• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Zn on Photocatalytic Activity of Block?Shaped Monoclinic WO3

    2021-09-22 02:13:36XIAOZhongLianWUXuanYiTANHeYunPaoloApreaHAOShiYou
    無機化學學報 2021年9期

    XIAO Zhong?LianWU Xuan?Yi TAN He?YunPaolo Aprea HAO Shi?You*,

    (1Xingzhi College,College of Chemistry and Life Sciences,Zhejiang Normal University,Jinhua,Zhejiang 321004,China)

    (2Department of Chemical,Materials and Production Engineering,University FedericoⅡ,Naples 802125,Italy)

    Abstract:Zn?doped block?shaped monoclinic WO3composite(Zn?doped WO3)was synthesized via a facile method and the photocatalytic activity of rhodamine B(RhB)over Zn?doped WO3was evaluated.The prepared samples were characterized by X?ray diffraction,Raman spectrum,scanning electron micrograph,UV?Vis diffuse reflection spec?trum,Fourier transform infrared spectrum,and X?ray photoelectron spectrum and other techniques,and the results showed that the block?shaped monoclinic WO3did not be changed by appropriate amount of Zn doping.The photo?catalytic results illustrated that mass ratio of 5% Zn doped WO3performed the best photocatalytic efficiency due to the formation of more oxygen vacancy and the increase of hydroxyl groups number.

    Keywords:Zn;WO3;synthesis;photocatalysis;oxygen vacancy

    It is well known that the pollution resulting from dye wastewater has become one of the most serious environmental problems due to the wide usage of dyes in textiles,leather,papermaking,food additives,cos?metics,etc[1].These dye wastewater may cause direct se?vere damage to the liver system,digestive system,and human beings because toxic by?products can be pro?duced from the discharged dyes via oxidation,hydroly?sis,and other chemical reactions[2?3].Therefore,the wastewater containing dyes must be eliminated before being discharged into the environment.At present,many methods such as physical adsorption[4],chemical precipitation[5],and photocatalytic degradation[6],have been used to remove dyes from wastewater.Amongthese approaches,semiconductor?based photocatalysis is considered as a highly effective technology for the removal of organic dyes because organic pollutants can be degraded into H2O and CO2over the semiconductor photocatalyst.As is reported that WO3play an impor?tant role in the field of photocatalysis due to its narrow band gap of about 2.8 eV[7]and hence potentially effi?cient visible light absorbance.Generally,WO3possess?es monoclinic,triclinic,orthogonal or hexagonal crystal structure at different temperatures[8].It can be conclud?ed that monoclinic WO3has efficiently phothocatalytic performance because of its lowest band gap(about 2.65 eV at room temperature[9]).Recently,we found that the photocatalytic efficiency of monoclinic WO3was great?ly affected by its morphology,and a block?shaped mor?phology was beneficial for the improvement of its photo?catalysis[10].However,the photocatalytic activity of pure WO3is not satisfactory because of its inherent defects such as relatively low conduction?band level[11].In order to improve the photocatalytic efficiency of WO3,doping with metal and nonmetal elements is often used to form WO3based composite structure such as WO3/TiO2[12],WO3/CuO[13],and WO3/C3N4[14].As a promising alternative semiconductor,ZnO has attracted wide attention in the field of photocatalysis[15?17]because of potentially photocatalytic activity,low ?cost and envi?ronmentally friendly feature.Because of the similar ion?ic radius of Zn2+to that of W6+,it can be concluded that Zn2+may penetrate into the WO3crystal lattice or sub?stitute the W6+position in the crystal,resulting in easy generation of lattice defects and hence improvement of WO3photocatalysis.Recently,Zn doped WO3with dif?ferent morphologys such as spherical,rod shaped or nanoporous morphology were synthesized and the pho?tocatalytic activity of the resulted samples was also investigated[18?19].However,to the best of our knowl?edge,there have no study investigating the photocata?lytic property of Zn doped monoclinic WO3with a block?shaped morphology.

    Herein,Zn doped block?shaped monoclinic WO3was prepared via a facile method and the photocatalyt?ic degradation of rhodamine(RhB)was carried out.The photocatalytic results show that appropriate amount of Zn doping can improve the photocatalytic activity of block?shaped monoclinic WO3due to the formation of oxygen vacancy and the increase of hydroxyl groups number.

    1 Experimental

    1.1 Materials synthesis

    Na2WO4·2H2O,Zn(NO3)2·6H2O,polyvinylpyrrol?idone (PVP),absolute ethanol,sodium hydroxide(NaOH),37% fuming hydrochloric acid(concentrated HCl),RhB,terephthalic acid(TPA),1,4?benzoquinone(BQ)and KI were purchased from Sinopharm Chemical Reagent Co.All the chemical reagents were used with?out further purification.Deionized water,with a resis?tivity larger than 18.2 MΩ,was obtained from Milli?pore Milli?Q?ultrapure water purification systems and used to prepare 0.1 mol·L-1HCl and 0.1 mol·L-1NaOH solutions(diluting the fuming hydrochloric acid and dissolving solid NaOH,respectively).

    Typically,solution A was prepared by dissolving 4 g of PVP in 10 mL H2O at room temperature under stirring for 10 min,by adding 10 mL of concentrated HCl,and then by aging the solution for 60 min.Similar?ly,solution B was prepared by dissolving 3.3 g of Na2WO4·2H2O in 10 mL H2O at room temperature.Afterwards,solution B was slowly added to solution A under stirring for 30 min to form a yellow precipitate(H2WO4).The mixed solution was stirred for another 30 min,transferred into a Teflon autoclave,and the syn?thesis was carried out without agitation in oven at 180℃for 12 h.The product was filtered and the solid was washed three times with deionized water,followed by washing for another three times with absolute etha?nol.The washed solid was then dried at 60℃overnight and a pale?yellow pre?product(a mixture of H2WO4and WO3)was obtained.

    A typical synthesis of Zn(OH)2was performed as follows:at room temperature,1 g of Zn(NO3)2·6H2O was added to 60 mL H2O under stirring for 30 min,and then 2 mol·L-1NaOH was added dropwise until no for?mation of white precipitant.Afterwards,Zn(OH)2was obtained by filtration,washed for 3 times with water and ethanol,respectively,and then dried at 60℃.

    Zn?doped WO3was synthesized by the following procedure.0.5 g of the resulted mixture of H2WO4and WO3and x g(x=0.015,0.025,0.035)of Zn(OH)2placed in the agate mortar were grinded for 30 min,and then calcined at 550℃for 2 h.Finally,different amounts of Zn doped WO3samples were obtained,and the samples were denoted as 3% Zn?WO3,5% Zn?WO3,and 7% Zn?WO3,respectively.For comparison purpos?es,WO3was synthesized under the same experimental conditions,except that no Zn(OH)2was added.

    1.2 Characterization

    The X?ray diffraction(XRD)patterns were collect?ed on a Philips PW3040/60 powder diffractometer using Cu Kα radiation(λ=0.154 nm).The X?ray tube was operated at 40 kV and 40 mA,and scanning inter?val ranged from 10°to 80°.Raman scattering analysis was performed on a Renishaw RM1000 Raman spec?trometer with a 514 nm excitation laser light.Scanning electron microscope(SEM)images were obtained using a Hitachi S?4800 instrument under an accelerating voltage of 20~40 kV,0.2~5 kV in 100 V steps,and 5~40 kV in 1 kV steps.The UV?Vis diffuse reflectance(DRS)spectra of the samples over a range of 200~1 000 nm were recorded by a Nicolet Evolution 500 Scan UV?Vis system with a scanning rate of 60 nm·min-1.The FT?IR spectra were recorded by a Nicole Nexus 670 spectrometer with a resolution of 4 cm-1using KBr pellet method.The photoluminescence(PL)spectra of the samples were obtained at room tempera?ture by a spectrofluorometer (NanoLOG?TCSPC,Horiba Jobin Yvon,USA)with an excitation wave?length of 325 nm.X?ray photoelectron spectroscopy(XPS)measurement was carried out on a RBO upgrad?ed PHI?5000 C ESCA system(Perkin Elmer)using monochromated Al Kα X?rays(E=1 486.6 eV)as a radi?ation at 250 W operating at an accelerating voltage of 15 kV.All binding energies were calibrated using car?bon(C1s,284.6 eV)as a reference.

    1.3 Photocatalytic tests

    The photocatalytic activities of WO3,3% Zn?WO3,5% Zn?WO3,and 7% Zn?WO3were evaluated by the photodegradation of RhB under visible light irradia?tion.In a typical experiment,50 mg of photocatalyst(WO3,3% Zn?WO3,5% Zn?WO3or 7% Zn?WO3)was dis?persed into 50 mL of RhB solution(5 mg·L-1)under magnetic stirring for 15 min.The pH of all the solu?tions containing RhB used for the photocatalytic experi?ments was adjusted to the desired value using 0.1 mol·L-1HCl and/or NaOH solutions.Afterwards,the sus?pensions were stirred in the dark for 30 min to reach the equilibrium.At given time intervals,a small amount of suspension was withdrawn and centrifuged to remove the photocatalyst.The residual RhB levels in the filtrates were then analyzed by recording the varia?tions of the absorbance at 552 nm with a UV?Vis spec?trophotometer(Evolution 500LC).The removal efficien?cy of RhB was evaluated as η:

    Where A0is the initial absorbance of RhB and A is the absorbance of RhB in the filtrates.

    2 Results and discussion

    The crystalline structure of WO3and the samples prepared with different Zn amounts were characterized by XRD technique,which is presented in Fig.1a.It can be seen from Fig.1a that the XRD patterns of all the samples can be identified as monoclinic WO3(PDF No.46?1096),whose characteristic peaks are located at 23.1°,23.6°,24.4°,33.3°,34.2°which corresponding to(002),(020),(200),(120),(202)[20].It is obvious from Fig.1a that the characteristic peak located at about 30.68°(marked with five pointed star)can be detected for the Zn?doped samples,which is the(100)reflection of ZnO.It also can be found from Fig.1a that the inten?sity of(100)reflection increased with the increasing of Zn doping amount,implying that Zn can effectively entry into WO3lattice,in good agreement with our above inference.The Raman spectra of as?prepared Zn?doped WO3were also recorded and compared with that of WO3in the range of 200~1 000 cm-1(Fig.1b).The peaks at around 270.4,715.8 and 805.8 cm-1are typi?cal features of the monoclinic structure of WO3[21],which is consistent with the XRD results.The lack of the peak at approximately 950 cm-1attributed to the stretching mode of W6+=O[22],confirms the crystallini?ty of the catalysts.After Zn doping,the two mostintense peaks at 715.8 and 805.8 cm-1,corresponding to O—W—O vibration mode,became wider.Further?more,the Raman band at about 325 cm-1assigned to 2E2(M)vibration mode of hexagonal wurtzite ZnO[23]was observed in Zn doped WO3samples,confirming the presence of Zinc in the catalyst.The result(Fig.S1)further prove the presence of Zinc in the synthesized samples.It can be seen from Fig.1c and 1d that WO3and 5% Zn?WO3have a block?shaped morphology.Oth?er Zn doped samples also have similar structures to that of WO3,indicating that Zn doping amount arrang?ing from 3% to 7% can not change the block?shaped morphology of initial WO3.

    Fig.1 XRD patterns(a)and Raman spectra(b)of WO3,3% Zn?WO3,5% Zn?WO3,and 7% Zn?WO3;SEM images of WO3(c)and 5% Zn?WO3(d)

    The photocatalytic activities of WO3,3% Zn?WO3,5% Zn?WO3,and 7% Zn?WO3are showed in Fig.2.It is clear that the photocatalytic efficiency of WO3increased when Zn doping amount increased from 3% to 5%,but decreased when the doping amount exceeded 5%.Fig.3 can explain the above experimental results.The photocatalytic results show that an appropriate amount of Zn doping is good for the improvement of WO3photo?catalysis performance.It can be concluded from Fig.S2 that RhB was actually degraded over 5% Zn?WO3.

    In order to explain the above photocatalytic re?sults,UV?Vis DRS and PL spectra of WO3,3% Zn?WO3,5% Zn?WO3,and 7% Zn?WO3were recorded and the results are shown in Fig.3.It can be seen from Fig.3a that the light(especially visible light)absorption efficiency of 5% Zn?WO3was higher than that of WO3,resulting in efficient generation of photogenerated elec?trons and holes over 5% Zn?WO3under the irradiation of visible light.The PL spectra of pure WO3and Zndoped WO3are shown in Fig.3b.It is obvious that the position and pattern of the emission peaks of all sam?ples were almost similar,but the PL intensities of the samples were noticeably different.Generally,the lower the PL intensity,the higher the separation efficiency for photogenerated electron?hole pairs[24].From Fig.3b,it is easy to find that the PL intensity of 5% Zn?WO3was the lowest,indicating that the charge separation efficient in 5% Zn?WO3was better than that in WO3.This may be due to the fact that the photogenerated electrons and holes are separated by the charge trans?fer at the heterojunction interfaces of 5% Zn?WO3.Con?sequently,the photocatalytic activity of 5% Zn?WO3was higher than that of WO3.It can be seen that the light absorption efficiency of 7% Zn?WO3was lower than those of other samples,and the PL intensity of it was the highest one,resulting in the lowest photocata?lytic activity.

    Fig.2 Photodegradation of 5 mg·L?1RhB in the presence of different photocatalysts under visible light irradiation at pH of 6(VRhB=50 mL,mphotocatalyst=0.05 g)

    In order to study the reason why 5% Zn?WO3had higher separation efficiency of photogenerated electron?hole pairs,W4f XPS spectra for 5% Zn?WO3and WO3were carried out(Fig.4).It is clear from Fig.4 that the W4f7/2and W4f5/2peaks centered at 35.4 and 37.6 eV are typical binding energies corresponding to W6+oxi?dation state[25].Moreover,the peak at about 36.2 eV cor?responding to orbital spin of W5+4f5/2[26]was detected in 5% Zn?WO3and WO3,but the peak intensity of the for?mer was higher than that of the latter,implying that Zn doping is beneficial for the formation of W5+.The possi?ble reason is that Zn2+is beneficial to the interaction between WO3precursor(H2WO4)and PVP.Therefore,the W6+is easier to be reduced by PVP in 5% Zn?WO3precursor than in the WO3precursor,resulting in a larger number of oxygen vacancies arising from the replacement of W6+by W5+in 5% Zn?WO3,as expressed by the following equation:

    Where VO··represents an oxygen vacancy.From our previous report[27],it can be concluded that the photo?generated electrons can be easily captured by oxygen vacancy,which can cause efficient separation efficien?cy for photogenerated electron?hole pairs.Therefore,the photocatalytic efficiency of 5% Zn?WO3was higher than that of WO3.

    Fig.3 UV?Vis DRS(a)and PL(b)spectra of WO3,3% Zn?WO3,5% Zn?WO3,and 7% Zn?WO3

    Fig.4 W4f XPS spectra for 5% Zn?WO3(a)and WO3(b)

    Besides the above factor affecting the photocata?lytic activity,the adsorption ability of dyes on the sur?face of photocatalyst also play an important role.It is reported that the content of hydroxyl groups on the sur?face of photocatalyst can greatly influence the adsorp?tion ability of RhB and hence the photocatalytic effi?ciency[28].Generally,the content of hydroxyl groups can be reflected by the O1s XPS spectra[29].In order to in?vest the effect of Zn doping on the content of hydroxyl groups on the surface of WO3,the O1s XPS spectra of 5% Zn?WO3and WO3were obtained(Fig.5).According to Han et al.,the peak at about 530.5 eV is related to oxygen in the lattice(O2-,OⅡ),and another peak,located at about 531.5 eV,corresponds to adsorbed oxygen(OⅠ)in the form of O—H on the surface[30].Generally,the content of hydroxyl groups can be reflected by the ratio of SOⅠ(the peak area of adsorbed oxygen in the form of O—H)to SOⅡ(the peak area of oxygen in the lattice).The higher the value of SOⅠ/SOⅡ,the richer the content of hydroxyl groups in the pre?pared sample.It can be found from Fig.5 that the value of SOⅠ/SOⅡfor 5% Zn ?WO3was higher than that for WO3,implying that the content of hydroxyl groups in 5% Zn?WO3was higher than that in WO3.The reason may be that Zn2+is easy to combined with OH-to form[Zn(OH)4]2-coordination ion,which is good for the improvement of hydroxyl content in the precursor of 5% Zn?WO3.Consequently,the adsorbed amount of RhB on 5% Zn?WO3was higher than that on WO3,re?sulting in a higher photocatalytic activity.The results of Fig.S3 show that·O2-and h+are the main active species to degrade RhB.

    Fig.5 O1s XPS spectra for 5% Zn?WO3(a)and WO3(b)

    3 Conclusions

    In summary,Zn?doped WO3was synthesized by a facile method.The photocatalytic results show that the photocatalytic activity of WO3is enhanced after doping of Zn because the photoelectrons and holes can be effi?ciently separated due to the formation of oxygen vacan?cies.Furthermore,Zn doping can improve the content of hydroxyl groups,which is beneficial for the improve?ment of RhB adsorption ability and hence the photocat?alytic efficiency.

    Acknowledgement:This work was supported by the National Natural Science Foundation of China (Grant No.21876158).

    Supporting information is available at http://www.wjhxxb.cn

    一区二区三区免费毛片| 亚洲美女搞黄在线观看 | 成人特级av手机在线观看| 国产高清有码在线观看视频| 三级毛片av免费| 国产精品久久久久久久久免 | 国产伦精品一区二区三区视频9| 一个人免费在线观看的高清视频| 在线免费观看不下载黄p国产 | 亚洲 欧美 日韩 在线 免费| 国产精品av视频在线免费观看| 国产精品女同一区二区软件 | 亚洲三级黄色毛片| 精品国产亚洲在线| 他把我摸到了高潮在线观看| 亚洲黑人精品在线| 精品日产1卡2卡| 亚洲午夜理论影院| 波多野结衣高清无吗| 欧美精品国产亚洲| 精品一区二区三区视频在线| 啦啦啦观看免费观看视频高清| 国产老妇女一区| 国产av在哪里看| 精品久久国产蜜桃| 狂野欧美白嫩少妇大欣赏| 日本一本二区三区精品| 国产精品98久久久久久宅男小说| 丰满的人妻完整版| 一边摸一边抽搐一进一小说| 亚洲久久久久久中文字幕| 一本综合久久免费| 丁香欧美五月| 亚洲aⅴ乱码一区二区在线播放| 欧美黄色淫秽网站| 内射极品少妇av片p| av天堂在线播放| 国产精品三级大全| 亚洲成a人片在线一区二区| 人妻丰满熟妇av一区二区三区| 免费av不卡在线播放| 97人妻精品一区二区三区麻豆| 亚洲av电影在线进入| 1024手机看黄色片| 免费一级毛片在线播放高清视频| 精品国产亚洲在线| 少妇被粗大猛烈的视频| 免费电影在线观看免费观看| 亚洲精品影视一区二区三区av| 国模一区二区三区四区视频| 国产成人啪精品午夜网站| 国产探花极品一区二区| 最新中文字幕久久久久| 两个人视频免费观看高清| 性欧美人与动物交配| 赤兔流量卡办理| 国产高清视频在线播放一区| 久久久久久大精品| 久久99热6这里只有精品| 色综合婷婷激情| 欧美又色又爽又黄视频| 免费观看人在逋| 亚洲欧美激情综合另类| 中文资源天堂在线| av国产免费在线观看| 在线观看美女被高潮喷水网站 | 精品一区二区三区视频在线观看免费| 国产精品,欧美在线| 国模一区二区三区四区视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 午夜福利免费观看在线| 夜夜夜夜夜久久久久| 亚洲一区二区三区不卡视频| 搡老岳熟女国产| 少妇裸体淫交视频免费看高清| 国产亚洲欧美98| 欧美日韩国产亚洲二区| 一区福利在线观看| 男人的好看免费观看在线视频| 国产av一区在线观看免费| 亚洲av二区三区四区| av欧美777| 91久久精品国产一区二区成人| 色av中文字幕| av天堂中文字幕网| 亚洲熟妇中文字幕五十中出| 少妇人妻精品综合一区二区 | 日韩欧美三级三区| 欧美成狂野欧美在线观看| 男女那种视频在线观看| 两个人的视频大全免费| 舔av片在线| 欧美中文日本在线观看视频| 亚洲经典国产精华液单 | 真人做人爱边吃奶动态| 精品人妻1区二区| 露出奶头的视频| 真人一进一出gif抽搐免费| 日本一本二区三区精品| 婷婷精品国产亚洲av在线| 欧美日韩中文字幕国产精品一区二区三区| 欧美3d第一页| 日本 欧美在线| 人妻久久中文字幕网| 日韩精品中文字幕看吧| 搡女人真爽免费视频火全软件 | 婷婷六月久久综合丁香| 午夜福利在线观看吧| 亚洲天堂国产精品一区在线| 日本免费一区二区三区高清不卡| 成人特级av手机在线观看| 桃色一区二区三区在线观看| 国产成+人综合+亚洲专区| 精品人妻视频免费看| 69人妻影院| 精品久久久久久成人av| 国产视频一区二区在线看| 日韩欧美三级三区| 中文字幕精品亚洲无线码一区| 国产精品电影一区二区三区| 精华霜和精华液先用哪个| 欧美日韩乱码在线| 高清在线国产一区| 午夜福利高清视频| 最近中文字幕高清免费大全6 | 狂野欧美白嫩少妇大欣赏| 日日摸夜夜添夜夜添av毛片 | 亚洲七黄色美女视频| 日本三级黄在线观看| 欧美区成人在线视频| 深夜精品福利| 性欧美人与动物交配| 网址你懂的国产日韩在线| 国产欧美日韩一区二区三| 18禁裸乳无遮挡免费网站照片| 国产色爽女视频免费观看| 1000部很黄的大片| av在线天堂中文字幕| 校园春色视频在线观看| 亚洲人成网站在线播放欧美日韩| 久久久久久久午夜电影| 一卡2卡三卡四卡精品乱码亚洲| 一个人看的www免费观看视频| 国产欧美日韩一区二区三| 亚洲欧美日韩高清专用| 国产精品99久久久久久久久| 精品午夜福利在线看| 熟女人妻精品中文字幕| 黄色一级大片看看| 国产国拍精品亚洲av在线观看| 三级毛片av免费| 日本熟妇午夜| 精品午夜福利在线看| 99热6这里只有精品| 欧美乱色亚洲激情| 宅男免费午夜| 国产视频内射| 久久香蕉精品热| 国产欧美日韩精品亚洲av| 97超级碰碰碰精品色视频在线观看| 久久精品国产亚洲av涩爱 | 99久久成人亚洲精品观看| 我的老师免费观看完整版| 90打野战视频偷拍视频| 日本三级黄在线观看| 免费在线观看影片大全网站| 露出奶头的视频| 午夜福利成人在线免费观看| 91久久精品电影网| 色播亚洲综合网| 日韩大尺度精品在线看网址| av国产免费在线观看| a在线观看视频网站| 脱女人内裤的视频| 少妇被粗大猛烈的视频| 国产成人av教育| 国产探花极品一区二区| 精品久久久久久久久av| 丰满人妻熟妇乱又伦精品不卡| 国产一区二区三区视频了| 俄罗斯特黄特色一大片| 欧美一级a爱片免费观看看| 欧美又色又爽又黄视频| 美女cb高潮喷水在线观看| 色综合婷婷激情| av欧美777| 99在线视频只有这里精品首页| 一本综合久久免费| 亚洲熟妇熟女久久| 男人狂女人下面高潮的视频| 国产午夜福利久久久久久| 露出奶头的视频| 日本在线视频免费播放| 亚洲真实伦在线观看| 亚洲国产精品成人综合色| 日本一本二区三区精品| 久久精品国产自在天天线| 国产亚洲av嫩草精品影院| 色综合婷婷激情| 草草在线视频免费看| 99在线视频只有这里精品首页| 欧美乱色亚洲激情| 波多野结衣高清作品| 首页视频小说图片口味搜索| 国产精品一区二区性色av| 18禁在线播放成人免费| 精品久久久久久久久久免费视频| 五月伊人婷婷丁香| 日韩 亚洲 欧美在线| 免费无遮挡裸体视频| 免费高清视频大片| 国产久久久一区二区三区| 我的老师免费观看完整版| 亚洲av第一区精品v没综合| 精品一区二区三区av网在线观看| 热99在线观看视频| 日本黄色片子视频| 三级国产精品欧美在线观看| 一个人观看的视频www高清免费观看| 高潮久久久久久久久久久不卡| 村上凉子中文字幕在线| 亚洲欧美日韩高清专用| 欧美激情久久久久久爽电影| 精品久久国产蜜桃| 亚洲第一电影网av| 国产野战对白在线观看| 精品一区二区三区视频在线| 国产视频一区二区在线看| 偷拍熟女少妇极品色| 十八禁国产超污无遮挡网站| 亚洲欧美日韩无卡精品| 亚洲av免费高清在线观看| 久久久久久久久久成人| 亚洲av.av天堂| 热99re8久久精品国产| 久久久久国产精品人妻aⅴ院| 国产高清视频在线观看网站| 久久久久精品国产欧美久久久| 神马国产精品三级电影在线观看| 给我免费播放毛片高清在线观看| 波野结衣二区三区在线| 一级毛片久久久久久久久女| 国产大屁股一区二区在线视频| 婷婷精品国产亚洲av在线| 男女视频在线观看网站免费| 伊人久久精品亚洲午夜| 亚洲无线在线观看| 啦啦啦韩国在线观看视频| 少妇被粗大猛烈的视频| 啪啪无遮挡十八禁网站| 国产熟女xx| 亚洲,欧美精品.| 老司机午夜福利在线观看视频| 亚洲中文字幕一区二区三区有码在线看| 亚洲av第一区精品v没综合| 精品国内亚洲2022精品成人| 少妇丰满av| 国产精品美女特级片免费视频播放器| 国产极品精品免费视频能看的| 在线观看美女被高潮喷水网站 | 婷婷六月久久综合丁香| 国产v大片淫在线免费观看| 国内少妇人妻偷人精品xxx网站| 亚洲aⅴ乱码一区二区在线播放| 午夜免费男女啪啪视频观看 | 久久精品久久久久久噜噜老黄 | 99久久99久久久精品蜜桃| 在线免费观看的www视频| 精品日产1卡2卡| 97碰自拍视频| 国产欧美日韩一区二区精品| 动漫黄色视频在线观看| 性色avwww在线观看| 国产伦一二天堂av在线观看| 九色成人免费人妻av| 欧美高清性xxxxhd video| 成人国产一区最新在线观看| a在线观看视频网站| 免费看光身美女| 国产一区二区在线av高清观看| 亚洲久久久久久中文字幕| 亚洲精品一区av在线观看| 亚洲成av人片免费观看| 久久国产精品影院| 天天躁日日操中文字幕| 亚洲最大成人中文| 国产黄色小视频在线观看| 99精品在免费线老司机午夜| 精品乱码久久久久久99久播| 久久伊人香网站| 国产野战对白在线观看| 能在线免费观看的黄片| av福利片在线观看| 亚洲精品影视一区二区三区av| 国产精品亚洲美女久久久| 国产一区二区亚洲精品在线观看| 欧美最黄视频在线播放免费| 99热只有精品国产| 最近最新中文字幕大全电影3| 深夜a级毛片| 欧美xxxx性猛交bbbb| 亚洲人成网站在线播放欧美日韩| 欧美xxxx黑人xx丫x性爽| 国产伦一二天堂av在线观看| 俄罗斯特黄特色一大片| 在线观看舔阴道视频| 亚洲熟妇中文字幕五十中出| 国产成人a区在线观看| av欧美777| 免费看日本二区| 久久欧美精品欧美久久欧美| 99在线视频只有这里精品首页| 99视频精品全部免费 在线| 免费人成视频x8x8入口观看| 国产精品乱码一区二三区的特点| 亚洲av电影在线进入| 啦啦啦韩国在线观看视频| 国产精品,欧美在线| 日韩欧美在线二视频| 亚洲美女黄片视频| 首页视频小说图片口味搜索| 国产午夜精品久久久久久一区二区三区 | ponron亚洲| 亚洲成av人片免费观看| 国产午夜福利久久久久久| 亚洲精品久久国产高清桃花| 亚洲精品一卡2卡三卡4卡5卡| 制服丝袜大香蕉在线| 亚洲午夜理论影院| 欧美性猛交╳xxx乱大交人| 麻豆一二三区av精品| 欧美黑人欧美精品刺激| 国内精品久久久久精免费| 宅男免费午夜| 亚洲人成网站高清观看| 天堂动漫精品| 久久久精品大字幕| 哪里可以看免费的av片| 99久久精品一区二区三区| 亚洲av成人av| 丁香六月欧美| 亚洲精品粉嫩美女一区| 成人欧美大片| 丰满的人妻完整版| 成年免费大片在线观看| 日韩欧美国产一区二区入口| 国产麻豆成人av免费视频| 亚洲中文字幕一区二区三区有码在线看| 99riav亚洲国产免费| 99久久99久久久精品蜜桃| av欧美777| 99久国产av精品| 国产一级毛片七仙女欲春2| 欧美性猛交黑人性爽| 99热这里只有是精品50| 亚洲av免费在线观看| 国产在视频线在精品| 国产蜜桃级精品一区二区三区| 精品99又大又爽又粗少妇毛片 | 亚洲aⅴ乱码一区二区在线播放| 伊人久久精品亚洲午夜| 丝袜美腿在线中文| 波野结衣二区三区在线| 日韩高清综合在线| 永久网站在线| 成人性生交大片免费视频hd| 男人舔奶头视频| 少妇人妻精品综合一区二区 | 一本久久中文字幕| 午夜福利在线观看免费完整高清在 | netflix在线观看网站| 女生性感内裤真人,穿戴方法视频| 精品一区二区三区av网在线观看| 美女高潮喷水抽搐中文字幕| 啦啦啦韩国在线观看视频| 天堂√8在线中文| 国产成人a区在线观看| 88av欧美| 日日摸夜夜添夜夜添小说| 色哟哟·www| a级一级毛片免费在线观看| 国产一区二区亚洲精品在线观看| 国产精品人妻久久久久久| 国产三级黄色录像| 中文字幕av在线有码专区| 国产一区二区亚洲精品在线观看| netflix在线观看网站| 亚洲性夜色夜夜综合| 搡老熟女国产l中国老女人| 免费大片18禁| 国产精品乱码一区二三区的特点| 夜夜爽天天搞| 在线a可以看的网站| 久久亚洲真实| 在线天堂最新版资源| 免费观看的影片在线观看| 999久久久精品免费观看国产| 久久久色成人| 成人国产一区最新在线观看| 最新在线观看一区二区三区| 午夜福利欧美成人| 天堂影院成人在线观看| 一二三四社区在线视频社区8| 欧美最黄视频在线播放免费| 国产一区二区亚洲精品在线观看| a级一级毛片免费在线观看| 90打野战视频偷拍视频| 国产精品99久久久久久久久| 免费搜索国产男女视频| 在线a可以看的网站| 亚洲五月婷婷丁香| 麻豆久久精品国产亚洲av| 欧美色视频一区免费| 日本免费一区二区三区高清不卡| 桃色一区二区三区在线观看| 久久精品国产自在天天线| 亚洲av免费在线观看| 99久久成人亚洲精品观看| 黄片小视频在线播放| 中文字幕久久专区| 成人特级av手机在线观看| 日日摸夜夜添夜夜添av毛片 | 成年女人毛片免费观看观看9| 中文字幕人成人乱码亚洲影| 一本精品99久久精品77| 亚洲熟妇中文字幕五十中出| 午夜日韩欧美国产| 超碰av人人做人人爽久久| 内射极品少妇av片p| 亚洲国产精品成人综合色| 麻豆成人av在线观看| 在线观看午夜福利视频| 国产白丝娇喘喷水9色精品| 亚洲五月天丁香| 久久久久国产精品人妻aⅴ院| 91在线精品国自产拍蜜月| 日韩精品中文字幕看吧| 一本久久中文字幕| 日韩人妻高清精品专区| 一级av片app| 国产高清激情床上av| 国产大屁股一区二区在线视频| 亚洲18禁久久av| 午夜视频国产福利| 免费大片18禁| 变态另类成人亚洲欧美熟女| 久久九九热精品免费| 国产乱人视频| 亚洲第一欧美日韩一区二区三区| 精品国产三级普通话版| 精品一区二区三区av网在线观看| 亚洲av电影在线进入| 两性午夜刺激爽爽歪歪视频在线观看| 男女之事视频高清在线观看| 小说图片视频综合网站| 好男人在线观看高清免费视频| 日韩精品青青久久久久久| 夜夜夜夜夜久久久久| 在线观看一区二区三区| 淫妇啪啪啪对白视频| 成年女人永久免费观看视频| 免费看光身美女| 一区二区三区免费毛片| 久久久久久九九精品二区国产| 日本黄色片子视频| 国产精品久久久久久精品电影| 又黄又爽又刺激的免费视频.| 国产一区二区亚洲精品在线观看| 国产精品乱码一区二三区的特点| 一本久久中文字幕| 神马国产精品三级电影在线观看| 校园春色视频在线观看| 波多野结衣高清作品| 99久久99久久久精品蜜桃| 亚洲欧美日韩卡通动漫| 国产极品精品免费视频能看的| 美女 人体艺术 gogo| 精华霜和精华液先用哪个| 天堂影院成人在线观看| a级毛片免费高清观看在线播放| 99国产精品一区二区三区| 老鸭窝网址在线观看| 婷婷精品国产亚洲av| 欧美乱妇无乱码| av天堂在线播放| 国产精品久久电影中文字幕| 五月玫瑰六月丁香| 国产精品亚洲美女久久久| 欧美成人一区二区免费高清观看| 两个人的视频大全免费| 久久99热6这里只有精品| 亚洲美女视频黄频| 日韩大尺度精品在线看网址| 欧美日韩乱码在线| 成人特级黄色片久久久久久久| 精品人妻熟女av久视频| 午夜福利欧美成人| 亚洲三级黄色毛片| 亚洲av第一区精品v没综合| 午夜两性在线视频| 熟女人妻精品中文字幕| 少妇丰满av| 日韩大尺度精品在线看网址| 国产伦人伦偷精品视频| 在线观看免费视频日本深夜| 三级毛片av免费| av欧美777| 免费观看精品视频网站| 狠狠狠狠99中文字幕| 精品国产亚洲在线| 欧美丝袜亚洲另类 | 性色av乱码一区二区三区2| av福利片在线观看| 少妇人妻精品综合一区二区 | 国产视频内射| 一进一出好大好爽视频| a级一级毛片免费在线观看| 久久6这里有精品| 全区人妻精品视频| 麻豆av噜噜一区二区三区| 亚洲av.av天堂| 免费av观看视频| 免费搜索国产男女视频| 久久热精品热| 久久伊人香网站| 久久精品综合一区二区三区| 亚洲经典国产精华液单 | 3wmmmm亚洲av在线观看| 国产成人a区在线观看| 在线观看美女被高潮喷水网站 | 国产精品久久久久久人妻精品电影| 欧美三级亚洲精品| 性欧美人与动物交配| 97超视频在线观看视频| 中文字幕高清在线视频| 久久午夜福利片| 成人国产一区最新在线观看| 久久99热6这里只有精品| 日韩成人在线观看一区二区三区| 色尼玛亚洲综合影院| 亚洲无线在线观看| 少妇熟女aⅴ在线视频| 国产精品久久久久久人妻精品电影| 黄色日韩在线| 一进一出抽搐动态| 久久精品夜夜夜夜夜久久蜜豆| 日日摸夜夜添夜夜添小说| 色播亚洲综合网| 久久热精品热| 国产精品永久免费网站| 最近视频中文字幕2019在线8| 波野结衣二区三区在线| 亚洲欧美激情综合另类| 日韩欧美三级三区| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲欧美日韩高清专用| 少妇丰满av| 天堂av国产一区二区熟女人妻| 欧美黑人巨大hd| 男人舔奶头视频| 国产在视频线在精品| 欧美性感艳星| 全区人妻精品视频| 蜜桃亚洲精品一区二区三区| 九色成人免费人妻av| 白带黄色成豆腐渣| 久99久视频精品免费| 一a级毛片在线观看| 亚洲av中文字字幕乱码综合| 一区二区三区免费毛片| 午夜影院日韩av| 夜夜躁狠狠躁天天躁| 国产黄色小视频在线观看| 1000部很黄的大片| 亚洲美女搞黄在线观看 | 十八禁网站免费在线| 日韩国内少妇激情av| 成人av在线播放网站| 少妇被粗大猛烈的视频| 少妇的逼水好多| 久久午夜福利片| 2021天堂中文幕一二区在线观| 精品一区二区三区av网在线观看| 成人午夜高清在线视频| 嫩草影视91久久| 老女人水多毛片| 亚洲av第一区精品v没综合| 老熟妇仑乱视频hdxx| 欧美高清性xxxxhd video| 舔av片在线| 欧美日韩黄片免| 精品久久久久久成人av| 噜噜噜噜噜久久久久久91| 亚洲第一区二区三区不卡| 欧美日韩亚洲国产一区二区在线观看| 亚洲av日韩精品久久久久久密| 国产视频一区二区在线看| 蜜桃亚洲精品一区二区三区| 亚洲国产欧美人成| av天堂中文字幕网| 首页视频小说图片口味搜索| 精品久久久久久久久av| 精品不卡国产一区二区三区| 色视频www国产| 天堂动漫精品| 国产精品98久久久久久宅男小说| 夜夜夜夜夜久久久久| 国产av不卡久久| 久久国产精品影院| 国产精品伦人一区二区| 欧美一区二区国产精品久久精品| 亚洲中文字幕日韩| 亚洲av电影不卡..在线观看| 久久久精品欧美日韩精品| 动漫黄色视频在线观看|