shaped by the phylogeny,life histories and ecological factors.However,there are mixed evidences on the main factors affecting molecular evolution in animals.In this study,we used phylogenetic comparative analysis to investigate the evolutionary rate of genome size and the relationships between genome size and life histories (i.e.,hatchling mass,clutch size,clutches per year,age at sexual maturity,lifespan and body mass) among 199 squamata species.Our results showed that the evolutionary rate of genome size in Lacertilia was significantly faster than Serpentes.Moreover,we also found that larger species showed larger hatchling mass,more clutches per year and clutch size and longer lifespan.However,genome size was negatively associated with clutch size and clutches per year,but not associated with body mass we looked at.The findings suggest that larger species do not possess the evolution of large genomes in squamata.

    Keywords genome size,body mass,evolutionary rate,life histories

    1.Introduction

    Genome sizes vary considerably across taxa in organisms(Cavalier-Smith,1978;Bennett and Leitch,2005;Lynch and Walsh,2007).This can be driven by the stochastic genetic and/or genomic processes associated with spontaneous deletions and/or insertions,polyploidization,prolonged tandem repeats length,transposable elements number and genetic drift,but can be also shaped by natural selection (Ogata

    et al

    .,1996;Petrov,2001;Sun

    et al

    .,2012;Lynch,2011;Whitney and Garland,2010).In particular,genome size variations are mainly explained by two important mechanisms including the duplication events and the proliferations of noncoding elements (Neiman

    et al

    .,2015).Establishing the association between genome size variation and organismal complexity has puzzled many evolutionary biologists and as such remains a classic problem in biology (Gregory,2005a).Previous studies across taxa have revealed positive associations between genome size and cell size,nucleus size,developmental time,nutrient requirements,tissue differentiation,life cycle complexity and body size (Vinogradov,1997;Olmo and Morescalchi,1978;Gregory,2005a;Gregory,2001;Gregory and Johnston,2008;Guignard

    et al

    .,2016).These positive associations have been suggested to be consequences of both the cytoplasm from more efficient mRNA transport and larger cells necessitating larger genomes based on structural causes (Cavalier-Smith,1985).Smaller cells for instance,usually divide faster and have a higher metabolic rate,evidenced by a negative correlation between metabolic rates and DNA amounts in mammals and birds (Hughes and Hughes,1995;Vinogradov,1995;Gregory,2002a;Hughes and Piontkivska,2005).However,a potential correlation which still needs to be explored between cell volume and genome size is body size(Gregory

    et al

    .,2000).Body size variation is often determined either by cell size and cell number,or both combination in organisms (Hessen

    et al

    .,2013;Koz?owski

    et al

    .,2003).For plants and animals,genome size displays a positive association with cell size (Gregory

    et al

    .,2000;Bennett,1987;Gregory,2005b).In addition,this correlation can be often linked to ecological factors.For example,genome size exhibits a positive association with body size in some invertebrates (e.g.,amphipods,copepods,crustaceans) due to low metabolic rate and temperatures in cold waters (Rees

    et al

    .,2008;Angilletta

    et al

    .,2004;Timofeev,2001;Jeffery

    et al

    .,2016;Leinaas

    et al

    .,2016).Genome size variation in frogs is indirectly affected by temperature and humidity as a result of its influence on the time of premetamorphic development (Liedtke

    et al

    .,2018).In birds,mitochondrial and nuclear of substitution rate in coding sequences reveal weak negative associations between the ratio of nonsynonymous and synonymous substitution rate and age at sexual maturity,lifespan and body mass associated with environmental factors (Weber

    et al

    .,2014;Lanfear

    et al

    .,2010;Nabholz

    et al

    .,2013),but it is not always the case (Figuet

    et al

    .,2017).Squamata constitutes the class of vertebrates with a small genome size due to a lower fraction of transposable elements and shorter introns (Organ

    et al

    .,2007).However,this may be a misconception caused by overlooking GC-rich regions,which are often hard to access (Botero-Castro,2017).Ploidy variations does not provide a major power of variation in genome size,and the whole-genome duplication events is not reported during the amniote evolutionary process in squamata (Van de Peer

    et al

    .,2009).Squamata mainly consists of two suborders(e.g.,Lacertilia and Serpentes) and displays complex life histories with prolonged developmental periods (hatching time),which likely constrains the variation of genome size because of a negative correlation between genome size and development time in invertebrates (Wyngaard

    et al

    .,2005).

    To examine the selective mechanisms underlying genome size variation in squamata,we first estimated the evolutionary rates of genome size between Lacertilia and Serpentes in squamata.We also expanded our extent to which genome size can be considered as a determinant of life histories by investigating the relationships between variation in genome size and life histories among 199 squamata species.We tested whether larger bodies can promote evolution of larger genomes.

    2.Materials and Methods

    2.1

    .

    Data collection

    The genome size of 199 squamata species was collected from genome size database (http://www.genomesize.com) (supplementary Information:Table S1).We extracted data on genome size for squamata species for which information on life histories can be found (see below),and obtain their average

    C

    -value.We used average values of genome size when more than one measurement per species was available.To avoid possible errors due to several methods being used to quantify genome size (Hardie

    et al

    .,2002),we used parallel analyses on a subset of genome size.We confirmed species names using the NCBI taxonomy database,and collapsed/pruned all synonyms from the phylogenetic tree.We rebuilt the phylogenetic tree using time-calibrated molecular phylogeny by Pyron

    et al

    .(2013) (Figure 1) and examined difference in the evolutionary rate of genome size between Lacertilia and Serpentes.Finally,we compiled information on hatching time,hatchling mass,clutch size per year,clutch size and body mass (see details in De Smet,1981;Feldman

    et al

    .,2016;Allen

    et al

    .,2017) and age at sexual maturity,lifespan from the AnAge databases (https://genomics.senescence.info/species/)(supplementary Information:Table S1).

    2.2.Statistical analyses

    The complementary approaches were used to evaluate the evolution rate of genome size for three suborders.For each suborder,we assessed phylogenetic signal using the

    phylosig

    function in the package of

    phytools

    in RStudio v.3.1.2 (Revell,2012).We then used the Blomberg’s

    K

    (Blomberg

    et al

    .,2003) in which genome size variation comparing on a null model is assumed genome size evolution under Brownian motion (BM) model.We also used the Pagel’s

    λ

    (Pagel,1999)in which phylogenetic signal is estimated on the basis of the phylogenetic dependence of genome size.

    K

    =1 indicated genome size evolved as expected under a BM model,while

    K

    > 1or

    K

    < 1 indicated less or more phylogenetic signal than expected under a BM model,respectively.We used Blomberg’s

    K

    and Pagel’s

    λ

    to estimate the phylogenetic signal and found qualitatively similar results (Table S2).We used the

    fitContinuous

    function in the R package-

    Geiger

    (Harmon

    et al

    .,2008) to compare genome size evolution on the basis of Brownian motion,Ornstein-Uhlenbeck and Early-burst models between the two suborders.Following the suggestions by Simmons and Fitzpatrick (2016),BM model of genome size evolution was regarded to be the best model due to small sample size.Moreover,to compare differences in evolutionary rate of genome size between the two suborders,we modified a likelihood method where a phylogeny can directly compare on the Brownian evolutionary rate (

    σ

    ) of genome size (Adams,2013).To examine associations between genome size and life histories,we used the phylogenetic generalized least squares models where the phylogenetic structure of the model residuals was considered in the

    caper

    package (Orme

    et al

    .,2012;Huang

    et al

    .,2020).We used phylogenetic scaling parameter

    λ

    to estimate the phylogenetic influence on the associations between genome size and life histories based on a maximumlikelihood approach (Pagel,1999).The scale of

    λ

    -values ranges from zero (i.e.,phylogenetic independence) to one (i.e.,complete phylogenetic non-independence) (Freckleton

    et al

    .,2002;Mai

    et al

    .,2019)

    .

    We log-transformed life histories to linearize associations and used the phylogenetic tree of squamata species to correct for phylogenetic dependence (Mai

    et al

    .,2020).To test the associations between body mass and life histories,we treated body mass as response variable,hatchling mass,clutches per year,clutch size,age at sexual maturity and lifespan as predictor variables using the multivariate phylogenetic generalized least squares.To test whether genome size exhibited a association with body mass,we treated body mass as predictor variable,genome size as response variable,and hatchling mass,clutches per year,clutch size and lifespan as covariates using the multivariate phylogenetic generalized least squares.

    3.Results

    The average value of genome size was 2.11 pg,ranging from 1.19 to 3.93 pg among 199 species of squamata.Genome size in Lacertilia tended to be larger than that in Serpentes (Figure 2).The evolutionary rate of genome size in Lacertilia was faster than that in Serpentes (Table S3).

    Figure 1 The phylogenetic tree of the 199 species of squamata used in the comparative analysis.

    Figure 2 Genome size difference between Lacertilian and Serpentes for 199 species of squamata.

    The multivariate phylogenetic generalized least squares model indicated that body mass was positively associated with hatchling mass,clutches per year,clutch size and lifespan among 199 species of squamata (Table 1) .The genome size was not associated with body mass when the effects of hatchling mass,clutches per year,clutch size and lifespan were removed(Table 2).We also found negative correlations between genome size and clutch size or clutches per year (Table 2).

    For Serpentes in particular,body mass was positively and significantly associated with hatchling mass and clutch size,but not with clutches per year,age at sexual maturity and lifespan using the multivariate phylogenetic generalized least squares model (Table S4).However,there was no association between genome size and body mass when removing the hatchling mass and clutch size effects (Table S5).For Lacertilia,body mass was significantly associated with hatchling mass,clutches per year,clutch size and lifespan (Table S4).When the influences of hatchling mass,clutches per year,clutch size and lifespan were removed,we found no association between genome size variation and body mass (Table S5).

    Table 1 The associations between body mass and life histories across 199 species of squamata.Phylogenetic scaling parameters (superscripts following λ denote P-values of likelihood ratio tests against models with λ=0 and λ=1,respectively).

    Table 2 The associations between genome size and life histories across 199 species of squamata.Phylogenetic scaling parameters (superscripts following λ denote P-values of likelihood ratio tests against models with λ=0 and λ=1,respectively).

    4.Discussion

    Our results showed that genome size evolution in Lacertilia evolved significantly faster than that in Serpentes among 199 species of squamata.We found positive correlations between body mass and hatchling mass,clutches per year,clutch size,and lifespan.However,genome size was not associated with body mass when correcting for the effects of part life histories.For Lacertilia and Serpentes,genome size did not show a association with body mass.

    Differences in transposable element accumulation rates in animals experienced may lead to substantial variation in genome size among species (Chalopin

    et al

    .,2015;Gibbs

    et al

    .,2004).For example,a number of DNA obtained by transposable element accumulation with strong changes among lineages,are counteracted by loss of DNA on the basis of large segmental deletion in birds (Kapusta

    et al

    .,2017).For 199 species of squamata,the rate of transposable element accumulation can also explain the marked variation in genome size,ranging from 1.19 to 3.93 pg.The evolutionary history of genome size in amphibians has been one of gradual,time-dependent variation (Brownian motion;Liedtke

    et al

    .,2018).In this study,evolutionary modelfitting showed that genomes in Lacertilia and Serpentes evolved under a shared processes of Brownian motion.The common ancestor of extant squamata was predicted to have similar size in genome in Lacertilia and Serpentes.We inferred that genome size in squamata evolved gradually as a function of time(Brownian motion).Herein we found that the evolutionary rate of genome size in Lacertilia evolved faster than Serpentes.Palaeontological data and genomic evidence display a similar pattern (Pyron

    et al

    .,2013).There are evidences that phylogeny is likely to promote the influences of genome duplications and transposons on genome size evolution in animals (mammals:Tang

    et al

    .,2019;insects:Alfsnes

    et al

    .,2017).For example,genome size is phylogenydependent when

    λ

    > 0.9 in all life-history traits is reported in mammals (Tang

    et al

    .,2019).However,phylogeny displays a weak correlation with genome size in crustaceans (Alfsnes

    et al

    .,2017).Likewise,there is a weak association between genome size and phylogeny among 240 species of birds when

    λ

    ≤ 0.564 is recorded in all life-history traits (Yu

    et al

    .,2020).We found that genome size was not associated with phylogeny,suggesting that the phylogeny did not a strong power in driving transposons and duplications of genome in squamata.Genome size variation can be explained by the more mechanistic and/or short period effects which is regarded as the proximate causes.Moreover,the evolutionary powers (i.e.,selection),regarding as the ultimate causes,can also explain the genome size variation (Hessen

    et al

    .,2013;Alfsnes

    et al

    .,2017;Yu

    et al

    .,2020).For birds,variations in genome size are positively related to the length of developmental period (Kapusta

    et al

    .,2017;Yu

    et al

    .,2020),providing evidence for the associations between life histories and genome size evolution.Indeed,genome size displays markedly and directly effects on cell size and cell replication rate (Gregory,2002b),so larger genomes are expected to be positively correlated with larger egg size and smaller clutch size.However,large datasets have indicated that variations in genome size are not associated with offspring number and size in mammals (Tang

    et al

    .,2019) and life history complexity of amphibians (Liedtke

    et al

    .,2018).In this study,there were negative correlations between genome size variation and life histories such as clutch size and clutches per year in squamata,suggesting that less offspring number or larger offspring size can promote evolution of larger genomes.Body mass is positively associated with genome size in vertebrates (Liedtke

    et al

    .,2018;Tang

    et al

    .,2019;Yu

    et al

    .,2020)and invertebrates (Gregory

    et al

    .,2000;McLaren

    et al

    .,1989;Hessen and Persson,2009;Alfsnes

    et al

    .,2017).Such positive associations between cell size and genome size (Gregory,2005a;McLaren and Marcogliese,1983) have indicated that variations in body size among the related species can partly respond to variation in cell size (Hessen

    et al

    .,2013).Indeed,genome size exhibits positively correlations with body mass in birds and mammals (Tang

    et al

    .,2019;Yu

    et al

    .,2020).Across 199 species of squamata,there were not associations between genome size and body mass,suggesting that diversity in genome size was not response of variation in cell size.

    In conclusion,we illustrated the relationships between genome size and life histories in squamata.The hatching time,hatchling mass,clutch size per year and clutch size cannot shaped the genome size variation,and species with larger bodies did not possess larger genomes in squamata.Our future research would need more species to reveal the relationships between genome size evolution and life histories.

    Acknowledgements

    We thank C.L.MAI and J.P.YU to help the data collected.Financial support was provided by the National Natural Sciences Foundation of China (31 772451;31970393) and the Science and Technology Youth Innovation Team of Sichuan Province (2019JDTD0012).

    Appendix

    Table S1 TSpecies,body mass (g),genome size (pg),hatchling mass (g),clutch size,clutches per year among 199 species of squamata from the references of De Smet (1981),Feldman et al.(2016),Allen et al.(2017),and age at sexual maturity (years) and lifespan (years) from AnAge (https://genomics.senescence.info/species/).

    (Continued Table S1)

    (Continued Table S1)

    (Continued Table S1)

    References for Table S1

    Allen W.L.,Street S.E.,Capellini I.2017.Fast life-history traits promote invasion success in amphibians and reptiles.Ecol Lett,20(2):222-230

    De Smet W.H.O.1981.The nuclear Feulgen-DNA content of the vertebrates (especially reptiles),as measured by fluorescence cytophotometry,with notes on the cell and chromosome size.Acta Zool Pathol Antverp,76(1):119-167

    Feldman A.,Sabath N.,Pyron R.A.,Mayrose I.,Meiri S.2016.Body sizes and diversification rates of lizards,snakes,amphisbaenians and the tuatara.Glob Ecol Biogeogr,25(2):187-197

    Table S2 Evaluation of phylogenetic signal in genome size examined.

    Table S3 Comparison of model parameters and fit for each suborder examined under Brownian motion,Ornstein-Uhlenbeck and Early-burst evolutionary models.

    Table S4 Associations between body mass and life histories for the two suborders in squamata using phylogenetic generalized least squares models.Phylogenetic scaling parameters (superscripts following λ denote P-values of likelihood ratio tests against models with λ=0 and λ=1,respectively).

    Table S5 Associations between genome size and life histories in squamata using phylogenetic generalized least squares models.Phylogenetic scaling parameters (superscripts following λ denoteP-values of likelihood ratio tests against models with λ=0 and λ=1,respectively).

    成人美女网站在线观看视频| 午夜老司机福利剧场| 人妻夜夜爽99麻豆av| 一级av片app| 日本a在线网址| 99国产极品粉嫩在线观看| 亚洲成av人片在线播放无| 亚洲成人久久爱视频| 淫秽高清视频在线观看| 此物有八面人人有两片| 内射极品少妇av片p| 老司机福利观看| 亚洲国产精品成人综合色| 国产精品福利在线免费观看| 欧美绝顶高潮抽搐喷水| 国产 一区 欧美 日韩| 成人av在线播放网站| 色综合站精品国产| 亚洲欧美日韩无卡精品| 欧美激情国产日韩精品一区| 亚洲精品456在线播放app | 日韩欧美免费精品| 国产免费av片在线观看野外av| 国产一区二区三区视频了| 真人做人爱边吃奶动态| 干丝袜人妻中文字幕| 最后的刺客免费高清国语| 亚洲成人精品中文字幕电影| 一个人看视频在线观看www免费| 国产精品电影一区二区三区| 直男gayav资源| 日本撒尿小便嘘嘘汇集6| 国产精华一区二区三区| 欧美一区二区亚洲| 最近视频中文字幕2019在线8| 国产男人的电影天堂91| 男女啪啪激烈高潮av片| 国产av麻豆久久久久久久| 很黄的视频免费| 成年人黄色毛片网站| 岛国在线免费视频观看| 久久精品影院6| 成人三级黄色视频| 人人妻,人人澡人人爽秒播| 午夜福利在线在线| 国产高潮美女av| 精品福利观看| 不卡视频在线观看欧美| 国产精品野战在线观看| 在线播放国产精品三级| 免费看av在线观看网站| 成人性生交大片免费视频hd| 欧美色视频一区免费| 国产精品女同一区二区软件 | 亚洲国产欧洲综合997久久,| 在线观看66精品国产| 亚洲无线观看免费| 国产精品一区二区免费欧美| 免费在线观看成人毛片| 美女cb高潮喷水在线观看| 狠狠狠狠99中文字幕| 亚洲一级一片aⅴ在线观看| 午夜影院日韩av| 12—13女人毛片做爰片一| 91狼人影院| 淫妇啪啪啪对白视频| 免费在线观看成人毛片| 真人一进一出gif抽搐免费| 国产精品女同一区二区软件 | 国产综合懂色| 别揉我奶头 嗯啊视频| 亚洲人成伊人成综合网2020| 在现免费观看毛片| 男插女下体视频免费在线播放| 嫩草影院精品99| 少妇的逼好多水| 国产国拍精品亚洲av在线观看| 国产高清激情床上av| 久久国产乱子免费精品| 一级a爱片免费观看的视频| 99国产极品粉嫩在线观看| 成年女人看的毛片在线观看| 在线播放无遮挡| 尤物成人国产欧美一区二区三区| 亚洲精品色激情综合| 99热只有精品国产| 国产精品人妻久久久影院| 成年女人永久免费观看视频| 最近中文字幕高清免费大全6 | 亚洲男人的天堂狠狠| 天堂影院成人在线观看| 麻豆一二三区av精品| 搞女人的毛片| 九九在线视频观看精品| 亚洲精品一区av在线观看| 97超视频在线观看视频| 国产精品三级大全| 一个人观看的视频www高清免费观看| 国产淫片久久久久久久久| 亚洲成人久久爱视频| 亚洲成a人片在线一区二区| bbb黄色大片| 蜜桃久久精品国产亚洲av| 淫妇啪啪啪对白视频| 国产精品亚洲美女久久久| 欧美最新免费一区二区三区| 国产一区二区三区视频了| 欧美又色又爽又黄视频| 国产 一区精品| 国产精品福利在线免费观看| 少妇高潮的动态图| 精品一区二区三区人妻视频| 国产一级毛片七仙女欲春2| 小说图片视频综合网站| 九九在线视频观看精品| 一区二区三区高清视频在线| 国产一区二区三区视频了| 成人特级黄色片久久久久久久| 国产极品精品免费视频能看的| 九九在线视频观看精品| 国产精品1区2区在线观看.| 又紧又爽又黄一区二区| 成人毛片a级毛片在线播放| 国产高清视频在线播放一区| 国内精品美女久久久久久| 国内少妇人妻偷人精品xxx网站| av在线蜜桃| 国产高潮美女av| 老熟妇仑乱视频hdxx| av.在线天堂| 成人特级黄色片久久久久久久| 国产不卡一卡二| 最好的美女福利视频网| 日韩欧美精品v在线| 黄色一级大片看看| 伊人久久精品亚洲午夜| 国产黄片美女视频| 精品午夜福利视频在线观看一区| 午夜精品久久久久久毛片777| 欧美黑人巨大hd| 69人妻影院| 日日干狠狠操夜夜爽| 久久久久九九精品影院| 国产一区二区三区av在线 | 亚洲精品久久国产高清桃花| 亚洲内射少妇av| 久久久久久大精品| 俄罗斯特黄特色一大片| 丝袜美腿在线中文| 国产成人影院久久av| 18禁黄网站禁片午夜丰满| 熟女人妻精品中文字幕| 99热这里只有是精品在线观看| av黄色大香蕉| 窝窝影院91人妻| 尤物成人国产欧美一区二区三区| 久久久久久久久中文| 国产午夜精品论理片| 国产白丝娇喘喷水9色精品| 国产精品亚洲一级av第二区| 国内精品美女久久久久久| ponron亚洲| 最新中文字幕久久久久| 亚洲综合色惰| 久久久成人免费电影| 日日撸夜夜添| 麻豆国产97在线/欧美| 免费观看人在逋| videossex国产| 国产欧美日韩一区二区精品| 人妻少妇偷人精品九色| 在线免费观看不下载黄p国产 | 国产伦在线观看视频一区| 国产午夜福利久久久久久| 日韩欧美国产一区二区入口| 日韩欧美国产一区二区入口| 黄色女人牲交| 久久中文看片网| 久久久久久国产a免费观看| 长腿黑丝高跟| 国内毛片毛片毛片毛片毛片| 久久精品国产自在天天线| 长腿黑丝高跟| 日本爱情动作片www.在线观看 | 亚洲一级一片aⅴ在线观看| 一区福利在线观看| 男女下面进入的视频免费午夜| 男女做爰动态图高潮gif福利片| 成人国产麻豆网| 国产私拍福利视频在线观看| 黄色视频,在线免费观看| 嫩草影院精品99| 嫁个100分男人电影在线观看| 人妻少妇偷人精品九色| 给我免费播放毛片高清在线观看| 欧美丝袜亚洲另类 | 老司机午夜福利在线观看视频| 一级黄片播放器| 91麻豆av在线| 又黄又爽又刺激的免费视频.| 窝窝影院91人妻| 国产乱人伦免费视频| 国产乱人视频| 日韩中字成人| 亚洲av.av天堂| 亚洲国产欧美人成| 久久6这里有精品| 亚洲人成伊人成综合网2020| 在线播放国产精品三级| 精品久久久久久久久久免费视频| 波多野结衣巨乳人妻| 国产毛片a区久久久久| 熟女电影av网| av国产免费在线观看| 亚洲熟妇中文字幕五十中出| 我要看日韩黄色一级片| 日本免费a在线| 高清毛片免费观看视频网站| 很黄的视频免费| 亚洲美女搞黄在线观看 | 亚洲av成人av| 舔av片在线| 久久久久国内视频| 麻豆国产av国片精品| 亚洲人成网站在线播| 色综合婷婷激情| 成人国产综合亚洲| 亚洲电影在线观看av| 亚洲精品一区av在线观看| 国产91精品成人一区二区三区| 国产精品av视频在线免费观看| 亚洲av免费在线观看| 日韩欧美免费精品| 亚洲欧美日韩高清专用| 午夜福利成人在线免费观看| 在线观看舔阴道视频| 又紧又爽又黄一区二区| 中文字幕av成人在线电影| 少妇被粗大猛烈的视频| 亚洲18禁久久av| 久久久久久久久大av| 99在线人妻在线中文字幕| 两个人视频免费观看高清| 最近在线观看免费完整版| 美女高潮的动态| 亚洲在线自拍视频| 国产伦在线观看视频一区| 九九在线视频观看精品| 丝袜美腿在线中文| 狠狠狠狠99中文字幕| 午夜激情欧美在线| 18+在线观看网站| 日本-黄色视频高清免费观看| 最好的美女福利视频网| 18禁黄网站禁片免费观看直播| 我的女老师完整版在线观看| 日韩欧美免费精品| 一本久久中文字幕| 国产又黄又爽又无遮挡在线| 在线观看舔阴道视频| 波野结衣二区三区在线| 国产免费一级a男人的天堂| 搡老岳熟女国产| 精品免费久久久久久久清纯| 午夜福利视频1000在线观看| 免费看av在线观看网站| 联通29元200g的流量卡| 欧美人与善性xxx| 午夜福利在线在线| 国产男人的电影天堂91| 性插视频无遮挡在线免费观看| 国产真实乱freesex| 久久国产精品人妻蜜桃| 国产精品一区二区三区四区免费观看 | 久久精品国产清高在天天线| 我要搜黄色片| 国产中年淑女户外野战色| av在线老鸭窝| 国产伦在线观看视频一区| 村上凉子中文字幕在线| 久久久久久久久久黄片| 亚洲精品影视一区二区三区av| 性欧美人与动物交配| netflix在线观看网站| 国产真实伦视频高清在线观看 | 欧美3d第一页| 观看免费一级毛片| 亚洲中文字幕一区二区三区有码在线看| 热99在线观看视频| 久久久精品欧美日韩精品| 国产精品嫩草影院av在线观看 | 日日摸夜夜添夜夜添av毛片 | 欧美精品国产亚洲| 日日干狠狠操夜夜爽| 特大巨黑吊av在线直播| 91在线观看av| 国产精品一区二区性色av| 国产免费av片在线观看野外av| 美女xxoo啪啪120秒动态图| 无人区码免费观看不卡| 天堂影院成人在线观看| 国产白丝娇喘喷水9色精品| 黄片wwwwww| 亚洲av熟女| 亚洲精品久久国产高清桃花| 色尼玛亚洲综合影院| 欧美人与善性xxx| 国产高潮美女av| 欧美性猛交黑人性爽| 久久国内精品自在自线图片| 在线播放国产精品三级| 久久久久久久久久成人| 国产熟女欧美一区二区| 日本色播在线视频| 亚洲狠狠婷婷综合久久图片| 欧美xxxx黑人xx丫x性爽| 特大巨黑吊av在线直播| 欧美日本视频| 国产精品国产高清国产av| 久久精品久久久久久噜噜老黄 | 久久热精品热| 日韩欧美一区二区三区在线观看| 欧美日韩精品成人综合77777| 国产精品国产三级国产av玫瑰| 99热网站在线观看| 亚洲av一区综合| 久9热在线精品视频| 日本在线视频免费播放| 国产精品乱码一区二三区的特点| 日韩欧美 国产精品| 男女边吃奶边做爰视频| 在现免费观看毛片| 最近最新中文字幕大全电影3| 欧美日韩瑟瑟在线播放| 国产 一区精品| 日韩强制内射视频| 蜜桃亚洲精品一区二区三区| 亚洲,欧美,日韩| 久久久午夜欧美精品| 久久久久久久午夜电影| 性欧美人与动物交配| 在线观看舔阴道视频| 最好的美女福利视频网| 国产黄a三级三级三级人| 亚洲欧美清纯卡通| 中文字幕av在线有码专区| 久久精品人妻少妇| 国产一区二区在线av高清观看| 在线免费十八禁| 国产综合懂色| 国产爱豆传媒在线观看| АⅤ资源中文在线天堂| 亚洲欧美清纯卡通| 日本一本二区三区精品| 亚洲精品亚洲一区二区| 亚洲国产欧美人成| 国产美女午夜福利| 国产成人a区在线观看| 日韩一本色道免费dvd| 精品久久久久久久久av| 亚洲国产色片| 国产 一区 欧美 日韩| 网址你懂的国产日韩在线| 在线观看av片永久免费下载| av在线天堂中文字幕| 亚洲成a人片在线一区二区| 天堂av国产一区二区熟女人妻| 白带黄色成豆腐渣| 嫩草影视91久久| 色哟哟·www| 简卡轻食公司| 久久精品国产亚洲av涩爱 | h日本视频在线播放| 国产 一区精品| 男女之事视频高清在线观看| 亚洲avbb在线观看| 午夜福利在线观看免费完整高清在 | 国产男人的电影天堂91| 国产成人av教育| 国产伦一二天堂av在线观看| 久久精品夜夜夜夜夜久久蜜豆| 欧美成人一区二区免费高清观看| 联通29元200g的流量卡| 亚洲精品日韩av片在线观看| 嫁个100分男人电影在线观看| 伦精品一区二区三区| 精品乱码久久久久久99久播| 午夜激情福利司机影院| 精品久久久噜噜| 国产精品福利在线免费观看| 亚洲欧美日韩卡通动漫| 十八禁国产超污无遮挡网站| 老熟妇仑乱视频hdxx| a级毛片免费高清观看在线播放| 校园春色视频在线观看| 三级国产精品欧美在线观看| 亚洲狠狠婷婷综合久久图片| 干丝袜人妻中文字幕| 老熟妇乱子伦视频在线观看| 亚洲精品粉嫩美女一区| 美女 人体艺术 gogo| 国产成人一区二区在线| 在线观看免费视频日本深夜| 亚洲熟妇熟女久久| 久9热在线精品视频| 窝窝影院91人妻| 成人毛片a级毛片在线播放| 成人午夜高清在线视频| 国产精品永久免费网站| 日韩中文字幕欧美一区二区| 国内揄拍国产精品人妻在线| 精品一区二区三区视频在线| 看片在线看免费视频| 成人三级黄色视频| 免费看美女性在线毛片视频| 国产 一区 欧美 日韩| 中文字幕av成人在线电影| a级毛片免费高清观看在线播放| 51国产日韩欧美| 少妇熟女aⅴ在线视频| 18禁黄网站禁片免费观看直播| 久久6这里有精品| 亚洲三级黄色毛片| 国产爱豆传媒在线观看| 久久久精品欧美日韩精品| 在线播放国产精品三级| 999久久久精品免费观看国产| 五月玫瑰六月丁香| 久久天躁狠狠躁夜夜2o2o| 午夜日韩欧美国产| 亚洲乱码一区二区免费版| 国产精品久久视频播放| 国产在线精品亚洲第一网站| 99国产极品粉嫩在线观看| 国产高清有码在线观看视频| 国产精品电影一区二区三区| 午夜福利在线在线| 日日干狠狠操夜夜爽| 国产激情偷乱视频一区二区| 日韩欧美国产一区二区入口| 亚洲av一区综合| 亚洲图色成人| 国产三级中文精品| 少妇裸体淫交视频免费看高清| 精品久久久久久成人av| av.在线天堂| av视频在线观看入口| 韩国av在线不卡| 91精品国产九色| 久9热在线精品视频| 欧美性猛交╳xxx乱大交人| 久久久久久久久大av| www日本黄色视频网| 国产不卡一卡二| 日本黄色片子视频| 天天躁日日操中文字幕| 亚洲精品乱码久久久v下载方式| 久久精品人妻少妇| a在线观看视频网站| 不卡视频在线观看欧美| 露出奶头的视频| 亚洲avbb在线观看| 国产探花极品一区二区| 国产成人福利小说| 在线免费观看不下载黄p国产 | 波多野结衣高清作品| 久久草成人影院| 22中文网久久字幕| 国产亚洲精品久久久com| 亚洲色图av天堂| 久久99热这里只有精品18| 麻豆精品久久久久久蜜桃| 久久精品国产亚洲av涩爱 | 五月伊人婷婷丁香| 成人午夜高清在线视频| 黄色丝袜av网址大全| 精品人妻偷拍中文字幕| 国产黄a三级三级三级人| 国产又黄又爽又无遮挡在线| 免费在线观看影片大全网站| 成人无遮挡网站| 亚洲,欧美,日韩| 色吧在线观看| 欧美丝袜亚洲另类 | 男女做爰动态图高潮gif福利片| 欧美中文日本在线观看视频| 国产乱人视频| 毛片女人毛片| 国产高清不卡午夜福利| 舔av片在线| 亚洲第一电影网av| 婷婷亚洲欧美| 天美传媒精品一区二区| 国产综合懂色| 国产精品乱码一区二三区的特点| 91久久精品国产一区二区三区| 女的被弄到高潮叫床怎么办 | 欧美性猛交黑人性爽| 精品人妻一区二区三区麻豆 | 校园春色视频在线观看| 亚洲国产高清在线一区二区三| 18禁在线播放成人免费| 亚洲欧美激情综合另类| 色哟哟哟哟哟哟| 制服丝袜大香蕉在线| 国产色爽女视频免费观看| 久久久久久九九精品二区国产| 日本a在线网址| 窝窝影院91人妻| 国产精品久久久久久精品电影| 久久久国产成人精品二区| av.在线天堂| 男女之事视频高清在线观看| 色5月婷婷丁香| 国产成年人精品一区二区| 人妻久久中文字幕网| av在线蜜桃| 午夜精品在线福利| 精品福利观看| АⅤ资源中文在线天堂| 国产精品一区二区免费欧美| 最新中文字幕久久久久| 一进一出抽搐动态| 精品一区二区三区视频在线观看免费| 色播亚洲综合网| 18+在线观看网站| avwww免费| 很黄的视频免费| 久久精品91蜜桃| 桃红色精品国产亚洲av| 国产精品一区二区三区四区免费观看 | 国产欧美日韩精品一区二区| 亚洲精品成人久久久久久| 亚洲成人久久爱视频| 国产乱人视频| 91久久精品国产一区二区成人| 久久久久久久久久成人| 少妇裸体淫交视频免费看高清| 久久久精品大字幕| 嫩草影视91久久| 很黄的视频免费| 久久香蕉精品热| 99在线人妻在线中文字幕| 国产欧美日韩精品一区二区| 他把我摸到了高潮在线观看| 夜夜爽天天搞| 国产熟女欧美一区二区| 69人妻影院| 午夜视频国产福利| 日韩强制内射视频| 淫妇啪啪啪对白视频| 91午夜精品亚洲一区二区三区 | 国产欧美日韩精品一区二区| 日本 av在线| 成人亚洲精品av一区二区| 一进一出抽搐gif免费好疼| 69人妻影院| 精品久久久久久久人妻蜜臀av| 国产av在哪里看| 麻豆av噜噜一区二区三区| 国内少妇人妻偷人精品xxx网站| av视频在线观看入口| 国产色爽女视频免费观看| 久久婷婷人人爽人人干人人爱| 日韩欧美国产在线观看| av在线观看视频网站免费| 久9热在线精品视频| 男女啪啪激烈高潮av片| 日韩高清综合在线| 波野结衣二区三区在线| 久久久久九九精品影院| 中文字幕av在线有码专区| 九色成人免费人妻av| 欧美高清成人免费视频www| 色综合站精品国产| 日韩 亚洲 欧美在线| 国产三级在线视频| 国产精品一区www在线观看 | 岛国在线免费视频观看| 免费观看精品视频网站| 成人国产综合亚洲| 少妇裸体淫交视频免费看高清| 免费在线观看日本一区| 欧美日韩中文字幕国产精品一区二区三区| 成人综合一区亚洲| 久久久成人免费电影| 乱码一卡2卡4卡精品| 他把我摸到了高潮在线观看| 国产视频内射| 亚洲精品成人久久久久久| 亚洲人成伊人成综合网2020| 亚洲成人久久性| 日本撒尿小便嘘嘘汇集6| 此物有八面人人有两片| 两人在一起打扑克的视频| 久久久久久九九精品二区国产| 国内精品宾馆在线| 亚洲va日本ⅴa欧美va伊人久久| 久久亚洲真实| h日本视频在线播放| 狠狠狠狠99中文字幕| 国产精品亚洲美女久久久| 久久久久久大精品| 小蜜桃在线观看免费完整版高清| 亚洲国产欧洲综合997久久,| av在线老鸭窝| 亚洲av日韩精品久久久久久密| 免费观看精品视频网站| 午夜a级毛片| 99热这里只有是精品50| 亚洲熟妇中文字幕五十中出| 91在线观看av| 国产一区二区三区在线臀色熟女| 国产激情偷乱视频一区二区| 一个人免费在线观看电影|