• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于纖維素材料的柔性應(yīng)變傳感器的研究進(jìn)展

      2021-09-21 15:04:02吉喆劉璽蝶呂姝叡華淑蘭許慧敏陳夫山
      中國造紙 2021年12期

      吉喆 劉璽蝶 呂姝叡 華淑蘭 許慧敏 陳夫山

      摘要:近年來柔性應(yīng)變傳感器發(fā)展迅速,目前在個性醫(yī)療、運動監(jiān)測、智能可穿戴等領(lǐng)域均有著廣泛應(yīng)用。隨著資源短缺、環(huán)境污染等問題的加劇,制備清潔綠色的柔性傳感器成為研究熱點。纖維素材料以其自身儲量豐富、可降解再生、易加工成多種結(jié)構(gòu)等優(yōu)勢,為柔性應(yīng)變傳感器的制備和性能提升提供了新的發(fā)展方向。本文對近些年以纖維素材料制得的柔性應(yīng)變傳感器的研究進(jìn)行了總結(jié),包括此類傳感器的制備材料、性能改良和應(yīng)用前景,以期為纖維素基柔性應(yīng)變傳感器的研究提供參考。

      關(guān)鍵詞:纖維素材料;柔性應(yīng)變傳感器;可穿戴

      中圖分類號:TS79?? 文獻(xiàn)標(biāo)識碼:A??? DOI:10.11980/j. issn.0254-508X.2021.12.014

      Research Progress of Flexible Strain Sensors Based on Cellulose Materials

      JI Zhe1,2,*?? LIU Xidie1?? LYU Shurui1?? HUA Shulan1?? XU Huimin2?? CHEN Fushan1

      (1. College ofMarine Science and Bioengineering,Qingdao University of Science and Technology,Qingdao,Shandong Province,266042;2. Shandong Century Sunshine Paper Group Company Limited,Weifang,Shandong Province,262400)

      (*E-mail:jizhe@qust. edu. cn)

      Abstract :In recent years,studies have been developed rapidly in the field of flexible strain sensors because of their wide applications in per ? sonality medicine,sports detection,wearable intelligent device and other relevant fields . Owing to concerns of resource shortage and envi ? ronmental pollution issues,it becomes a hot topic to develop clean and green flexible strain sensors . Cellulose is a nearly inexhaustible natu ? ral material with many benefits such as renewable,biodegradable and easy to be processed into diversified structure/shape . With its excel? lent properties,cellulose materials provide a new study direction to prepare and improve performance of flexible strain sensors . In order to provide some references for the research,recent development in study of flexible strain sensor based on cellulose material,which includes material,performance improvement and its application prospect were reviewed in this paper .

      Key words :cellulosic material;flexible strain sensor;wearable

      傳感器是將溫度、濕度、聲、光等物理化學(xué)刺激按照一定規(guī)律轉(zhuǎn)化為電信號輸出的一種檢測裝置[1]。應(yīng)變傳感器的傳感機(jī)理一般有壓阻式、電容式、壓電式、摩擦電式4種,其中壓阻式應(yīng)變傳感器因結(jié)構(gòu)簡單、機(jī)電性能高,應(yīng)用更加廣泛[2]。然而,金屬和半導(dǎo)體材料制備的傳統(tǒng)應(yīng)變傳感器靈敏度低、傳感范圍窄,不能滿足較大應(yīng)變時的使用需求,且廢用器件難以生物降解,與綠色發(fā)展的理念相悖,因此環(huán)境友好型的柔性應(yīng)變傳感器逐漸成為研究熱點。隨著柔性電子材料的發(fā)展,可穿戴柔性應(yīng)變傳感器呈現(xiàn)出巨大的市場前景[3]。

      纖維素是地球儲量最豐富的生物質(zhì)材料,具有反應(yīng)活性高、生物相容性好、可降解等優(yōu)點[4],通過不同的制備工藝可將纖維素材料制備成包含一維(纖維和紗線)、二維(薄膜、紙張、織物)、三維(水凝膠、氣凝膠)多種形態(tài)的材料,并可以通過碳化等處理方式進(jìn)一步轉(zhuǎn)化為導(dǎo)電碳材料[5]。經(jīng)過處理后的纖維素材料,兼具基底和敏感元件的性能,是制備新型柔性應(yīng)變傳感器的理想材料。本文綜述了纖維素材料在柔性應(yīng)變傳感器制備及性能改良方面的相關(guān)研究,并對其未來發(fā)展方向進(jìn)行了展望。

      1 纖維素材料應(yīng)用于傳感器制備

      柔性應(yīng)變傳感器主要由基底和敏感元件兩部分組成,如圖1所示。敏感元件最初僅指直接響應(yīng)外界信息的部分,后隨著電子器件與集成技術(shù)的發(fā)展,敏感元件也兼具將被測信息轉(zhuǎn)化為電信號的功能[6]。近年來,為開發(fā)低成本、環(huán)境友好型的柔性電子器件,纖維素材料逐漸應(yīng)用于柔性應(yīng)變傳感器的制備。

      1.1? 纖維素材料用作基底

      柔性基底作為柔性應(yīng)變傳感器的基本結(jié)構(gòu),應(yīng)具備良好的機(jī)械性能用于支撐傳感元件,以實現(xiàn)傳感器在各種彎曲情況下的精準(zhǔn)檢測。纖維素分子上3個活潑的羥基能夠形成較強的分子內(nèi)和分子間氫鍵網(wǎng)絡(luò)結(jié)構(gòu),這種結(jié)構(gòu)使纖維素材料具有較高的結(jié)晶度和一定的取向性,大大增強了其機(jī)械性能[7]。此外,這種結(jié)構(gòu)也限制了基底的熱膨脹[8],使得纖維素材料具有良好的熱穩(wěn)定性,減少了使用過程中產(chǎn)生熱量對傳感器壽命的影響[9]。與傳統(tǒng)基底材料相比,纖維素材料具有獨特的多孔結(jié)構(gòu),易與各種敏感材料進(jìn)行有效的結(jié)合,有助于提高傳感器靈敏度[10]。表1總結(jié)了纖維素材料應(yīng)用于柔性應(yīng)變傳感器基底的研究實例。

      1.2? 纖維素材料用作敏感元件

      敏感元件作為柔性應(yīng)變傳感器的核心,需兼具高機(jī)械性能和高導(dǎo)電性能。雖然纖維素材料本身不具備高導(dǎo)電性,但利用高溫碳化的方式可將其轉(zhuǎn)化為高導(dǎo)電的碳纖維網(wǎng)絡(luò)。一方面簡化了敏感元件的制備過程,更具規(guī)?;a(chǎn)的潛力;同時生產(chǎn)材料價廉易得,降低了柔性應(yīng)變傳感器生產(chǎn)制備的門檻。另一方面,這種傳感器更易生物降解,符合綠色化學(xué)的理念。此外,纖維素材料加工而成的紙張等產(chǎn)品,通過已有成熟的生產(chǎn)工藝,便可設(shè)計出具有高度各向異性的微觀結(jié)構(gòu),如定向排列的纖維及瓦楞結(jié)構(gòu),能夠檢測和分辨出不同方向上的應(yīng)變,實現(xiàn)多維度傳感[21]。表2總結(jié)了纖維素材料應(yīng)用于柔性應(yīng)變傳感器敏感元件的研究實例。

      2 優(yōu)化傳感器性能

      傳感器性能的優(yōu)越性主要從靈敏度、應(yīng)變范圍、響應(yīng)時間、耐折度等方面進(jìn)行衡量。引入具有高導(dǎo)電性能的材料和設(shè)計精巧的微結(jié)構(gòu)是提高柔性傳感器性能的有效策略。然而金屬基和碳基原材料成本高昂、微結(jié)構(gòu)制造過程復(fù)雜、設(shè)備生物相容性和生物降解性差等問題極大地阻礙了這類傳感器的大規(guī)模生產(chǎn)應(yīng)用。纖維素材料綠色易得,且自身具有優(yōu)異的機(jī)械性能?;诖耍疚目偨Y(jié)了應(yīng)用纖維素材料對傳感器性能進(jìn)行改良的相關(guān)研究成果。

      2.1? 提高傳感器機(jī)械性能

      2.1.1? 提高傳感器耐折度

      耐折度是指傳感器在循環(huán)使用過程中恢復(fù)原有電性能的能力,是影響傳感器使用壽命的關(guān)鍵因素。在電阻變化率基本保持不變的條件下(響應(yīng)損失<10%),常以傳感器循環(huán)應(yīng)變的次數(shù)衡量其耐折度。隨著應(yīng)變的產(chǎn)生與釋放,傳感器內(nèi)部的導(dǎo)電網(wǎng)絡(luò)會發(fā)生可逆的破壞與重構(gòu),保證此過程中導(dǎo)電網(wǎng)絡(luò)不因應(yīng)變而發(fā)生較大損害,是傳感器具有良好耐折度的關(guān)鍵[2,25-26]。如圖2所示,Zheng 等人[27]將石墨烯納米片浸漬沉積在天然棉織物上,再用 PDMS 進(jìn)行封裝,得到的傳感器可在30%的應(yīng)變下循環(huán)拉伸1萬次。San? thiago等人[28]通過炭黑和醋酸纖維素的結(jié)合,制備了改性油墨,以此為基礎(chǔ)制得炭黑履帶傳感器可彎折超過2萬次。Wang 等人[29]將普通棉線與聚氨酯相結(jié)合,制成復(fù)合紗線,再將其反復(fù)涂覆單壁碳納米管( SW? CNTs )后制得的傳感器,可在40%應(yīng)變下拉伸30萬次。

      2.1.2? 提高傳感器拉伸性能

      優(yōu)異的拉伸性能是應(yīng)變傳感器應(yīng)用于實際的基礎(chǔ)條件,拉伸性能的優(yōu)劣會直接影響人體穿戴舒適程度。通過利用與設(shè)計原材料的結(jié)構(gòu)來增強傳感器的拉伸性能是常用的方法之一。一維材料具有良好的拉伸性能,可以實現(xiàn)>100%的大拉伸范圍。如圖3(a)所示,Cai 等人[30]通過原位聚合的方法制備了用聚吡咯(PPy)沉積的棉/碳納米管紗線,由于紗線本身作為一維材料具有良好的拉伸性,加上為之設(shè)計的獨特彈簧結(jié)構(gòu),使其具有更優(yōu)異的拉伸性能,在外力作用下可拉伸至400%。

      纖維素材料可通過作為基底改良傳感器的力學(xué)性能,也可以改性后將其摻入敏感元件中來提高傳感器的力學(xué)性能。Zhang 等人[31]將多壁碳納米管 ( MW ? CNTs )與纖維素進(jìn)行接枝改性,然后與纖維素復(fù)合形成 MWCNTs-纖維素/纖維素復(fù)合材料,在纖維素表面的共價接枝促進(jìn)了 MWCNTs 的分散(圖3(b)),從而提高了其抗拉強度。與使用相同用量 MWCNTs (10%)的 MWCNTs/纖維素復(fù)合纖維相比,該方法制備的復(fù)合纖維抗拉強度提高了106.8%(圖3(c)、圖3(d))。

      2.2? 提高傳感器電學(xué)性能

      2.2.1? 提高傳感器靈敏度

      靈敏度反映了傳感器對應(yīng)變的響應(yīng)能力,高靈敏度代表傳感器在微小應(yīng)變下即可發(fā)生顯著的結(jié)構(gòu)變化,實現(xiàn)電信號輸出[26]。常用特征參數(shù) GF值來定量表示傳感器靈敏度的大小,隨 GF值的增加,傳感器的靈敏度增高。

      Xu 等人[32]利用纖維素納米纖絲( CNF)作分散劑,配置了均勻的熱塑性聚氨酯( TPU)/CNF@碳納米管( CNT)懸浮液,并將其在80℃下蒸發(fā)成膜制成納米復(fù)合傳感器。當(dāng) CNF 的質(zhì)量分?jǐn)?shù)為3%時,傳感器在200%的應(yīng)變下可達(dá)到 GF≈49.1的靈敏度。其中,CNF對其靈敏度的提高起到了重要作用:①增加了碳納米管的分散性,減少導(dǎo)電網(wǎng)絡(luò)接觸面積,使得傳感器具有較高靈敏度;②增強了導(dǎo)電填料 CNT 與聚合物基底 TPU 之間的相互作用,使施加在 TPU 基底上的應(yīng)力更易傳遞到 CNT 導(dǎo)電網(wǎng)絡(luò)上;③將多個細(xì)小的碳納米管束沿其長軸連接起來,增大了 CNT 整體的長徑比,使其在較小應(yīng)變下即可引起電阻率的較大變化(圖4(a))。

      但上述研究采用溶液法制備導(dǎo)電網(wǎng)絡(luò)需要較多填料,成本較高。在此基礎(chǔ)上,Zhu 等人[33]改用纖維素納米晶體( CNC)作分散劑制備 CNC/CNT 懸浮液,通過靜電紡絲的方法直接與多孔 TPU 膜進(jìn)行組裝,制得柔性應(yīng)變傳感器可在500%的寬應(yīng)變下達(dá)到 GF≈321的高靈敏度。通過設(shè)計 TPU 基底表面的多孔結(jié)構(gòu),使導(dǎo)電網(wǎng)絡(luò)得以被限制在多孔結(jié)構(gòu)中,進(jìn)一步增加了導(dǎo)電填料與基底之間的相互作用,以低成本的方式大幅提高了傳感器的靈敏度,見圖4(b)。

      2.2.2降低傳感器響應(yīng)時間

      響應(yīng)時間是應(yīng)變施加到引起電阻變化所用時間,是定量判斷傳感器滯后性的重要參數(shù)指標(biāo)。聚合物基底與導(dǎo)電材料之間模量的不匹配以及聚合物的黏彈性均可導(dǎo)致傳感器響應(yīng)時間的延長,出現(xiàn)滯后現(xiàn)象。因此,增加導(dǎo)電材料與柔性基底的結(jié)合力有助于降低傳感器的滯后效應(yīng)[26]。

      如圖5所示, Xu 等人[34]制備的還原氧化石墨烯( rGO )/多孔反蛋白石乙酰纖維素( IOAC )應(yīng)變傳感器在拉伸和壓縮條件下的響應(yīng)時間約為0.15 s 。Jing 等人[35]采用旋轉(zhuǎn)凝固浴再生+濕法紡絲的方式制備了碳納米管(CNTs)纖維,再用熱塑性聚氨酯( TPU )為支撐制備 CNTs/纖維素@TPU 應(yīng)變傳感器,在彎曲應(yīng)變下的快速響應(yīng)時間僅為100 ms,在拉伸應(yīng)變下的快速響應(yīng)時間僅為65 ms。Wang 等人[36]以天然細(xì)菌纖維素( BC )和可聚合的深共晶溶劑( PDES )為原料制成 BC-PDE 離子導(dǎo)體,與 PET 薄膜組裝成多功能應(yīng)變傳感器,其在壓縮和釋放傳感器時的響應(yīng)時間可縮短到14 ms和35 ms。

      2.2.3? 擴(kuò)大傳感器應(yīng)變范圍

      應(yīng)變范圍是決定應(yīng)變傳感器工作范圍的關(guān)鍵,為提高應(yīng)變傳感器對跳躍、揮臂、下蹲等大幅度運動的檢測能力,擴(kuò)大傳感器應(yīng)變范圍,需要避免大拉伸下導(dǎo)電結(jié)構(gòu)的不可逆破壞。Zhang 等人[37]制備了一種基于碳化平紋棉織物的應(yīng)變傳感器,在0~80%的應(yīng)變范圍內(nèi) GF 值為25;在 80%~140%的寬應(yīng)變范圍內(nèi) GF 值為64。碳化后棉纖維因保持了原有棉織物的平紋結(jié)構(gòu),形成了特殊的層次化導(dǎo)電網(wǎng)絡(luò),可在承受較大應(yīng)變時仍保持導(dǎo)電路徑的完整性,使應(yīng)變傳感器在寬應(yīng)變范圍內(nèi)表現(xiàn)出高靈敏性和可重復(fù)性,可充分滿足人體運動的監(jiān)測需要。

      3 應(yīng)用前景

      與傳統(tǒng)電子器件相比,基于纖維素材料的柔性應(yīng)變傳感器有著向“電子皮膚”發(fā)展的趨勢,在自供電和自愈合方向有著廣闊的應(yīng)用前景,如圖6所示。

      3.1? 自供電式傳感器

      自供電式傳感器是通過主動收集外部環(huán)境的微小能量來緩解傳感器需要頻繁充電的現(xiàn)狀。2012年,王中林團(tuán)隊發(fā)明了摩擦納米發(fā)電機(jī)(triboelectric nanogenerator ,TENG ),實現(xiàn)了對低頻微能量的收集和高效利用,使得自供電式傳感器成為可能[42]。對于具有自供電功能的應(yīng)變傳感器,通常使用一定外加壓力和頻率下的開路電壓來衡量其供電能力的好壞。許多研究者在原有摩擦材料的基礎(chǔ)上,通過各種方式提高傳感器的供電能力,總結(jié)如表3所示。

      TENG 的電性能主要取決于其材料表面的電荷密度,而納米纖維素纖維( CNF )的納米結(jié)構(gòu)可以增大摩擦接觸面積,提高摩擦接觸的有效性,且具有易改性、高摩擦性、強導(dǎo)電性等特性,因此其改性后的產(chǎn)物常用作正摩擦電材料;而氟化乙烯丙烯共聚物( FEP )因為分子上擁有較多的氟離子,對電子的吸引力較強,常用于 TENG 的負(fù)摩擦電材料。

      3.2? 自修復(fù)式傳感器

      在實際生活中,人體運動引起的摩擦、彎曲等給可穿戴設(shè)備帶來不可逆的損傷,而這些損傷極可能引起器件電學(xué)性能惡化甚至失效,從而降低使用壽命,因此實現(xiàn)裂紋或斷面的自修復(fù)具有重要意義。自修復(fù)式傳感器受到外力損傷時,其內(nèi)部動態(tài)可逆的共價鍵/非共價鍵可以自發(fā)地或者在外界刺激(如熱、光照等)下重新鍵合,從而修復(fù)損傷,有效延長傳感器的使用壽命[47]。

      以納米纖維素為例,納米纖維素因比表面積大、含有豐富的羥基,在加入傳感器后,可使傳感器材料內(nèi)部的鍵合效率提高[48],有利于多重氫鍵網(wǎng)絡(luò)的形成,增強傳感器的自愈合能力。Cao 等人[41]利用羧基纖維素納米晶體( C-CNC )與殼聚糖( CT )修飾的環(huán)氧天然膠乳,形成了一種超分子彈性體。C-CNC 中豐富的羧基和羥基可與 CT 分子鏈中大量的氨基、乙?;土u基相互作用,形成類似 DNA 結(jié)構(gòu)的多重氫鍵網(wǎng)絡(luò),使得此彈性基體可以在15 s 內(nèi)完成自愈,表現(xiàn)了極強的愈合效率。若將導(dǎo)電材料封裝入此彈性體中,則可望實現(xiàn)傳感器的快速自愈。

      4結(jié)束語

      近年來,纖維素材料因具有可降解再生、生物相容性好、柔性較好等優(yōu)勢,在制備高性能、多功能的柔性應(yīng)變傳感器方面有著巨大的發(fā)展?jié)摿ΑR环矫?,天然纖維素材料如紙張、棉織物等價廉質(zhì)軟,可作為柔性傳感器基底使用;天然纖維素材料經(jīng)高溫碳化后,可以進(jìn)一步轉(zhuǎn)變?yōu)榫哂懈邔?dǎo)電性能的碳基材料,用作柔性應(yīng)變傳感器的敏感元件,拓寬了其在柔性傳感器的應(yīng)用范圍。另一方面,納米纖維素與可再生纖維素憑借獨特的結(jié)構(gòu)特征,實現(xiàn)了對傳感器性能的提高。

      未來基于纖維素材料的柔性應(yīng)變傳感器可在以下幾個方面深入研究:①開發(fā)多功能的纖維素基敏感元件,滿足實際生活中的溫度、濕度等多維度信息的同時監(jiān)測。②通過改性制備低成本的超疏水纖維素基材料,開發(fā)自清潔型的傳感器,解決傳感器易受人體汗液污染的問題。③對柔性應(yīng)變傳感器進(jìn)行精密化結(jié)構(gòu)設(shè)計,實現(xiàn)傳感功能的調(diào)控和優(yōu)化。

      參考文獻(xiàn)

      [1] 秦文峰,王新遠(yuǎn),李亞云,等. GR/CNT-PDMS柔性應(yīng)變傳感器的制備與性能[J].微納電子技術(shù),2020,57(10):804-809.

      QIN W F,WANG X Y,LI Y Y,et al. Preparation and Properties of GR/CNTs-PDMS Flexible Strain Sensor [J]. Micronanoelectronic Technology,2020,57(10):804-809.

      [2] 孫力君.基于石墨烯/柔性紡織物復(fù)合材料的應(yīng)變傳感器的研究[ D].南京:南京郵電大學(xué),2020.

      SUN L J. Research on Strain Sensor Based on Graphene/Flexible Fabric Composite [ D]. Nanjing :Nanjing University of Posts and Telecommunications,2020.

      [3] 金欣,旭東,王聞宇,等.基于聚二甲基硅氧烷柔性可穿戴傳感器研究進(jìn)展[J].材料工程,2018,46(11):13-24.

      JIN X,XU D,WANG W Y,et al. Research Progress in Flexible Wearable Strain Sensors Based on Polydimethysiloxane[J]. Journal of Materials Engineering,2018,46(11):13-24.

      [4] 張浩,朱明.纖維素基柔性壓力傳感器及其性能表征[J].中國造紙學(xué)報,2020,35(1):26-32.

      ZHANG H,ZHU M. Preparations and Characterization of Flexible Pressures Sensors Based on Cellulosic Substrate[J]. Transactions of China Pulp and Paper,2020,35(1):26-32.

      [5]? CHEN Z,YAN T,PAN Z. Review of Flexible Strain Sensors Basedon? Cellulose? Composites? for? Multi-faceted? Applications [J]. Cellulose,2020,28(2):1-31.

      [6] 劉少強,張靖.傳感器設(shè)計與應(yīng)用實例[M].北京:中國電力出版社,2008:2-3.

      LIU S Q,ZHANG J. Design and Application of Sensor[M]. Bei? jing:China Electric Power Press,2008:2-3.

      [7] 黃進(jìn),夏濤.生物質(zhì)化工與材料[M].北京:化學(xué)工業(yè)出版社,2018:173-174.

      HUANG J,XIA T. Biomass Chemical Engineering and Materials[ M]. Beijing:Chemical Industry Press,2018:173-174.

      [8]? Alain, ?Dufresne. Preparation? and? Properties? of? CelluloseNanomaterials[J]. Paper and Biomaterials,2020,5(3):1-13.

      [9] 關(guān)麗霞,許軍.柔性顯示用紙質(zhì)基板的研究進(jìn)展[J].液晶與顯示,2018,33(5):365-374.

      GUAN L X,XU J. Research Progress of Paper Substrate in Flexible Display[J]. Chinese Journal of Liquid Crystals and Displays,2018,33(5):365-374.

      [10] 馮魏良,黃培.柔性顯示襯底的研究及進(jìn)展[J].液晶與顯示,2012,27(5):599-607.

      FENG W L,HUANG P. Advances in Flexible Displays Substrates [J]. Chinese Journal of Liquid Crystals and Displays,2012,27(5):599-607.

      [11]? TAI Y,Lubineau G. Double ? twisted Conductive Smart ThreadsComprising a Homogeneously and a Gradient ? coated Thread for Multidimensional Flexible Pressure?sensing Devices[J]. Advanced Functional Materials,2016,26(23):4078-4084.

      [12]? LI J P,WANG B,GE Z,et al. Flexible and Hierarchical 3DInterconnected? Silver? Nanowires/Cellulosic? Paper-Based Thermoelectric Sheets with Superior Electrical Conductivity and Ultrahigh Thermal Dispersion Capability [J]. ACS Appl Mater Interfaces,2019,11(42):39088-39099.

      [13]? LIAO X Q,LIAO Q L,YAN X Q,et al. Flexible and HighlySensitive Strain Sensors Fabricated by Pencil Drawn for Wearable Monitor[J]. Advanced Functional Materials,2015,25(16):2395-2401.

      [14]? QI H,Schulz B,Vad T,et al. Novel Carbon Nanotube/celluloseComposite Fibers as Multifunctional Materials [J]. ACS Applied Materials & Interfaces,2015,7(40):22404-22412.

      [15]? CHEN Y,P?TSCHKE P,PIONTECK J,et al. Smart Cellulose/graphene Composites Fabricated by in Situ Chemical Reduction of Graphene Oxide for Multiple Sensing Applications [J]. Journal of Materials Chemistry A,2018,6(17):7777-7785.

      [16]? MUN S,ZHAI L D,MIN S-K,et al. Flexible and TransparentStrain Sensor made with Silver Nanowire – coated Cellulose [J]. Journal of Intelligent Material Systems and Structures ,2015,27(8):1011-1018.

      [17]? ULLRICH J,EISENREICH M,ZIMMERMANN Y,et al. Piezo-Sensitive Fabrics from Carbon Black Containing Conductive Cellulose Fibres for Flexible Pressure Sensors [J]. Materials (Basel),doi:10.3390/ma13225150.

      [18]? FU W L,DAI Y Q,MENG X Y,et al. Electronic Textiles Basedon Aligned Electrospun Belt-like Cellulose Acetate Nanofibers and Graphene Sheets:Portable,Scalable and Eco-friendly Strain Sensor [J]. Nanotechnology,doi:10.1088/1361-6528/aaed99.

      [19]? WANG Q H,PAN X F,GUO J J,et al. Lignin and CelluloseDerivatives-induced? Hydrogel? with? Asymmetrical? Adhesion, Strength,and Electriferous Properties for Wearable Bioelectrodes and Self-powered Sensors[J]. Chemical Engineering Journal,doi:10.1016/j. cej.2021.128903.

      [20]? GUO T Y,WAN Z M,LI D G,et al. Intermolecular Self-assemblyof? Dopamine-conjugated? Carboxymethylcellulose? and? Carbon Nanotubes? toward? Supertough? Filaments? and? Multifunctional Wearables [J]. Chemical Engineering Journal ,doi:10.1016/j. cej.2021.128981.

      [21]? CHEN S,SONG Y J,DING D Y,et al. Flexible and AnisotropicStrain? Sensor? based? on? Carbonized? Crepe? Paper? with? Aligned Cellulose? Fibers [J].? Advanced? Functional? Materials ,doi:10.1002/adfm.201802547.

      [22]? ZHANG M,WANG C,WANG H,et al. Carbonized Cotton Fabricfor? High-performance? Wearable? Strain? Sensors [J].? Advanced Functional Materials,doi:10.1002/adfm.201604795.

      [23]? LI Y Q,HUANG P,ZHU W B,et al. Flexible Wire-shaped StrainSensor from Cotton Thread for Human Health and Motion Detection[J]. Scientific Reports,2017,7(1):4373-4395.

      [24]? CHEN Z,ZHUO H,HU Y,et al. Wood ? derived Lightweight andElastic Carbon Aerogel for Pressure Sensing and Energy Storage[J]. Advanced Functional Materials,doi:10.1002/adfm.201910292.

      [25]? 章婉琪,宋萬誠,姜寬,等.基于彈性聚合物復(fù)合材料的壓阻式柔性應(yīng)變傳感器研究進(jìn)展[J].合成橡膠工業(yè),2020,43(1):2-8.

      ZHANG W Q,SONG W C,JIANG K,et al. Research Progress of Piezoresistive Flexible Strain Sensor based on Elastic Polymer Com ? posites[J]. China Synthetic Rubber Industry,2020,43(1):2-8.

      [26]? 郭茹月,鮑艷.二維導(dǎo)電材料/柔性聚合物復(fù)合材料基可穿戴壓阻式應(yīng)變傳感器的研究進(jìn)展[J].精細(xì)化工,2021,38(4):649-661+859.

      GUO R Y,BAO Y. Research Progress on Wearable Piezoresistive Strain? Sensors? based? on? Two-dimensional? Conductive? Materials/Flexible Polymer Composites[J]. Fine chemicals,2021,38(4):646-661+859.

      [27]? ZHENG? Y ,LI? Y ,ZHOU? Y ,et? al. High-performance? WearableStrain Sensor based on Graphene/Cotton Fabric with High Durability and Low Detection Limit[J]. ACS Applied Materials & Interfaces,2019,12(1):1474-1485.

      [28]? Santhiago? M ,Corre?a? C? C,Bernardes? J? S ,et? al. Flexible? andFoldable Fully-printed Carbon Black Conductive Nanostructures on Paper? for? High-performance? Electronic , Electrochemical , and Wearable Devices[J]. ACS Applied Materials & Interfaces,2017,9(28):24365-24372.

      [29]? WANG Z,HUANG Y,SUN J,et al. Polyurethane/Cotton/CarbonNanotubes? Core-spun? Yarn? as? High? Reliability? Stretchable? Strain Sensor for Human Motion Detection [J]. ACS Applied Materials & Interfaces,2016,8(37):24837-24843.

      [30]? CAI G,HAO B,LUO L,et al. Highly Stretchable Sheath – coreYarns for Multifunctional Wearable Electronics [J]. ACS Applied Materials & Interfaces,2020,12(26):29717-29727.

      [31]? ZHANG S,ZHANG F,PAN Y,et al. Multiwall-carbon-nanotube/Cellulose? Composite? Fibers? with? Enhanced? Mechanical? and Electrical? Properties? by? Cellulose? Grafting [J]. RSC? Advances,2018,8(11):5678-5684.

      [32]? XU? S , YU? W , JING? M , et? al. Largely? Enhanced? StretchingSensitivity? of? Polyurethane/Carbon? Nanotube? Nanocomposites? Via Incorporation? of Cellulose? Nanofiber[J]. The Journal? of Physical Chemistry C,2017,121(4):2108-2117.

      [33]? ZHU? L ,? ZHOU? X ,? LIU? Y ,? et? al.? Highly? Sensitive,Ultrastretchable Strain Sensors Prepared by Pumping Hybrid Fillers of? Carbon? Nanotubes/Cellulose? Nanocrystal? into? Electrospun Polyurethane Membranes[J]. ACS Applied Materials & Interfaces,2019,11(13):12968-12977.

      [34]? XU H,LU Y F,XIANG J X,et al. A Multifunctional WearableSensor? based? on? a? Graphene/Inverse? Opal? Cellulose? Film? for Simultaneous,in Situ Monitoring of Human Motion and Sweat[J].Nanoscale,2018,10(4):2090-2098.

      [35]? JING? C , LIU? W , HAO? H , et? al. Regenerated? and? Rotation-induced? Cellulose-wrapped? Oriented? CNT? Fibers? for? Wearable Multifunctional? Sensors [J]. Nanoscale ,2020,12(30):16305-16314.

      [36]? WANG M,LI R,F(xiàn)ENG X,et al. Cellulose Nanofiber-reinforcedIonic Conductors for Multifunctional Sensors and Devices[J]. ACS Applied Materials & Interfaces,2020,12(24):27545-27554.

      [37]? ZHANG M,WANG C,WANG H,et al. Carbonized Cotton Fabricfor? High-performance? Wearable? Strain? Sensors [J].? Advanced Functional Materials,doi:10.1002/adfm.201604795.

      [38]? FU? Q , CUI? C , MENG? L , et? al. Emerging? Cellulose-derivedMaterials:A? Promising? Platform? for? the? Design? of? Flexible Wearable Sensors toward Health and Environment Monitoring[J]. Materials Chemistry Frontiers,2021,5(5):2051-2091.

      [39]? 張弛,付賢鵬,王中林.摩擦納米發(fā)電機(jī)在自驅(qū)動微系統(tǒng)研究中的現(xiàn)狀與展望[J].機(jī)械工程學(xué)報,2019,55(7):89-101.

      ZHANG C,F(xiàn)U X P,WANG Z L. Review and Prospect of Tribo? electric Nanogenerators in Self-powered Microsystems[J]. Journal of Mechanical Engineering,2019,55(7):89-101.

      [40]? MI H Y,JING X,ZHENG? Q,et al. High-performance FlexibleTriboelectric? Nanogenerator? Based? on? Porous? Aerogels? and Electrospun? Nanofibers? for? Energy? Harvesting? and? Sensitive? Self- powered Sensing[J]. Nano Energy,2018,48:327-336.

      [41]? CAO? J ,LU? C ,ZHUANG? J ,et? al. Multiple? Hydrogen? BondingEnables? the? Self-healing? Of? Sensors? for? Human – machine Interactions [J]. AngewandteChemie International Edition,2017,56(30):8795-8800.

      [42]? 丁亞飛,陳翔宇.基于摩擦納米發(fā)電機(jī)的可穿戴能源器件[J].物理學(xué)報,2020,69(17):8-27.

      DING Y F,CHEN X Y. Triboelectric Nanogenerator Based Wear? able Energy Harvesting Devices[J]. Acta PhysicoSinica,2020,69(17):8-27.

      [43]? CUI P,Parida K,LIN M F,et al. Transparent,F(xiàn)lexible CelluloseNanofibril-phosphorene? Hybrid? Paper? as? Triboelectric? Nanogene ? rator [J].?? Advanced? Materials? Interfaces ,doi: 10.1002/ admi.201700651.

      [44]? YAO C,YIN X,YU Y,et al. Chemically Functionalized NaturalCellulose? Materials? for? Effective? Triboelectric? Nanogenerator Development[J]. Advanced? Functional? Materials,doi:10.1002/ adfm.201700794.

      [45]? ZHENG? Q ,F(xiàn)ANG? L ,GUO? H ,et? al. Highly? Porous? PolymerAerogel? Film ? based? Triboelectric? Nanogenerators [J]. Advanced Functional Materials,doi:10.1002/adfm.201706365.

      [46]? ZHANG C,LIN X,ZHANG N,et al. Chemically FunctionalizedCellulose? Nanofibrils-based? Gear-like? Triboelectric? Nanogenerator for? Energy? Harvesting? and ?Sensing [J].? Nano? Energy ,doi:10.1016/j. nanoen.2019.104126.

      [47]? ZHANG? T ,BAI? Y ,SUN? F. Recent? Advances? in? Flexible? Self-healing? Materials? and? Sensors [J]. Scientia? Sinica? Informationis,2018,48(6):650-669.

      [48]? 盧麒麟,謝帆鈺,康明明,等.納米纖維素自愈合材料的研制[J].紡織科技進(jìn)展,2021(3):18-25.

      LU Q L,XIE F Y,KANG M M,et al. Development of Self-healing Nanocellulose Materials[J]. Progress in Textile Science & Technol? ogy,2021(3):18-25.

      (責(zé)任編輯:劉振華)

      镶黄旗| 宁城县| 汾阳市| 上饶市| 昌邑市| 西乌珠穆沁旗| 三原县| 通江县| 孟州市| 五华县| 澎湖县| 永宁县| 出国| 三亚市| 张北县| 浙江省| 高碑店市| 筠连县| 罗甸县| 海门市| 登封市| 文山县| 永嘉县| 宜兴市| 桐城市| 琼中| 八宿县| 曲阳县| 胶南市| 巧家县| 金山区| 石首市| 龙山县| 新津县| 铁岭县| 定州市| 大洼县| 象州县| 依安县| 阜平县| 乌海市|