• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First?Principles Calculations on Electronic Structures and Optical Properties of g?C3N4Nanoribbons

    2021-09-22 02:12:42DUXiuJuanMAKeRongZHANGZhengWeiYANGWenZHANGRuiZHANGQingMei

    DU Xiu?JuanMA Ke?RongZHANG Zheng?WeiYANG WenZHANG RuiZHANG Qing?Mei

    (1School of Applied Science,Taiyuan University of Science and Technology,Taiyuan 030024,China)

    (2Department of Chemistry and Chemical Engineering,Jinzhong University,Jinzhong,Shanxi 030619,China)

    (3Shanxi Key Laboratory of Metal Forming Theory and Technology,School of Material Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China)

    Abstract:The first?principles method based on density functional theory was performed to investigate the electronic structure and optical properties of the armchair nanoribbons(AC?g?C3N4NRs)and zigzag g?C3N4nanoribbons(ZZ?g?C3N4NRs).The results show that the edge H atoms of AC?g?C3N4NRs and ZZ?g?C3N4NRs can exist stably.The valence band maximums(VBMs)of AC?g?C3N4NRs are mainly contributed by most of N atoms,whereas the VBMs of ZZ?g?C3N4NRs are contributed by the N atoms near the CH edge.The conduction band minimums(CBMs)of AC?g?C3N4NRs mainly belong to C and N atoms near the one edge or two edges of AC?g?C3N4NRs,while the CBMs of ZZ?g?C3N4NRs mainly belong to C and N atoms near the NH edge of ZZ?g?C3N4NRs.The absorption coefficient and the reflectivity of AC?g?C3N4NR or ZZ?g?C3N4NR increased with the increasing width of the corresponding nanoribbon.An obvious blueshift phenomenon of the absorption coefficient could be generated in the low?energy range as the width of AC?g?C3N4NR increased.

    Keywords:g?C3N4nanoribbons;binding energies;electronic structure;optical properties;first?principles calculations

    0 Introduction

    As a low?cost,high?stable,nontoxic and visible?light?responsive photocatalyst,graphitic carbon nitride(g?C3N4)has a multifunctional application in photocata?lytic hydrogen evolution[1?3],CO2reduction[4?5]and photo?catalytic degradation of pollutants[6?7].In order to fur?ther enhance the photocatalytic performance of g?C3N4,bulk g?C3N4is usually cut into nano?sized g?C3N4,such as g?C3N4nanosheets[3,8?11]and g?C3N4nanoribbons(g?C3N4NRs)[12?13],which possesses favorable photocatalyt?ic activity because of the larger specific surface area with abundant active sites and short diffusion distance of photogenerated charge carriers.

    Due to the quantum size effect,the properties of g?C3N4NRs are considerably different from those of g?C3N4nanosheets.In experiments,Wang et al.have successfully synthesized the Mn?doped g?C3N4NR cata?lyst by a two?step calcination method[13].Zhao et al.have fabricated g?C3N4NR on graphene sheets by using a simple one?step hydrothermal method[12].However,lit?tle attention is paid to theoretical research on the arm?chair nanoribbons(AC?g?C3N4NRs)or zigzag g?C3N4nanoribbons(ZZ?g?C3N4NRs)which can be obtained by cutting nanosheets along specific directions,and thus the electronic and optical properties of these above two g?C3N4NRs as function of widths are not clear.Expo?sure of these properties will help the design and fabri?cation of g?C3N4NRs?based electronic and optical devices in experiment.

    In this work,the rest of the paper is organized as follows:the computational method and models of AC?g?C3N4NRs and ZZ?g?C3N4NRs with the width of 7(i.e.the number of the atom chains)are given in Section 2.The binding energies,band gaps,band structure,par?tial charge density,partial density of states and optical properties of g?C3N4NRs are analyzed and the conclu?sions are drawn in the last section.

    1 Computational method and models

    The computation of electronic and optical proper?ties was performed within the framework of the density functional theory(DFT)implemented in the Vienna ab?initio Simulation Package(VASP)[14?18].The electron?ionic core interactions were treated by the projected augmented wave(PAW)potentials[19].The Perdew?Burke?Ernzerhof(PBE)exchange?correlation function?al[20]within the generalized?gradient approximation(GGA)was used in order to yield the correct ground?state structure of the systems.An efficient Broyden/Pulay mixing scheme[21?22]was used for the mixing of the charge density.The cut?off energy of the plane waves was 500 eV.The energies and the forces on each ion were converged to less than 10-5eV·atom-1and 0.1 eV·nm-1,respectively.The Gaussian smearing broad?ening was chosen as 0.05 eV.The Brillouin zones were sampled by 1×1×11 and 1×1×25 K?point meshes according to Monkhorst?Pack scheme[23]for calcula?tions of electronic structures and optical properties,respectively.The number of energy bands was in?creased to 300 when the optical properties were com?puted.The absorption coefficient and reflectivity can be derived from the computational dielectric func?tion.Compared with the experiment value 2.7 eV,the computed band gap of bulk g?C3N4was 1.28 eV and the difference in band gap was 1.42 eV.The same conclu?sion is also drawn by Wu et al[24].However,the PBE computations can still reveal the variation tendency of the electronic structures and optical properties.

    The width of AC?g?C3N4NR(or ZZ?g?C3N4NRs)was classified by the number of the atom chains NA(or NZ)across the ribbon width and denoted as NA?AC?g?C3N4NR(or NZ?ZZ?g?C3N4NR).In the present work,we focus our attention on the structures of AC?g?C3N4NR and ZZ?g?C3N4NRs with the width NAor NZ=4~10.As examples,geometry structures of 7?AC?g?C3N4NR and 7?ZZ?g?C3N4NR are shown in Fig.1a and 1b,respective?ly.g?C3N4NRs periodically extend along the z direction.To avoid the interactions between the neighboring rib?bons,g?C3N4NRs were separated from each other by the vacuum region with 1.6 nm in both edge?to?edge(i.e.x direction)and layer?to?layer(i.e.y direction).

    2 Results and discussion

    2.1 Binding energies and band gaps

    The binding energies Ebare usually adopted to investigate the binding strength between H atoms andg?C3N4NRs.Ebwas computed according to Eb=(Epassivated-Ebare-nEH)/n,where n is the number of H atoms,Epassivatedand Ebarerefer to the total energy of g?C3N4NR with H termination and g?C3N4NR without H termination,re?spectively.EHis the half of the total energy of a H2mol?ecule at 0 K and 0 GPa and was computed by equation EH=1/2EH2.The evolution of the binding energies of AC?and ZZ?g?C3N4NRs as a function of the width NAor NZis shown in Fig.2a.It can be seen that the binding ener?gies of these fourteen g?C3N4NRs are all negative val?ues,indicating that the edge H atoms can exist stably.The black curve and red curve represent that the bind?ing energy of the AC?g?C3N4NR has a small fluctuation,whereas that of ZZ?g?C3N4NR has a large fluctuation with the increasing number of atom chains.In addition,the smaller binding energies of ZZ?g?C3N4NRs with the width NZ=4,6,8,10 indicate that H atoms are pre?ferred to adsorb on the edges of these systems.Fig.2b displays the evolution of the band gaps of AC?and ZZ?g?C3N4NRs as a function of the width NAor NZ.It can be seen from Fig.2b that the band gaps of the remaining eleven semiconductor g?C3N4NRs present a small fluc?tuation except for ZZ?g?C3N4NR with NZ=5,7,9 which are metallic systems with no band gaps.Table 1 shows the molar ratio(ε)of C and N atoms of the AC?and ZZ?g?C3N4NRs.Table 1 and Fig.2 indicate that the binding energies and band gaps of AC?g?C3N4NRs have no obvi?ous change rule,while ZZ?g?C3N4NRs have the smaller binding energies and the larger band gaps when the ε of C and N atoms is 3/4.

    Fig.1 Geometry structures of monolayer g?C3N4NRs with H termination:(a)7?AC?g?C3N4NR;(b)7?ZZ?g?C3N4NR

    In the following sections,the aforementioned stable semiconductor AC?g?C3N4NRs with the width NA=4,7,10 and semiconductor ZZ?g?C3N4NRs with the width NZ=4,10 will be taken as examples for further investigating the electronic and optical properties of g?C3N4NRs.

    Fig.2 Evolution of the binding energies(a)and band gaps(b)of AC?g?C3N4NRs and ZZ?g?C3N4NRs as a function of the width NAor NZ

    Table 1 ε of C and N atoms of AC?g?C3N4NRs and ZZ?g?C3N4NRs

    2.2 Band structure,partial charge density and partial density of states

    Fig.3 shows band structures of AC?g?C3N4NRs with(a)NA=4,(b)NA=7,(c)NA=10 and ZZ?g?C3N4NRs with(d)NZ=4,(e)NZ=10.Fig.3a and 3d reflect that AC?g?C3N4NR and ZZ?g?C3N4NR withNAorNZ=4 are both indirect band gap semiconductors because of the valence band maximum(VBM)and the conduction band minimum(CBM)locating at different points ofK?space,whereas Fig.3b,3c and 3e are all the direct band gap systems due to the VBM and CBM located atΓpoint ofK?space.

    In order to intuitively recognize compositions of the VBMs and CBMs,Fig.4 shows partial charge densi?ties for VBMs and CBMs of AC?g?C3N4NRs with(a)NA=4,(b)NA=7,(c)NA=10 and ZZ?g?C3N4NRs with(d)NZ=4,(e)NZ=10.It can be seen that the VBMs of AC?g?C3N4NRs(the red isosurface in Fig.4a~4c are mainly distributed on most of N atoms,whereas the VBMs of ZZ?g?C3N4NRs(the red isosurface in Fig.4d and 4e arecontributed by the N atoms near the CH edge.More?over,these charge distributions contributing to VBMs are all within the g?C3N4plane.However,the CBMs of AC?g?C3N4NRs(the green isosurface in Fig.4a~4c)mainly belong to C and N atoms near the one edge or two edges of AC?g?C3N4NRs,while CBMs of ZZ?g?C3N4NRs(the green isosurface in Fig.4d and 4e)mainly belong to C and N atoms near the NH edge of ZZ?g?C3N4NRs.Interestingly,these charge distribu?tions are perpendicular to the g?C3N4plane.

    Fig.3 Band structures of AC?g?C3N4NRs with(a)NA=4,(b)NA=7,(c)NA=10 and ZZ?g?C3N4NRs with(d)NZ=4,(e)NZ=10

    Fig.4 Partial charge densities for VBMs(red isosurface)and CBMs(green isosurface)of AC?g?C3N4NRs with(a)NA=4,(b)NA=7,(c)NA=10 and ZZ?g?C3N4NRs with(d)NZ=4,(e)NZ=10

    Furthermore,we computed the partial density of states of AC?g?C3N4NRs with(a)NA=4,(b)NA=7,(c)NA=10 and ZZ?g?C3N4NRs with(d)NZ=4,(e)NZ=10.As shown in Fig.5,the VBMs of AC?and ZZ?g?C3N4NRs are composed of the 2p states of N atoms,while the CBMs are mainly contributed by the 2p states of C andN atoms of the systems.In terms of element composi?tions,this is in good agreement with the above analysis of the partial charge densities.

    Fig.5 Partial density of states of AC?g?C3N4NRs with(a)NA=4,(b)NA=7,(c)NA=10 and ZZ?g?C3N4NRs with(d)NZ=4,(e)NZ=10

    2.3 Optical properties

    In the present work,for comparison,the optical properties of g?C3N4NRs,bulk g?C3N4and the armchair graphene nanoribbons(AC?GNRs)are characterized by absorption coefficient(α),reflectivity(R)and energy loss(L),which are defined as follows[25?26]:

    Where the real part ε1and imaginary part ε2of the complex dielectric function ε=ε1+jε2can be obtained based on the computational electronic states,and ω is the circular frequency.

    Fig.6 shows the computed optical absorption coef?ficients of(a)AC?g?C3N4NRs with NA=4,7,10,(b)ZZ?g?C3N4NRs with NZ=4,10,(c)AC?GNRs with NA=4,7,10 and(d)bulk g?C3N4as a function of energy.In the work,ZZ?GNRs are not investigated because the com?puted band gaps are 0.Seen from the Fig.6a and 6b,the absorption coefficient of AC?g?C3N4NR or ZZ?g?C3N4NR increased with the increasing width of the cor?responding nanoribbon.In Fig.6a,these absorption peaks of 4?AC?g?C3N4NR,7?AC?g?C3N4NR and 10?AC?g?C3N4NR(i.e.the black,red and green absorption peaks)in the low?energy range of 0~5 eV are specifical?ly located at 3.58,3.84,and 4.31 eV,respectively.Therefore,an obvious blueshift phenomenon can be generated in the low ?energy range as the width in?crease of AC?g?C3N4NR.In Fig.6b,the black and green absorption peaks are respectively located at 4.28 and 4.32 eV in the low energy region,indicating that there is only a very weak blueshift.By contrast,Fig.6c dis?plays an obvious redshift phenomenon in the low?energy range as the width increase of AC?GNR.Compared with bulk g?C3N4(shown in Fig.6d),the AC?and ZZ?g?C3N4NRs have the smaller absorption coefficient.

    Fig.6 Computed absorption coefficients of(a)AC?g?C3N4NRs with NA=4,7,10,(b)ZZ?g?C3N4NRs with NZ=4,10,(c)AC?GNRs with NA=4,7,10 and(d)bulk g?C3N4

    Fig.7 Computed reflectivity of(a)AC?g?C3N4NRs with NA=4,7,10,(b)ZZ?g?C3N4NRs with NZ=4,10,(c)AC?GNRs with NA=4,7,10 and(d)bulk g?C3N4

    Fig.7 shows the computational reflectivity of(a)AC?g?C3N4NRs with NA=4,7,10 and(b)ZZ?g?C3N4NRs with NZ=4,10,(c)AC?GNRs with NA=4,7,10 and(d)bulk g?C3N4as a function of energy.It also can be seen from Fig.7a and 7b that the reflectivity is increasing with the increased width increase of AC?or ZZ?g?C3N4NR,and the strongest reflectivities of these NRs are all in the low energy range of 2~5 eV.By contrast,AC?GNRs can draw the same conclusion(Fig.7c).In addition,bulk g?C3N4has a larger reflectivity compared with g?C3N4NRs.

    3 Conclusions

    The electronic and optical properties of g?C3N4na?noribbons have been investigated by using the first?principles calculations.The results are as follows:

    (1)The edge H atoms of AC?and ZZ?g?C3N4NRs studied in the present work can exist stably.AC?g?C3N4NRs with NA=4~10 and ZZ?g?C3N4NRs with NZ=4,6,8,10 are semiconductors,whereas ZZ?g?C3N4NR with NZ=5,7,9 are metallic systems with no band gaps.

    (2)The VBMs of AC?g?C3N4NRs are mainly dis?tributed on most of N atoms,whereas the VBMs of ZZ?g?C3N4NRs are contributed by the N atoms near the CH edge.The CBMs of AC?g?C3N4NRs mainly belong to C and N atoms near the one edge or two edges of AC?g?C3N4NRs,while the CBMs of ZZ?g?C3N4NRs mainly belong to C and N atoms near the NH edge of ZZ?g?C3N4NRs.The VBMs of AC?and ZZ?g?C3N4NRs are composed of the 2p states of N atoms,while the CBMs are mainly contributed by the 2p states of C and N atoms of the systems.

    (3)The absorption coefficient and the reflectivity of AC?g?C3N4NR or ZZ?g?C3N4NR are increased with the width increase of the corresponding nanoribbon.For the absorption coefficient,an obvious blueshift phe?nomenon can be generated in the low?energy range as the width increase of AC?g?C3N4NR.

    Acknowledgements:The authors would like to acknowl?edge the support from the National Natural Science Foundation of China(Grants No.11705124,51871158,11704274).

    成人漫画全彩无遮挡| 美女脱内裤让男人舔精品视频| 国语对白做爰xxxⅹ性视频网站| 一区二区日韩欧美中文字幕 | 在线观看人妻少妇| 国产黄色视频一区二区在线观看| √禁漫天堂资源中文www| 中文天堂在线官网| 亚洲精品美女久久av网站| 亚洲少妇的诱惑av| 一本久久精品| 91久久精品国产一区二区三区| 18在线观看网站| av免费在线看不卡| 国产高清三级在线| 乱码一卡2卡4卡精品| 午夜影院在线不卡| 欧美变态另类bdsm刘玥| 老司机影院毛片| 伊人亚洲综合成人网| 国产黄频视频在线观看| 人人妻人人澡人人看| 最近最新中文字幕免费大全7| 亚洲国产av影院在线观看| 日韩伦理黄色片| 最新的欧美精品一区二区| 国产午夜精品久久久久久一区二区三区| 99久久中文字幕三级久久日本| 久久久久久伊人网av| 国产男人的电影天堂91| 最后的刺客免费高清国语| 国产黄色视频一区二区在线观看| 国产亚洲av片在线观看秒播厂| 美女中出高潮动态图| 亚洲无线观看免费| 美女脱内裤让男人舔精品视频| 欧美亚洲 丝袜 人妻 在线| 日本午夜av视频| 99热网站在线观看| 国产亚洲欧美精品永久| 毛片一级片免费看久久久久| 最近的中文字幕免费完整| 内地一区二区视频在线| 在线播放无遮挡| 夫妻性生交免费视频一级片| 国产精品国产三级专区第一集| 久久久久精品久久久久真实原创| 美女xxoo啪啪120秒动态图| 中文字幕精品免费在线观看视频 | 欧美精品国产亚洲| 精品一区在线观看国产| 亚洲高清免费不卡视频| 久久精品国产亚洲网站| 国产日韩欧美在线精品| 国产成人精品福利久久| 日产精品乱码卡一卡2卡三| 26uuu在线亚洲综合色| 最近最新中文字幕免费大全7| 制服人妻中文乱码| 中文字幕精品免费在线观看视频 | 青春草国产在线视频| 如何舔出高潮| 国产精品国产av在线观看| 少妇高潮的动态图| 在线观看免费日韩欧美大片 | 日本猛色少妇xxxxx猛交久久| 久久99热这里只频精品6学生| 夜夜骑夜夜射夜夜干| 狂野欧美激情性bbbbbb| 欧美97在线视频| videosex国产| 成人亚洲欧美一区二区av| 日韩av不卡免费在线播放| 国产伦精品一区二区三区视频9| 少妇的逼好多水| 在线观看国产h片| av卡一久久| 亚洲精品第二区| 欧美亚洲日本最大视频资源| 又黄又爽又刺激的免费视频.| 一个人看视频在线观看www免费| 午夜福利在线观看免费完整高清在| 国产黄频视频在线观看| 一级毛片电影观看| 王馨瑶露胸无遮挡在线观看| 丝袜在线中文字幕| 18+在线观看网站| 美女脱内裤让男人舔精品视频| 亚洲精品日韩av片在线观看| 日韩不卡一区二区三区视频在线| 丰满迷人的少妇在线观看| 精品久久久精品久久久| 久久久久久人妻| 精品视频人人做人人爽| 日韩熟女老妇一区二区性免费视频| 91午夜精品亚洲一区二区三区| 精品一区二区免费观看| 国产成人av激情在线播放 | 国产高清三级在线| 亚洲精品亚洲一区二区| xxxhd国产人妻xxx| av在线app专区| 夜夜看夜夜爽夜夜摸| 精品午夜福利在线看| 国产片特级美女逼逼视频| h视频一区二区三区| 寂寞人妻少妇视频99o| 三级国产精品欧美在线观看| 乱人伦中国视频| 欧美3d第一页| 美女视频免费永久观看网站| 欧美老熟妇乱子伦牲交| a级毛片在线看网站| 亚洲国产av影院在线观看| 最近中文字幕高清免费大全6| 国产片特级美女逼逼视频| 国产在线一区二区三区精| 精品人妻熟女毛片av久久网站| 成人毛片60女人毛片免费| 亚洲美女视频黄频| 欧美少妇被猛烈插入视频| 午夜福利影视在线免费观看| 日本91视频免费播放| 五月开心婷婷网| 超色免费av| 成人国产av品久久久| 搡老乐熟女国产| 久久久久网色| 一个人免费看片子| 精品国产露脸久久av麻豆| 午夜福利在线观看免费完整高清在| 成人免费观看视频高清| 亚洲av中文av极速乱| 18禁在线播放成人免费| 国产无遮挡羞羞视频在线观看| 亚洲国产欧美日韩在线播放| 亚洲精华国产精华液的使用体验| 亚洲欧美一区二区三区黑人 | 黑丝袜美女国产一区| 国产一区二区在线观看日韩| 天美传媒精品一区二区| 亚洲欧美清纯卡通| 乱人伦中国视频| 麻豆成人av视频| 满18在线观看网站| 精品一区二区三卡| 国产成人免费观看mmmm| 亚洲精品日韩av片在线观看| 大香蕉久久成人网| 高清黄色对白视频在线免费看| 国产极品粉嫩免费观看在线 | 五月伊人婷婷丁香| 国产精品免费大片| 少妇的逼好多水| 日韩伦理黄色片| 欧美日韩精品成人综合77777| 国产一区二区三区av在线| 久久99一区二区三区| 成人亚洲欧美一区二区av| 久久久久精品久久久久真实原创| 91精品国产国语对白视频| 一级黄片播放器| 少妇精品久久久久久久| 精品国产露脸久久av麻豆| 一区二区av电影网| 91久久精品国产一区二区成人| 国产精品久久久久久精品古装| 蜜桃在线观看..| 久久99一区二区三区| 99久久中文字幕三级久久日本| 在线观看免费高清a一片| 日韩亚洲欧美综合| 亚洲国产毛片av蜜桃av| 色网站视频免费| 只有这里有精品99| 精品一区在线观看国产| 国产成人aa在线观看| 久久国产精品男人的天堂亚洲 | 美女中出高潮动态图| 午夜福利在线观看免费完整高清在| 3wmmmm亚洲av在线观看| 天堂8中文在线网| 欧美xxxx性猛交bbbb| 九九爱精品视频在线观看| 亚洲国产精品999| 一级,二级,三级黄色视频| 亚洲欧洲日产国产| 毛片一级片免费看久久久久| 精品国产国语对白av| 国产乱人偷精品视频| 成人毛片a级毛片在线播放| 天堂8中文在线网| videos熟女内射| 国产极品天堂在线| 国产成人a∨麻豆精品| 精品一区二区三卡| 菩萨蛮人人尽说江南好唐韦庄| a级毛片黄视频| 91精品三级在线观看| 一级毛片 在线播放| 狂野欧美白嫩少妇大欣赏| 久久久久久久久久久免费av| 国产欧美另类精品又又久久亚洲欧美| 在线亚洲精品国产二区图片欧美 | 又大又黄又爽视频免费| 日韩电影二区| 97超碰精品成人国产| 久久99精品国语久久久| 久久99热这里只频精品6学生| 丝袜在线中文字幕| 老司机影院毛片| 在线观看三级黄色| 欧美日韩av久久| 久久久欧美国产精品| 欧美精品一区二区大全| 亚洲综合色网址| 女性被躁到高潮视频| 国产爽快片一区二区三区| 免费人成在线观看视频色| 精品人妻熟女毛片av久久网站| 久久久午夜欧美精品| 狂野欧美激情性xxxx在线观看| 男女啪啪激烈高潮av片| 欧美bdsm另类| 黄色毛片三级朝国网站| 国产亚洲一区二区精品| 久久精品熟女亚洲av麻豆精品| 亚洲av欧美aⅴ国产| 国产男女内射视频| 最后的刺客免费高清国语| 国产色爽女视频免费观看| 满18在线观看网站| 日韩大片免费观看网站| 国产亚洲精品久久久com| 97精品久久久久久久久久精品| 欧美97在线视频| 成人手机av| 嫩草影院入口| 一级爰片在线观看| 一级,二级,三级黄色视频| 免费大片18禁| 18禁动态无遮挡网站| 欧美最新免费一区二区三区| 久久精品国产自在天天线| 一区二区三区免费毛片| 亚洲精品久久成人aⅴ小说 | 国产国语露脸激情在线看| 欧美亚洲日本最大视频资源| 欧美激情 高清一区二区三区| 日韩av在线免费看完整版不卡| 欧美另类一区| 国产 精品1| 91成人精品电影| 高清午夜精品一区二区三区| 五月伊人婷婷丁香| 一区二区三区免费毛片| av线在线观看网站| 欧美最新免费一区二区三区| 国产一区二区在线观看av| av不卡在线播放| 日本欧美视频一区| 三级国产精品欧美在线观看| 青春草亚洲视频在线观看| 成人二区视频| 久久久国产精品麻豆| 最黄视频免费看| 色哟哟·www| av不卡在线播放| 亚洲av成人精品一区久久| 91精品三级在线观看| 亚洲熟女精品中文字幕| 成人18禁高潮啪啪吃奶动态图 | 亚洲三级黄色毛片| 国产免费现黄频在线看| 少妇丰满av| 日韩免费高清中文字幕av| 麻豆成人av视频| 自拍欧美九色日韩亚洲蝌蚪91| 建设人人有责人人尽责人人享有的| 午夜免费男女啪啪视频观看| 天天躁夜夜躁狠狠久久av| 啦啦啦视频在线资源免费观看| 老女人水多毛片| 黄色配什么色好看| 国产精品一国产av| 色哟哟·www| 热re99久久精品国产66热6| 夜夜看夜夜爽夜夜摸| 欧美另类一区| 少妇人妻精品综合一区二区| 国产午夜精品一二区理论片| 国产黄色免费在线视频| 男女边吃奶边做爰视频| 美女视频免费永久观看网站| 成年人免费黄色播放视频| av福利片在线| 精品久久久精品久久久| 亚洲国产精品999| 91aial.com中文字幕在线观看| 日韩制服骚丝袜av| 视频中文字幕在线观看| 国产一级毛片在线| 99re6热这里在线精品视频| 亚洲精品日韩av片在线观看| 99久久综合免费| 黑人巨大精品欧美一区二区蜜桃 | 国产男女超爽视频在线观看| 3wmmmm亚洲av在线观看| 99九九在线精品视频| 国产精品久久久久久久久免| 少妇高潮的动态图| www.色视频.com| 成人无遮挡网站| 久久国产精品男人的天堂亚洲 | 天天躁夜夜躁狠狠久久av| 校园人妻丝袜中文字幕| 免费黄网站久久成人精品| 亚洲欧美精品自产自拍| 综合色丁香网| 欧美精品高潮呻吟av久久| 免费观看av网站的网址| 免费久久久久久久精品成人欧美视频 | 免费黄频网站在线观看国产| 国产黄色免费在线视频| 久久精品久久精品一区二区三区| 久久精品国产鲁丝片午夜精品| 边亲边吃奶的免费视频| 国产免费视频播放在线视频| 精品一区二区三卡| 国产永久视频网站| 国产综合精华液| 亚洲精品,欧美精品| 五月玫瑰六月丁香| 亚洲欧美清纯卡通| 国产高清三级在线| 边亲边吃奶的免费视频| av国产精品久久久久影院| 三上悠亚av全集在线观看| 免费大片黄手机在线观看| 亚洲av男天堂| 免费看av在线观看网站| 天天操日日干夜夜撸| 日日摸夜夜添夜夜爱| 国产精品蜜桃在线观看| 欧美三级亚洲精品| 黄色毛片三级朝国网站| 久久av网站| 欧美日韩精品成人综合77777| 一级毛片我不卡| 欧美激情国产日韩精品一区| 2018国产大陆天天弄谢| 特大巨黑吊av在线直播| 亚洲成色77777| av又黄又爽大尺度在线免费看| 成人二区视频| 日韩av不卡免费在线播放| 热re99久久国产66热| 久久狼人影院| 亚洲怡红院男人天堂| 国产无遮挡羞羞视频在线观看| 欧美最新免费一区二区三区| 免费久久久久久久精品成人欧美视频 | av有码第一页| 少妇丰满av| 欧美日韩国产mv在线观看视频| 一级毛片aaaaaa免费看小| 成人手机av| 国产av国产精品国产| 女的被弄到高潮叫床怎么办| 两个人的视频大全免费| 午夜福利视频精品| 免费看不卡的av| 美女国产视频在线观看| 秋霞在线观看毛片| 免费大片黄手机在线观看| 国产精品无大码| 99九九在线精品视频| 国产极品天堂在线| 一本—道久久a久久精品蜜桃钙片| 欧美xxxx性猛交bbbb| 国产av码专区亚洲av| 欧美性感艳星| 精品久久久噜噜| av播播在线观看一区| 日韩亚洲欧美综合| 看十八女毛片水多多多| 搡老乐熟女国产| 亚洲三级黄色毛片| 午夜福利网站1000一区二区三区| 亚洲av福利一区| av女优亚洲男人天堂| 五月开心婷婷网| 久久久久视频综合| 精品卡一卡二卡四卡免费| 久久精品国产鲁丝片午夜精品| 日韩av不卡免费在线播放| 啦啦啦中文免费视频观看日本| 另类亚洲欧美激情| 精品久久久久久久久亚洲| 熟女人妻精品中文字幕| 全区人妻精品视频| 久久青草综合色| 午夜免费观看性视频| 99久久中文字幕三级久久日本| 亚洲国产成人一精品久久久| 欧美亚洲 丝袜 人妻 在线| 女性被躁到高潮视频| 大陆偷拍与自拍| 久久精品久久精品一区二区三区| 国产不卡av网站在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品一区蜜桃| 久久久久精品久久久久真实原创| 丰满饥渴人妻一区二区三| 岛国毛片在线播放| 亚洲av福利一区| 99热全是精品| 亚洲,欧美,日韩| 日韩精品有码人妻一区| 欧美精品亚洲一区二区| 国产高清三级在线| 日产精品乱码卡一卡2卡三| 一级毛片电影观看| 欧美 日韩 精品 国产| 夜夜看夜夜爽夜夜摸| 人人妻人人添人人爽欧美一区卜| 内地一区二区视频在线| 婷婷色麻豆天堂久久| 春色校园在线视频观看| 久久鲁丝午夜福利片| 久久久精品94久久精品| 欧美成人午夜免费资源| 视频在线观看一区二区三区| 老司机影院成人| 波野结衣二区三区在线| 国产成人av激情在线播放 | 国产女主播在线喷水免费视频网站| 好男人视频免费观看在线| 黄色配什么色好看| 青青草视频在线视频观看| 免费人成在线观看视频色| 亚洲国产av影院在线观看| 国产乱来视频区| 交换朋友夫妻互换小说| 婷婷色综合www| 麻豆成人av视频| 亚洲综合色网址| 日本黄色片子视频| 91午夜精品亚洲一区二区三区| 一本久久精品| 天堂中文最新版在线下载| 精品一区二区三区视频在线| 国产精品国产三级专区第一集| 欧美 日韩 精品 国产| 色94色欧美一区二区| 一区二区三区乱码不卡18| 边亲边吃奶的免费视频| 亚洲精品中文字幕在线视频| 国产成人免费观看mmmm| 午夜视频国产福利| 日日摸夜夜添夜夜爱| 欧美日韩一区二区视频在线观看视频在线| 春色校园在线视频观看| 免费高清在线观看日韩| 夫妻性生交免费视频一级片| 26uuu在线亚洲综合色| 在线免费观看不下载黄p国产| 性高湖久久久久久久久免费观看| av国产精品久久久久影院| 伊人久久精品亚洲午夜| 丰满迷人的少妇在线观看| 国产精品人妻久久久久久| 黑人猛操日本美女一级片| 中文字幕久久专区| 五月玫瑰六月丁香| 蜜桃久久精品国产亚洲av| 欧美日韩视频精品一区| 欧美丝袜亚洲另类| 国产精品一国产av| 999精品在线视频| 欧美日韩在线观看h| 人妻系列 视频| freevideosex欧美| 成年人午夜在线观看视频| 精品国产一区二区三区久久久樱花| 夜夜骑夜夜射夜夜干| 午夜福利在线观看免费完整高清在| 色婷婷久久久亚洲欧美| 成人毛片a级毛片在线播放| 亚洲国产色片| 亚洲精品aⅴ在线观看| 国产精品一区www在线观看| freevideosex欧美| 麻豆精品久久久久久蜜桃| 91国产中文字幕| a级毛色黄片| 免费观看在线日韩| 国产免费视频播放在线视频| 亚洲国产日韩一区二区| 亚洲欧洲精品一区二区精品久久久 | 亚洲欧美日韩卡通动漫| 高清午夜精品一区二区三区| 日韩一区二区三区影片| 美女国产视频在线观看| 蜜桃在线观看..| 99久久综合免费| 精品人妻偷拍中文字幕| 免费黄网站久久成人精品| 国产国拍精品亚洲av在线观看| 久久久久久久久久成人| 欧美 亚洲 国产 日韩一| 国产黄频视频在线观看| 久久久a久久爽久久v久久| 亚洲国产精品一区三区| 熟女电影av网| 国产精品一二三区在线看| 亚洲伊人久久精品综合| 亚洲精品一二三| 99九九在线精品视频| 国产黄色免费在线视频| 精品人妻一区二区三区麻豆| 成人影院久久| 熟女电影av网| 麻豆乱淫一区二区| av免费在线看不卡| 日韩视频在线欧美| 美女主播在线视频| 高清黄色对白视频在线免费看| 国产高清有码在线观看视频| 亚洲五月色婷婷综合| 你懂的网址亚洲精品在线观看| 国产av国产精品国产| 九草在线视频观看| 精品少妇内射三级| 岛国毛片在线播放| 亚洲,一卡二卡三卡| 久久久国产精品麻豆| 国产成人a∨麻豆精品| 欧美激情国产日韩精品一区| 视频中文字幕在线观看| 色5月婷婷丁香| 卡戴珊不雅视频在线播放| 成人毛片a级毛片在线播放| 狠狠精品人妻久久久久久综合| 亚洲内射少妇av| 久久久久国产网址| 国产精品不卡视频一区二区| 大片免费播放器 马上看| 亚洲精品日韩在线中文字幕| 亚洲av在线观看美女高潮| 国产高清国产精品国产三级| 国产精品久久久久久久电影| 蜜桃国产av成人99| 在线观看三级黄色| 五月开心婷婷网| 久久久久国产精品人妻一区二区| 亚洲怡红院男人天堂| 亚洲精品一二三| 高清欧美精品videossex| 成人黄色视频免费在线看| 美女中出高潮动态图| 91久久精品国产一区二区成人| 男女啪啪激烈高潮av片| 国产日韩欧美亚洲二区| 人人妻人人添人人爽欧美一区卜| 欧美xxⅹ黑人| 在线观看www视频免费| 18禁裸乳无遮挡动漫免费视频| 亚洲性久久影院| 国产老妇伦熟女老妇高清| 成人国产麻豆网| 97超碰精品成人国产| 免费观看的影片在线观看| 日韩中字成人| 日韩一区二区视频免费看| 男男h啪啪无遮挡| 天天躁夜夜躁狠狠久久av| 欧美成人午夜免费资源| 中国国产av一级| 欧美xxⅹ黑人| 久久久久久人妻| 激情五月婷婷亚洲| www.av在线官网国产| 中文乱码字字幕精品一区二区三区| 国产欧美日韩综合在线一区二区| 18+在线观看网站| 2021少妇久久久久久久久久久| 亚洲熟女精品中文字幕| 成人午夜精彩视频在线观看| 最近手机中文字幕大全| 制服诱惑二区| 两个人免费观看高清视频| 午夜福利影视在线免费观看| 观看av在线不卡| 另类亚洲欧美激情| 大香蕉97超碰在线| 人人妻人人澡人人看| 午夜福利,免费看| 国内精品宾馆在线| 搡女人真爽免费视频火全软件| 国产淫语在线视频| 丝袜美足系列| 亚洲精品,欧美精品| 男女无遮挡免费网站观看| 国模一区二区三区四区视频| 亚洲精品久久久久久婷婷小说| tube8黄色片| 免费观看性生交大片5| 亚洲av中文av极速乱| 天天影视国产精品| 美女内射精品一级片tv| 国产精品一国产av| 少妇的逼水好多| 在现免费观看毛片| 精品久久久久久电影网|