• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Life Histories on Genome Size Variation in Squamata

    2021-09-27 11:25:36ChuanCHENLongJINYingJIANGandWenboLIAO
    Asian Herpetological Research 2021年3期

    Chuan CHEN ,Long JIN ,Ying JIANG and Wenbo LIAO*

    1Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education),China West Normal University,Nanchong 637009,Sichuan,China

    2Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City,China West Normal University,Nanchong 637009,Sichuan,China

    3Institute of Eco-adaptation in Amphibians and Reptiles,China West Normal University,Nanchong 637009,Sichuan,China

    Abstract Genome size changes significantly among taxonomic levels,and this variation is often related to the patterns shaped by the phylogeny,life histories and ecological factors.However,there are mixed evidences on the main factors affecting molecular evolution in animals.In this study,we used phylogenetic comparative analysis to investigate the evolutionary rate of genome size and the relationships between genome size and life histories (i.e.,hatchling mass,clutch size,clutches per year,age at sexual maturity,lifespan and body mass) among 199 squamata species.Our results showed that the evolutionary rate of genome size in Lacertilia was significantly faster than Serpentes.Moreover,we also found that larger species showed larger hatchling mass,more clutches per year and clutch size and longer lifespan.However,genome size was negatively associated with clutch size and clutches per year,but not associated with body mass we looked at.The findings suggest that larger species do not possess the evolution of large genomes in squamata.

    Keywords genome size,body mass,evolutionary rate,life histories

    1.Introduction

    Genome sizes vary considerably across taxa in organisms(Cavalier-Smith,1978;Bennett and Leitch,2005;Lynch and Walsh,2007).This can be driven by the stochastic genetic and/or genomic processes associated with spontaneous deletions and/or insertions,polyploidization,prolonged tandem repeats length,transposable elements number and genetic drift,but can be also shaped by natural selection (Ogata

    et al

    .,1996;Petrov,2001;Sun

    et al

    .,2012;Lynch,2011;Whitney and Garland,2010).In particular,genome size variations are mainly explained by two important mechanisms including the duplication events and the proliferations of noncoding elements (Neiman

    et al

    .,2015).Establishing the association between genome size variation and organismal complexity has puzzled many evolutionary biologists and as such remains a classic problem in biology (Gregory,2005a).Previous studies across taxa have revealed positive associations between genome size and cell size,nucleus size,developmental time,nutrient requirements,tissue differentiation,life cycle complexity and body size (Vinogradov,1997;Olmo and Morescalchi,1978;Gregory,2005a;Gregory,2001;Gregory and Johnston,2008;Guignard

    et al

    .,2016).These positive associations have been suggested to be consequences of both the cytoplasm from more efficient mRNA transport and larger cells necessitating larger genomes based on structural causes (Cavalier-Smith,1985).Smaller cells for instance,usually divide faster and have a higher metabolic rate,evidenced by a negative correlation between metabolic rates and DNA amounts in mammals and birds (Hughes and Hughes,1995;Vinogradov,1995;Gregory,2002a;Hughes and Piontkivska,2005).However,a potential correlation which still needs to be explored between cell volume and genome size is body size(Gregory

    et al

    .,2000).Body size variation is often determined either by cell size and cell number,or both combination in organisms (Hessen

    et al

    .,2013;Koz?owski

    et al

    .,2003).For plants and animals,genome size displays a positive association with cell size (Gregory

    et al

    .,2000;Bennett,1987;Gregory,2005b).In addition,this correlation can be often linked to ecological factors.For example,genome size exhibits a positive association with body size in some invertebrates (e.g.,amphipods,copepods,crustaceans) due to low metabolic rate and temperatures in cold waters (Rees

    et al

    .,2008;Angilletta

    et al

    .,2004;Timofeev,2001;Jeffery

    et al

    .,2016;Leinaas

    et al

    .,2016).Genome size variation in frogs is indirectly affected by temperature and humidity as a result of its influence on the time of premetamorphic development (Liedtke

    et al

    .,2018).In birds,mitochondrial and nuclear of substitution rate in coding sequences reveal weak negative associations between the ratio of nonsynonymous and synonymous substitution rate and age at sexual maturity,lifespan and body mass associated with environmental factors (Weber

    et al

    .,2014;Lanfear

    et al

    .,2010;Nabholz

    et al

    .,2013),but it is not always the case (Figuet

    et al

    .,2017).Squamata constitutes the class of vertebrates with a small genome size due to a lower fraction of transposable elements and shorter introns (Organ

    et al

    .,2007).However,this may be a misconception caused by overlooking GC-rich regions,which are often hard to access (Botero-Castro,2017).Ploidy variations does not provide a major power of variation in genome size,and the whole-genome duplication events is not reported during the amniote evolutionary process in squamata (Van de Peer

    et al

    .,2009).Squamata mainly consists of two suborders(e.g.,Lacertilia and Serpentes) and displays complex life histories with prolonged developmental periods (hatching time),which likely constrains the variation of genome size because of a negative correlation between genome size and development time in invertebrates (Wyngaard

    et al

    .,2005).

    To examine the selective mechanisms underlying genome size variation in squamata,we first estimated the evolutionary rates of genome size between Lacertilia and Serpentes in squamata.We also expanded our extent to which genome size can be considered as a determinant of life histories by investigating the relationships between variation in genome size and life histories among 199 squamata species.We tested whether larger bodies can promote evolution of larger genomes.

    2.Materials and Methods

    2.1

    .

    Data collection

    The genome size of 199 squamata species was collected from genome size database (http://www.genomesize.com) (supplementary Information:Table S1).We extracted data on genome size for squamata species for which information on life histories can be found (see below),and obtain their average

    C

    -value.We used average values of genome size when more than one measurement per species was available.To avoid possible errors due to several methods being used to quantify genome size (Hardie

    et al

    .,2002),we used parallel analyses on a subset of genome size.We confirmed species names using the NCBI taxonomy database,and collapsed/pruned all synonyms from the phylogenetic tree.We rebuilt the phylogenetic tree using time-calibrated molecular phylogeny by Pyron

    et al

    .(2013) (Figure 1) and examined difference in the evolutionary rate of genome size between Lacertilia and Serpentes.Finally,we compiled information on hatching time,hatchling mass,clutch size per year,clutch size and body mass (see details in De Smet,1981;Feldman

    et al

    .,2016;Allen

    et al

    .,2017) and age at sexual maturity,lifespan from the AnAge databases (https://genomics.senescence.info/species/)(supplementary Information:Table S1).

    2.2.Statistical analyses

    The complementary approaches were used to evaluate the evolution rate of genome size for three suborders.For each suborder,we assessed phylogenetic signal using the

    phylosig

    function in the package of

    phytools

    in RStudio v.3.1.2 (Revell,2012).We then used the Blomberg’s

    K

    (Blomberg

    et al

    .,2003) in which genome size variation comparing on a null model is assumed genome size evolution under Brownian motion (BM) model.We also used the Pagel’s

    λ

    (Pagel,1999)in which phylogenetic signal is estimated on the basis of the phylogenetic dependence of genome size.

    K

    =1 indicated genome size evolved as expected under a BM model,while

    K

    > 1or

    K

    < 1 indicated less or more phylogenetic signal than expected under a BM model,respectively.We used Blomberg’s

    K

    and Pagel’s

    λ

    to estimate the phylogenetic signal and found qualitatively similar results (Table S2).We used the

    fitContinuous

    function in the R package-

    Geiger

    (Harmon

    et al

    .,2008) to compare genome size evolution on the basis of Brownian motion,Ornstein-Uhlenbeck and Early-burst models between the two suborders.Following the suggestions by Simmons and Fitzpatrick (2016),BM model of genome size evolution was regarded to be the best model due to small sample size.Moreover,to compare differences in evolutionary rate of genome size between the two suborders,we modified a likelihood method where a phylogeny can directly compare on the Brownian evolutionary rate (

    σ

    ) of genome size (Adams,2013).To examine associations between genome size and life histories,we used the phylogenetic generalized least squares models where the phylogenetic structure of the model residuals was considered in the

    caper

    package (Orme

    et al

    .,2012;Huang

    et al

    .,2020).We used phylogenetic scaling parameter

    λ

    to estimate the phylogenetic influence on the associations between genome size and life histories based on a maximumlikelihood approach (Pagel,1999).The scale of

    λ

    -values ranges from zero (i.e.,phylogenetic independence) to one (i.e.,complete phylogenetic non-independence) (Freckleton

    et al

    .,2002;Mai

    et al

    .,2019)

    .

    We log-transformed life histories to linearize associations and used the phylogenetic tree of squamata species to correct for phylogenetic dependence (Mai

    et al

    .,2020).To test the associations between body mass and life histories,we treated body mass as response variable,hatchling mass,clutches per year,clutch size,age at sexual maturity and lifespan as predictor variables using the multivariate phylogenetic generalized least squares.To test whether genome size exhibited a association with body mass,we treated body mass as predictor variable,genome size as response variable,and hatchling mass,clutches per year,clutch size and lifespan as covariates using the multivariate phylogenetic generalized least squares.

    3.Results

    The average value of genome size was 2.11 pg,ranging from 1.19 to 3.93 pg among 199 species of squamata.Genome size in Lacertilia tended to be larger than that in Serpentes (Figure 2).The evolutionary rate of genome size in Lacertilia was faster than that in Serpentes (Table S3).

    Figure 1 The phylogenetic tree of the 199 species of squamata used in the comparative analysis.

    Figure 2 Genome size difference between Lacertilian and Serpentes for 199 species of squamata.

    The multivariate phylogenetic generalized least squares model indicated that body mass was positively associated with hatchling mass,clutches per year,clutch size and lifespan among 199 species of squamata (Table 1) .The genome size was not associated with body mass when the effects of hatchling mass,clutches per year,clutch size and lifespan were removed(Table 2).We also found negative correlations between genome size and clutch size or clutches per year (Table 2).

    For Serpentes in particular,body mass was positively and significantly associated with hatchling mass and clutch size,but not with clutches per year,age at sexual maturity and lifespan using the multivariate phylogenetic generalized least squares model (Table S4).However,there was no association between genome size and body mass when removing the hatchling mass and clutch size effects (Table S5).For Lacertilia,body mass was significantly associated with hatchling mass,clutches per year,clutch size and lifespan (Table S4).When the influences of hatchling mass,clutches per year,clutch size and lifespan were removed,we found no association between genome size variation and body mass (Table S5).

    Table 1 The associations between body mass and life histories across 199 species of squamata.Phylogenetic scaling parameters (superscripts following λ denote P-values of likelihood ratio tests against models with λ=0 and λ=1,respectively).

    Table 2 The associations between genome size and life histories across 199 species of squamata.Phylogenetic scaling parameters (superscripts following λ denote P-values of likelihood ratio tests against models with λ=0 and λ=1,respectively).

    4.Discussion

    Our results showed that genome size evolution in Lacertilia evolved significantly faster than that in Serpentes among 199 species of squamata.We found positive correlations between body mass and hatchling mass,clutches per year,clutch size,and lifespan.However,genome size was not associated with body mass when correcting for the effects of part life histories.For Lacertilia and Serpentes,genome size did not show a association with body mass.

    Differences in transposable element accumulation rates in animals experienced may lead to substantial variation in genome size among species (Chalopin

    et al

    .,2015;Gibbs

    et al

    .,2004).For example,a number of DNA obtained by transposable element accumulation with strong changes among lineages,are counteracted by loss of DNA on the basis of large segmental deletion in birds (Kapusta

    et al

    .,2017).For 199 species of squamata,the rate of transposable element accumulation can also explain the marked variation in genome size,ranging from 1.19 to 3.93 pg.The evolutionary history of genome size in amphibians has been one of gradual,time-dependent variation (Brownian motion;Liedtke

    et al

    .,2018).In this study,evolutionary modelfitting showed that genomes in Lacertilia and Serpentes evolved under a shared processes of Brownian motion.The common ancestor of extant squamata was predicted to have similar size in genome in Lacertilia and Serpentes.We inferred that genome size in squamata evolved gradually as a function of time(Brownian motion).Herein we found that the evolutionary rate of genome size in Lacertilia evolved faster than Serpentes.Palaeontological data and genomic evidence display a similar pattern (Pyron

    et al

    .,2013).There are evidences that phylogeny is likely to promote the influences of genome duplications and transposons on genome size evolution in animals (mammals:Tang

    et al

    .,2019;insects:Alfsnes

    et al

    .,2017).For example,genome size is phylogenydependent when

    λ

    > 0.9 in all life-history traits is reported in mammals (Tang

    et al

    .,2019).However,phylogeny displays a weak correlation with genome size in crustaceans (Alfsnes

    et al

    .,2017).Likewise,there is a weak association between genome size and phylogeny among 240 species of birds when

    λ

    ≤ 0.564 is recorded in all life-history traits (Yu

    et al

    .,2020).We found that genome size was not associated with phylogeny,suggesting that the phylogeny did not a strong power in driving transposons and duplications of genome in squamata.Genome size variation can be explained by the more mechanistic and/or short period effects which is regarded as the proximate causes.Moreover,the evolutionary powers (i.e.,selection),regarding as the ultimate causes,can also explain the genome size variation (Hessen

    et al

    .,2013;Alfsnes

    et al

    .,2017;Yu

    et al

    .,2020).For birds,variations in genome size are positively related to the length of developmental period (Kapusta

    et al

    .,2017;Yu

    et al

    .,2020),providing evidence for the associations between life histories and genome size evolution.Indeed,genome size displays markedly and directly effects on cell size and cell replication rate (Gregory,2002b),so larger genomes are expected to be positively correlated with larger egg size and smaller clutch size.However,large datasets have indicated that variations in genome size are not associated with offspring number and size in mammals (Tang

    et al

    .,2019) and life history complexity of amphibians (Liedtke

    et al

    .,2018).In this study,there were negative correlations between genome size variation and life histories such as clutch size and clutches per year in squamata,suggesting that less offspring number or larger offspring size can promote evolution of larger genomes.Body mass is positively associated with genome size in vertebrates (Liedtke

    et al

    .,2018;Tang

    et al

    .,2019;Yu

    et al

    .,2020)and invertebrates (Gregory

    et al

    .,2000;McLaren

    et al

    .,1989;Hessen and Persson,2009;Alfsnes

    et al

    .,2017).Such positive associations between cell size and genome size (Gregory,2005a;McLaren and Marcogliese,1983) have indicated that variations in body size among the related species can partly respond to variation in cell size (Hessen

    et al

    .,2013).Indeed,genome size exhibits positively correlations with body mass in birds and mammals (Tang

    et al

    .,2019;Yu

    et al

    .,2020).Across 199 species of squamata,there were not associations between genome size and body mass,suggesting that diversity in genome size was not response of variation in cell size.

    In conclusion,we illustrated the relationships between genome size and life histories in squamata.The hatching time,hatchling mass,clutch size per year and clutch size cannot shaped the genome size variation,and species with larger bodies did not possess larger genomes in squamata.Our future research would need more species to reveal the relationships between genome size evolution and life histories.

    Acknowledgements

    We thank C.L.MAI and J.P.YU to help the data collected.Financial support was provided by the National Natural Sciences Foundation of China (31 772451;31970393) and the Science and Technology Youth Innovation Team of Sichuan Province (2019JDTD0012).

    Appendix

    Table S1 TSpecies,body mass (g),genome size (pg),hatchling mass (g),clutch size,clutches per year among 199 species of squamata from the references of De Smet (1981),Feldman et al.(2016),Allen et al.(2017),and age at sexual maturity (years) and lifespan (years) from AnAge (https://genomics.senescence.info/species/).

    (Continued Table S1)

    (Continued Table S1)

    (Continued Table S1)

    References for Table S1

    Allen W.L.,Street S.E.,Capellini I.2017.Fast life-history traits promote invasion success in amphibians and reptiles.Ecol Lett,20(2):222-230

    De Smet W.H.O.1981.The nuclear Feulgen-DNA content of the vertebrates (especially reptiles),as measured by fluorescence cytophotometry,with notes on the cell and chromosome size.Acta Zool Pathol Antverp,76(1):119-167

    Feldman A.,Sabath N.,Pyron R.A.,Mayrose I.,Meiri S.2016.Body sizes and diversification rates of lizards,snakes,amphisbaenians and the tuatara.Glob Ecol Biogeogr,25(2):187-197

    Table S2 Evaluation of phylogenetic signal in genome size examined.

    Table S3 Comparison of model parameters and fit for each suborder examined under Brownian motion,Ornstein-Uhlenbeck and Early-burst evolutionary models.

    Table S4 Associations between body mass and life histories for the two suborders in squamata using phylogenetic generalized least squares models.Phylogenetic scaling parameters (superscripts following λ denote P-values of likelihood ratio tests against models with λ=0 and λ=1,respectively).

    Table S5 Associations between genome size and life histories in squamata using phylogenetic generalized least squares models.Phylogenetic scaling parameters (superscripts following λ denoteP-values of likelihood ratio tests against models with λ=0 and λ=1,respectively).

    亚洲精品色激情综合| 九草在线视频观看| 欧美成人精品欧美一级黄| 日韩制服骚丝袜av| 日本免费在线观看一区| 国产成人精品久久久久久| 日韩欧美 国产精品| 久久久亚洲精品成人影院| 婷婷色综合大香蕉| 久久精品影院6| 亚洲最大成人av| 岛国在线免费视频观看| 成人性生交大片免费视频hd| 国产精品野战在线观看| av天堂中文字幕网| 国产亚洲5aaaaa淫片| 亚洲一级一片aⅴ在线观看| 国产亚洲最大av| 毛片一级片免费看久久久久| 国产人妻一区二区三区在| 久热久热在线精品观看| 赤兔流量卡办理| h日本视频在线播放| 日韩一本色道免费dvd| 在线观看一区二区三区| 国产成人免费观看mmmm| 亚洲国产欧美人成| 成人特级av手机在线观看| 精品久久久久久久久亚洲| 日韩 亚洲 欧美在线| 欧美激情在线99| 亚洲av福利一区| 美女国产视频在线观看| 婷婷色综合大香蕉| 国产真实伦视频高清在线观看| 国产熟女欧美一区二区| 国产免费男女视频| 麻豆成人av视频| 日韩成人av中文字幕在线观看| 成人午夜高清在线视频| 干丝袜人妻中文字幕| 国产一区有黄有色的免费视频 | 美女被艹到高潮喷水动态| 久久亚洲国产成人精品v| 成人av在线播放网站| 久久精品久久久久久久性| 别揉我奶头 嗯啊视频| 国产av一区在线观看免费| 国产在视频线在精品| 啦啦啦韩国在线观看视频| 久久这里有精品视频免费| 国产精品不卡视频一区二区| 伊人久久精品亚洲午夜| 亚洲av二区三区四区| 欧美日韩综合久久久久久| 人妻夜夜爽99麻豆av| 日本五十路高清| 男人舔女人下体高潮全视频| 亚洲国产欧美人成| 午夜福利在线观看吧| 99热全是精品| 人妻制服诱惑在线中文字幕| 久久国产乱子免费精品| 精品免费久久久久久久清纯| 超碰97精品在线观看| 亚洲性久久影院| 亚洲自拍偷在线| 免费看美女性在线毛片视频| 亚洲精品456在线播放app| 免费看光身美女| av国产免费在线观看| 欧美性猛交╳xxx乱大交人| 一本久久精品| 2021少妇久久久久久久久久久| 亚洲一级一片aⅴ在线观看| 欧美性感艳星| 2021少妇久久久久久久久久久| 中文字幕亚洲精品专区| 国产在线男女| 女人久久www免费人成看片 | 亚洲精品乱久久久久久| 国产精品日韩av在线免费观看| 欧美成人一区二区免费高清观看| 女人十人毛片免费观看3o分钟| 日本av手机在线免费观看| 日韩高清综合在线| 一级毛片我不卡| 建设人人有责人人尽责人人享有的 | 亚洲精品国产av成人精品| 久久99热6这里只有精品| 男女边吃奶边做爰视频| 亚洲18禁久久av| 我要看日韩黄色一级片| 天天躁日日操中文字幕| 精品无人区乱码1区二区| 在线播放国产精品三级| av在线亚洲专区| 国产成人精品久久久久久| www日本黄色视频网| 国产伦精品一区二区三区视频9| 丰满乱子伦码专区| av免费在线看不卡| 少妇人妻一区二区三区视频| 寂寞人妻少妇视频99o| 国语自产精品视频在线第100页| 91久久精品电影网| 日韩精品青青久久久久久| 久久久久免费精品人妻一区二区| 国产免费又黄又爽又色| 色网站视频免费| 成人三级黄色视频| 高清av免费在线| 乱人视频在线观看| 免费观看性生交大片5| 禁无遮挡网站| 亚洲av不卡在线观看| 国产淫语在线视频| 国产免费一级a男人的天堂| 亚洲成人中文字幕在线播放| 精品久久久久久电影网 | 成人性生交大片免费视频hd| 在现免费观看毛片| 欧美性感艳星| 少妇裸体淫交视频免费看高清| 长腿黑丝高跟| 亚洲精品国产成人久久av| av又黄又爽大尺度在线免费看 | 激情 狠狠 欧美| 色综合站精品国产| 国内揄拍国产精品人妻在线| 久久久午夜欧美精品| 黑人高潮一二区| 久久久久久久久大av| 男女国产视频网站| 综合色丁香网| 精品无人区乱码1区二区| 内地一区二区视频在线| av在线老鸭窝| 99久久精品一区二区三区| 中文亚洲av片在线观看爽| 国产女主播在线喷水免费视频网站 | 国产v大片淫在线免费观看| 亚洲不卡免费看| 久久久久久久亚洲中文字幕| 国产欧美日韩精品一区二区| 国产精品人妻久久久久久| 白带黄色成豆腐渣| 搞女人的毛片| 女人久久www免费人成看片 | 亚洲国产欧美在线一区| 久久久久久久午夜电影| 一区二区三区免费毛片| 国产亚洲一区二区精品| 日本三级黄在线观看| 日本三级黄在线观看| 久久久久久久久中文| 人人妻人人澡人人爽人人夜夜 | 美女被艹到高潮喷水动态| 欧美激情国产日韩精品一区| 波野结衣二区三区在线| 一个人看的www免费观看视频| 人妻夜夜爽99麻豆av| 美女大奶头视频| 国产私拍福利视频在线观看| 国产精品人妻久久久影院| 亚洲18禁久久av| 有码 亚洲区| 综合色av麻豆| 成人特级av手机在线观看| 床上黄色一级片| 麻豆国产97在线/欧美| 国产精品久久久久久av不卡| videossex国产| 99在线视频只有这里精品首页| 久热久热在线精品观看| 欧美一级a爱片免费观看看| 亚洲三级黄色毛片| 国产精品不卡视频一区二区| 国产精品一区二区三区四区免费观看| 久久热精品热| 久久精品久久久久久噜噜老黄 | 国产在线一区二区三区精 | 久久久久久久久中文| 国产精品人妻久久久久久| 久久久久免费精品人妻一区二区| 亚洲成色77777| 国产免费一级a男人的天堂| 亚洲乱码一区二区免费版| 美女大奶头视频| 九色成人免费人妻av| 亚洲欧美日韩卡通动漫| 最近2019中文字幕mv第一页| 免费黄网站久久成人精品| 人人妻人人看人人澡| 亚洲无线观看免费| 三级男女做爰猛烈吃奶摸视频| 人体艺术视频欧美日本| 国产淫片久久久久久久久| 欧美成人一区二区免费高清观看| 99久久无色码亚洲精品果冻| 在现免费观看毛片| 久99久视频精品免费| 99热这里只有是精品50| 亚洲,欧美,日韩| 午夜免费男女啪啪视频观看| 99热精品在线国产| 成人美女网站在线观看视频| 久久这里有精品视频免费| 赤兔流量卡办理| 成人午夜精彩视频在线观看| 国产精品野战在线观看| 99热精品在线国产| 看片在线看免费视频| 可以在线观看毛片的网站| 欧美潮喷喷水| 国产午夜精品一二区理论片| 一个人看视频在线观看www免费| 亚洲国产精品合色在线| 少妇高潮的动态图| av天堂中文字幕网| 欧美日韩一区二区视频在线观看视频在线 | 欧美另类亚洲清纯唯美| 亚洲图色成人| 亚洲国产精品国产精品| 久久精品国产鲁丝片午夜精品| 又爽又黄a免费视频| 天堂影院成人在线观看| 黄色欧美视频在线观看| 岛国毛片在线播放| 日韩精品青青久久久久久| АⅤ资源中文在线天堂| 一区二区三区免费毛片| 99热这里只有是精品在线观看| videos熟女内射| 国产精品人妻久久久久久| 久久久国产成人精品二区| 久久精品国产亚洲av天美| 啦啦啦韩国在线观看视频| 日韩欧美在线乱码| 欧美一区二区精品小视频在线| 久久精品夜夜夜夜夜久久蜜豆| 欧美一区二区亚洲| 亚洲国产色片| 亚洲人成网站在线播| 在线播放无遮挡| 亚洲中文字幕一区二区三区有码在线看| 91av网一区二区| 亚洲国产欧美人成| 日韩欧美精品免费久久| 女的被弄到高潮叫床怎么办| 国产淫语在线视频| 免费av不卡在线播放| 欧美又色又爽又黄视频| 久久久久精品久久久久真实原创| 国产黄a三级三级三级人| 卡戴珊不雅视频在线播放| 国产精品一二三区在线看| 少妇裸体淫交视频免费看高清| 亚洲综合精品二区| 啦啦啦韩国在线观看视频| 日韩精品青青久久久久久| 91久久精品国产一区二区三区| 老司机影院成人| 男女那种视频在线观看| 免费av观看视频| 欧美最新免费一区二区三区| 两个人的视频大全免费| 中文欧美无线码| 亚洲精品色激情综合| 深爱激情五月婷婷| av卡一久久| 欧美色视频一区免费| 久久草成人影院| 国产亚洲av片在线观看秒播厂 | 偷拍熟女少妇极品色| 日本爱情动作片www.在线观看| 大香蕉97超碰在线| 又爽又黄无遮挡网站| 一级爰片在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 高清午夜精品一区二区三区| 日本与韩国留学比较| 免费av毛片视频| 亚洲最大成人av| 春色校园在线视频观看| 国产69精品久久久久777片| av线在线观看网站| 可以在线观看毛片的网站| 亚洲最大成人中文| 午夜福利高清视频| 男女下面进入的视频免费午夜| 国产精品三级大全| 欧美xxxx黑人xx丫x性爽| 国产乱来视频区| 又黄又爽又刺激的免费视频.| a级一级毛片免费在线观看| 精品久久久久久成人av| 大又大粗又爽又黄少妇毛片口| 不卡视频在线观看欧美| 激情 狠狠 欧美| 最近手机中文字幕大全| 久热久热在线精品观看| 91精品一卡2卡3卡4卡| 国产亚洲5aaaaa淫片| 99在线人妻在线中文字幕| 欧美xxxx性猛交bbbb| 久久这里有精品视频免费| 最近中文字幕2019免费版| 亚洲国产精品sss在线观看| 国产国拍精品亚洲av在线观看| 免费搜索国产男女视频| 精品人妻熟女av久视频| 国产乱人偷精品视频| 日韩国内少妇激情av| 波多野结衣高清无吗| АⅤ资源中文在线天堂| 能在线免费看毛片的网站| 特大巨黑吊av在线直播| 看黄色毛片网站| 熟女电影av网| 国产高清视频在线观看网站| 乱系列少妇在线播放| 国产伦精品一区二区三区四那| 国产精品久久久久久久电影| 久久久久久国产a免费观看| 亚洲,欧美,日韩| 欧美三级亚洲精品| 久久精品影院6| 乱系列少妇在线播放| 国产在视频线在精品| 白带黄色成豆腐渣| eeuss影院久久| 中国国产av一级| 99在线视频只有这里精品首页| videos熟女内射| 国产高清不卡午夜福利| 婷婷色综合大香蕉| 国产精品精品国产色婷婷| 久久久久网色| 国产大屁股一区二区在线视频| 伦理电影大哥的女人| 国产精品福利在线免费观看| 国产亚洲最大av| 简卡轻食公司| 亚洲三级黄色毛片| 日韩av在线免费看完整版不卡| 狂野欧美激情性xxxx在线观看| 色视频www国产| 精品少妇黑人巨大在线播放 | 免费观看性生交大片5| 午夜福利成人在线免费观看| 三级经典国产精品| 免费av毛片视频| 国内精品宾馆在线| 久久精品熟女亚洲av麻豆精品 | 99久久成人亚洲精品观看| 九九在线视频观看精品| 国产精品一及| 老司机影院成人| 日韩在线高清观看一区二区三区| 亚洲欧美日韩无卡精品| 六月丁香七月| 国产成人精品一,二区| 亚洲人与动物交配视频| 国产真实乱freesex| 亚洲人成网站高清观看| 欧美日韩综合久久久久久| 在线观看一区二区三区| 日本爱情动作片www.在线观看| 韩国高清视频一区二区三区| 国产伦精品一区二区三区四那| 麻豆久久精品国产亚洲av| 亚洲精品色激情综合| 一区二区三区乱码不卡18| 别揉我奶头 嗯啊视频| 伦理电影大哥的女人| 亚洲欧美成人综合另类久久久 | 大又大粗又爽又黄少妇毛片口| av.在线天堂| 日韩大片免费观看网站 | 亚洲精华国产精华液的使用体验| 在线天堂最新版资源| 亚洲av.av天堂| 亚洲va在线va天堂va国产| 在线播放国产精品三级| 免费av不卡在线播放| 亚洲伊人久久精品综合 | 成人二区视频| 91狼人影院| 亚洲成人精品中文字幕电影| 国产精品女同一区二区软件| 国产69精品久久久久777片| 日韩成人伦理影院| 久久欧美精品欧美久久欧美| or卡值多少钱| 建设人人有责人人尽责人人享有的 | 国产不卡一卡二| 91在线精品国自产拍蜜月| 亚洲av电影不卡..在线观看| 欧美不卡视频在线免费观看| 日本wwww免费看| 性色avwww在线观看| 国产综合懂色| 寂寞人妻少妇视频99o| 国产av不卡久久| 国产片特级美女逼逼视频| 秋霞伦理黄片| 日韩av不卡免费在线播放| 欧美一区二区国产精品久久精品| 51国产日韩欧美| 亚洲精华国产精华液的使用体验| 久久久国产成人精品二区| 小蜜桃在线观看免费完整版高清| 欧美又色又爽又黄视频| 99九九线精品视频在线观看视频| 精品无人区乱码1区二区| 欧美日本视频| av免费观看日本| 久久精品夜色国产| 人妻制服诱惑在线中文字幕| 美女国产视频在线观看| 男插女下体视频免费在线播放| 精品久久久噜噜| 日韩av不卡免费在线播放| 激情 狠狠 欧美| 蜜桃亚洲精品一区二区三区| 色综合色国产| 99久久中文字幕三级久久日本| 久久久色成人| 看片在线看免费视频| 久久99精品国语久久久| 91在线精品国自产拍蜜月| 在线播放国产精品三级| 国产免费福利视频在线观看| 中文字幕免费在线视频6| 亚洲国产精品成人久久小说| 成年免费大片在线观看| 又粗又爽又猛毛片免费看| 亚洲精品乱码久久久久久按摩| 国产美女午夜福利| 在线观看66精品国产| 亚洲欧美日韩高清专用| 亚洲真实伦在线观看| 久久久精品大字幕| 美女脱内裤让男人舔精品视频| 亚洲国产高清在线一区二区三| 亚洲精品成人久久久久久| 麻豆国产97在线/欧美| 嫩草影院入口| 最后的刺客免费高清国语| 91av网一区二区| 最后的刺客免费高清国语| 国产精品久久久久久久电影| 欧美成人一区二区免费高清观看| 小说图片视频综合网站| 两个人视频免费观看高清| 国产精品国产高清国产av| 69av精品久久久久久| 久久久久久久久久久免费av| 男女视频在线观看网站免费| 亚洲成色77777| 欧美xxxx黑人xx丫x性爽| 老司机影院毛片| 亚洲va在线va天堂va国产| 精品国产一区二区三区久久久樱花 | 国产三级在线视频| 国产精品伦人一区二区| eeuss影院久久| 如何舔出高潮| 婷婷六月久久综合丁香| 精品人妻一区二区三区麻豆| 亚洲自偷自拍三级| 秋霞伦理黄片| av在线天堂中文字幕| 精品少妇黑人巨大在线播放 | 波野结衣二区三区在线| 一级毛片我不卡| 精品久久久久久成人av| 内地一区二区视频在线| 国产精品三级大全| 国产一区亚洲一区在线观看| 亚洲伊人久久精品综合 | 级片在线观看| 丝袜喷水一区| 国产国拍精品亚洲av在线观看| 可以在线观看毛片的网站| 淫秽高清视频在线观看| 国产精品99久久久久久久久| 少妇猛男粗大的猛烈进出视频 | 欧美日本视频| 校园人妻丝袜中文字幕| 白带黄色成豆腐渣| 亚洲精品国产av成人精品| 亚洲av日韩在线播放| 国产麻豆成人av免费视频| 亚洲乱码一区二区免费版| 晚上一个人看的免费电影| 久久99热这里只有精品18| 乱码一卡2卡4卡精品| 亚洲国产欧美在线一区| 国产精品人妻久久久久久| 成年女人永久免费观看视频| 国产精品麻豆人妻色哟哟久久 | 爱豆传媒免费全集在线观看| 日本三级黄在线观看| 久久国产乱子免费精品| 成年免费大片在线观看| 午夜福利在线在线| 麻豆成人午夜福利视频| 欧美日韩一区二区视频在线观看视频在线 | 国内精品宾馆在线| 在线观看66精品国产| 一个人观看的视频www高清免费观看| 欧美日韩国产亚洲二区| or卡值多少钱| 国产又色又爽无遮挡免| 男女边吃奶边做爰视频| 青春草视频在线免费观看| 丰满人妻一区二区三区视频av| 高清毛片免费看| 黄片wwwwww| 男人狂女人下面高潮的视频| 村上凉子中文字幕在线| 人妻系列 视频| 久久久亚洲精品成人影院| 中文乱码字字幕精品一区二区三区 | 全区人妻精品视频| 午夜激情福利司机影院| 亚洲欧洲国产日韩| 99久久精品一区二区三区| 免费观看性生交大片5| 日本免费在线观看一区| 国产精品国产三级国产专区5o | 99久久精品一区二区三区| 女人十人毛片免费观看3o分钟| 国产极品精品免费视频能看的| 午夜激情福利司机影院| 国产成人91sexporn| 亚洲av中文字字幕乱码综合| 亚洲aⅴ乱码一区二区在线播放| 黑人高潮一二区| 中国美白少妇内射xxxbb| 美女内射精品一级片tv| 婷婷色麻豆天堂久久 | 国产成人福利小说| 看免费成人av毛片| 久久久色成人| 美女大奶头视频| 99热这里只有是精品50| 嫩草影院新地址| 亚洲第一区二区三区不卡| a级毛色黄片| 久久久久精品久久久久真实原创| 久久草成人影院| 日韩av不卡免费在线播放| 男插女下体视频免费在线播放| 男人的好看免费观看在线视频| 黄色欧美视频在线观看| 少妇人妻一区二区三区视频| 成人av在线播放网站| 日韩在线高清观看一区二区三区| 久久久久久久久大av| 中文字幕亚洲精品专区| 免费看a级黄色片| 久久人人爽人人片av| 国内少妇人妻偷人精品xxx网站| 春色校园在线视频观看| 久久久久久久久久久免费av| 免费大片18禁| 免费在线观看成人毛片| 丝袜喷水一区| 亚洲欧美成人综合另类久久久 | 伦精品一区二区三区| 日韩大片免费观看网站 | 国产毛片a区久久久久| 国产精品精品国产色婷婷| 久久这里有精品视频免费| 一边亲一边摸免费视频| 欧美一级a爱片免费观看看| 国产精品久久久久久精品电影| 亚洲国产精品久久男人天堂| 久久久精品欧美日韩精品| 亚洲电影在线观看av| 如何舔出高潮| 欧美性猛交黑人性爽| 三级男女做爰猛烈吃奶摸视频| 三级国产精品片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲成人久久爱视频| 草草在线视频免费看| 国产成人午夜福利电影在线观看| 成人无遮挡网站| 人人妻人人澡欧美一区二区| 亚洲在线观看片| 亚洲欧美日韩卡通动漫| 波多野结衣高清无吗| 国产一区有黄有色的免费视频 | 国产精品嫩草影院av在线观看| 精华霜和精华液先用哪个| 亚洲丝袜综合中文字幕| 亚洲高清免费不卡视频| 久久99蜜桃精品久久| 黄色欧美视频在线观看| 六月丁香七月| 欧美日韩在线观看h| 青春草视频在线免费观看| 18禁在线无遮挡免费观看视频| 亚洲成人精品中文字幕电影| 可以在线观看毛片的网站| 午夜老司机福利剧场| 久久99精品国语久久久| 精品一区二区三区人妻视频| 极品教师在线视频| 丰满乱子伦码专区| 天堂中文最新版在线下载 |