李琴珵,石潔,何康來,王振營
化學(xué)防控玉米蛀穗害蟲對減輕擬輪枝鐮孢穗腐病及伏馬毒素的作用
李琴珵1,石潔2,何康來1,王振營1
1中國農(nóng)業(yè)科學(xué)院植物保護(hù)研究所植物病蟲害生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室,北京 100193;2河北省農(nóng)林科學(xué)院植物保護(hù)研究所,河北保定 071030
擬輪枝鐮孢()引起的穗腐病嚴(yán)重影響玉米產(chǎn)量和品質(zhì),其產(chǎn)生的伏馬毒素威脅食品安全。亞洲玉米螟()和桃蛀螟()等穗期害蟲危害可導(dǎo)致玉米嚴(yán)重減產(chǎn),并加重玉米穗腐病的發(fā)生。【】評估2種殺蟲劑(甲維鹽和氯蟲苯甲酰胺)、3種殺菌劑(氰烯菌酯、戊唑醇和苯醚甲環(huán)唑)對玉米穗期病蟲害的防治效果以及對玉米產(chǎn)量和籽粒中伏馬毒素含量的影響;明確施用殺蟲劑后接菌對穗腐病發(fā)病的影響,探究防治玉米穗期病蟲害的有效方案,為玉米安全生產(chǎn)提供技術(shù)支撐。以鄭單958為供試玉米,在2019年春、夏兩季于河北廊坊進(jìn)行田間試驗(yàn)。玉米大量吐絲后5 d和20 d兩次施藥,接菌處理于吐絲后7 d進(jìn)行。在玉米完熟期調(diào)查蟲害級別、穗腐病發(fā)病率和病情指數(shù)、果穗穗長、行粒數(shù)、穗重和百粒重,計(jì)算防治效果和增產(chǎn)情況,并用高效液相色譜-串聯(lián)質(zhì)譜法分析籽粒中伏馬毒素B1、B2的含量。與對照相比,施用甲維鹽和氯蟲苯甲酰胺均可顯著降低平均蟲害級別、穗腐病發(fā)病率、病情指數(shù)、伏馬毒素含量。與單獨(dú)施用殺蟲劑相比,施用殺蟲劑與殺菌劑的混劑未顯著降低平均蟲害級別、穗腐病發(fā)病率、病情指數(shù)、伏馬毒素含量,也未顯著提高產(chǎn)量和對上述病蟲害的防治效果。與僅接菌的處理相比,施用氯蟲苯甲酰胺后接菌處理在穗腐病發(fā)病率、病情指數(shù)和伏馬毒素含量方面均顯著下降。在春玉米和夏玉米試驗(yàn)中,25 g·hm-2氯蟲苯甲酰胺及其與殺菌劑的混劑對穗部螟蟲的防治效果分別達(dá)82.1%—92.7%、94.2%—95.0%,而30 g·hm-2甲維鹽及其與殺菌劑的混劑對穗部螟蟲的防治效果顯著低于25 g·hm-2氯蟲苯甲酰胺,僅為57.8%—78.0%、83.1%—89.9%。2種殺蟲劑對穗腐病的防治效果無顯著差異,春玉米防治效果均>60%,夏玉米防治效果均>88%。對于產(chǎn)量而言,各處理均對果穗穗長和行粒數(shù)無顯著影響,藥劑處理后的果穗穗重均顯著高于對照,且各處理間無顯著差異。施用殺蟲劑后接菌對產(chǎn)量無顯著影響。分別施用2種殺蟲劑單劑或其與殺菌劑的混劑后,春玉米可增產(chǎn)5.49%—13.49%,夏玉米可增產(chǎn)9.20%—13.95%,玉米籽粒中伏馬毒素含量均低于500 μg·kg-1,而對照玉米中伏馬毒素含量達(dá)2 817 μg·kg-1。噴霧接菌處理的玉米中伏馬毒素含量高達(dá)8 710 μg·kg-1,而接菌前施用殺蟲劑可將伏馬毒素含量降至1 500 μg·kg-1以下。施用25 g·hm-2氯蟲苯甲酰胺和30 g·hm-2甲維鹽均可通過顯著降低玉米蛀穗害蟲的危害,從而減輕穗腐病的發(fā)生并降低籽粒中伏馬毒素含量,提高玉米產(chǎn)量和品質(zhì),而殺蟲劑/殺菌劑混用與殺蟲劑單用對蟲害防控效果差異不顯著;穗期害蟲對果穗的傷害在穗腐病的發(fā)生過程中起決定性作用。綜合各方面因素,25 g·hm-2的氯蟲苯甲酰胺是防治穗期玉米害蟲、減輕穗腐病較為理想的藥劑。
化學(xué)防治;蟲害;擬輪枝鐮孢;玉米穗腐??;產(chǎn)量;伏馬毒素
【研究意義】玉米是我國重要的糧食作物、飼料作物和工業(yè)原料。穗腐病又稱穗粒腐病,是我國玉米生產(chǎn)上的重要病害,近年來呈加重趨勢。至今已鑒定出引起穗腐病病原菌的種類有30余種。玉米受鐮孢菌侵染后,造成單粒或成片籽粒腐爛,降低產(chǎn)量和品質(zhì)。更為嚴(yán)重的是,鐮孢菌侵染玉米后,常會(huì)在籽粒中產(chǎn)生有毒的次生代謝物,如擬輪枝鐮孢()可產(chǎn)生伏馬毒素[1]。食用含有毒素的玉米能夠?qū)е埋R腦蛋白軟化癥[2-3]、豬肺水腫[4-5],也威脅人類健康。食道癌的高發(fā)病率已被證實(shí)與含伏馬毒素食物的大量攝入有關(guān)[6-9]。因此,防治玉米穗腐病并減少玉米產(chǎn)品中伏馬毒素的含量,是保障食用和飼用安全的重要措施?!厩叭搜芯窟M(jìn)展】據(jù)報(bào)道,穗期害蟲危害與玉米穗腐病發(fā)生和籽粒伏馬毒素含量水平有密切聯(lián)系。亞洲玉米螟()、歐洲玉米螟()、桃蛀螟()、玉米楷夜蛾()、非洲大螟()等穗期害蟲危害能明顯加重穗腐病的發(fā)生[10-14]。玉米果穗受到蟲害后,伏馬毒素含量顯著升高,嚴(yán)重時(shí)甚至超過限量標(biāo)準(zhǔn)數(shù)十至數(shù)百倍[15-17]。因此,防治玉米穗腐病不能僅從致病菌入手,還要綜合考慮蟲害的影響。國外研究表明,單獨(dú)使用殺菌劑防治穗腐病的效果不佳[18-19],而防控穗期害蟲可有效減少穗腐病的發(fā)生和籽粒中伏馬毒素含量。DARVAS等[20]以轉(zhuǎn)基因抗蟲品系MON810為材料,發(fā)現(xiàn)不受蟲害的果穗無一發(fā)病;BOWERS等[21-22]研究發(fā)現(xiàn),轉(zhuǎn)基因抗蟲玉米顯著降低了蟲害,并降低了穗腐病發(fā)病和伏馬毒素含量;HAMMOND等[23]在美國107個(gè)地點(diǎn)進(jìn)行的試驗(yàn)表明,在不進(jìn)行任何防治時(shí),玉米中伏馬毒素的含量往往超出美國的限量標(biāo)準(zhǔn),轉(zhuǎn)基因抗蟲玉米減少了蟲害和穗腐病的發(fā)生,從而減少了伏馬毒素含量;ALMA等[24]研究發(fā)現(xiàn),與完好果穗相比,受蟲害的果穗籽粒中伏馬毒素含量高出40倍;BLANDINO等[25]研究表明,在合適的時(shí)期施用殺蟲劑高效氯氟氰菊酯能夠顯著降低玉米穗腐病發(fā)生和籽粒中伏馬毒素含量。對于殺蟲/殺菌劑混用防治穗腐病的效果存在一定爭議,MAZZONI等[19]研究表明殺蟲劑能夠顯著降低穗腐病發(fā)生和伏馬毒素含量,用殺菌劑與其復(fù)配增效甚微;而DE CURTIS等[26]研究表明殺蟲劑與殺菌劑混用相對于單用殺蟲劑能夠顯著降低穗腐病發(fā)生和伏馬毒素含量。由于伏馬毒素的致癌性和其他危害,歐盟、國際食品法典委員會(huì)(CAC)、美國先后出臺(tái)了玉米中伏馬毒素的限量標(biāo)準(zhǔn)。各國對玉米中伏馬毒素的限量不盡相同,但均規(guī)定未加工的玉米中伏馬毒素最大限量不得超過4 000 μg·kg-1。而對于直接供人食用的玉米及玉米制品,伏馬毒素的含量限度在1 000—2 000 μg·kg-1[27]。迄今為止,我國尚未規(guī)定玉米中伏馬毒素的限量標(biāo)準(zhǔn)?!颈狙芯壳腥朦c(diǎn)】我國對玉米穗期病蟲害的防治以化學(xué)防治為主。隨著藥劑的更新?lián)Q代,防治玉米病蟲害的最佳方案需要進(jìn)一步完善。我國對穗期害蟲的化學(xué)防治通常以降低蟲害而非降低穗腐病發(fā)病為目的,且防治穗期害蟲與玉米中伏馬毒素含量的關(guān)系尚不清楚。由于殺蟲/殺菌劑混用防治穗腐病、降低玉米中伏馬毒素含量的效果存在爭議,在我國,玉米穗期病蟲害化學(xué)防治的方案還需進(jìn)一步明確。【擬解決的關(guān)鍵問題】探討防治玉米穗期害蟲和擬輪枝鐮孢穗腐病的有效方案,在保障防治效果和食品安全的同時(shí)盡可能減少化學(xué)農(nóng)藥的使用,降低生產(chǎn)成本和對生態(tài)的干擾。
1.1.1 供試玉米 供試玉米品種為鄭單958。春玉米于2019年5月13日播種,種植于中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)高新技術(shù)產(chǎn)業(yè)園(河北省廊坊市);夏玉米于2019年6月29日播種,種植于中國農(nóng)業(yè)科學(xué)院植物保護(hù)研究所廊坊中試基地。所有處理均為人工播種,雙粒點(diǎn)播,出苗后間苗,留生長一致的苗用作田間試驗(yàn)。耕作、施肥、雜草管理和灌溉均按常規(guī)做法進(jìn)行。
1.1.2 供試藥劑 試驗(yàn)選用2種殺蟲劑(甲維鹽和氯蟲苯甲酰胺)、3種殺菌劑(氰烯菌酯、戊唑醇和苯醚甲環(huán)唑),研究防治玉米蛀穗害蟲和擬輪枝鐮孢穗腐病的最佳方案(表1)。
表1 試驗(yàn)所用化學(xué)藥劑
1.1.3 供試菌種 擬輪枝鐮孢由河北省農(nóng)林科學(xué)院植物保護(hù)研究所玉米綜防課題組提供,由田間典型穗腐病果穗分離,經(jīng)純化鑒定后用于試驗(yàn),菌種采用鐮孢菌產(chǎn)孢培養(yǎng)基培養(yǎng)。
1.2.1 田間試驗(yàn)設(shè)計(jì) 采用隨機(jī)區(qū)組設(shè)計(jì),每處理6次重復(fù),每重復(fù)選取30株生長發(fā)育一致的植株進(jìn)行試驗(yàn),用吊牌和紅色塑料繩作為標(biāo)記。每小區(qū)13.5 m2(4.5 m×3 m),行距60 cm,株距30 cm,每區(qū)6行,每行15株,各小區(qū)間隔1.5 m,邊行作為保護(hù)行。玉米生長期不使用供試藥劑以外的任何化學(xué)藥劑。所有噴霧均于傍晚、無風(fēng)條件下進(jìn)行。噴藥或接菌時(shí),各處理之間以2 m高的塑料布相隔,避免交叉污染。所有試驗(yàn)均只處理和調(diào)查玉米第一果穗。在玉米吐絲后5 d和吐絲后20 d進(jìn)行兩次施藥,空白對照噴施清水。試驗(yàn)除空白對照外,設(shè)甲維鹽單劑、甲維鹽與戊唑醇混劑、甲維鹽與苯醚甲環(huán)唑混劑、甲維鹽與氰烯菌酯混劑、氯蟲苯甲酰胺單劑、氯蟲苯甲酰胺與戊唑醇混劑、氯蟲苯甲酰胺與苯醚甲環(huán)唑混劑、氯蟲苯甲酰胺與氰烯菌酯混劑8種藥劑處理,以及僅接菌、施用甲維鹽后接菌、施用氯蟲苯甲酰胺后接菌3個(gè)處理。接菌處理于第一次施藥后2 d(玉米吐絲后7 d)進(jìn)行。
1.2.2 調(diào)查方法 在玉米完熟期,每個(gè)小區(qū)從標(biāo)記的植株中隨機(jī)收獲30個(gè)玉米果穗,記錄玉米果穗的蟲害級別、穗腐病發(fā)病率和發(fā)病級別。
玉米果穗受害蟲危害級別按照Windham等[28]提出的方法劃分:0-果穗完好;1-僅果穗頂部受損;2-果穗頂部受損+少量穗頂部以下輕度受損;3-果穗頂部受損+約1/4果穗頂部以下輕度受損到中度受損;4-果穗頂部受損+約1/2果穗頂部以下中度受損到嚴(yán)重受損;5-果穗頂部受損+約3/4果穗頂部以下中度受損到嚴(yán)重受損;6-果穗頂部受損+全部果穗頂部以下中度受損到嚴(yán)重受損。
玉米穗腐病發(fā)病級別劃分為0、1、3、5、7、9共6個(gè)級別,具體參照轉(zhuǎn)基因玉米環(huán)境安全檢測技術(shù)規(guī)范[29]。
果穗發(fā)病率(%)=(發(fā)病穗數(shù)/總穗數(shù))×100;病情指數(shù)=[Σ(各級病情穗數(shù)×相應(yīng)級別)/(總穗數(shù)×最高級別)]×100;防治效果(%)=[對照區(qū)病情指數(shù)(平均蟲害級別)-處理區(qū)病情指數(shù)(平均蟲害級別)] /對照區(qū)病情指數(shù)(平均蟲害級別)×100。
1.2.3 產(chǎn)量測定 不同處理玉米果穗在統(tǒng)計(jì)病蟲害級別后分別裝于尼龍網(wǎng)袋中自然風(fēng)干。風(fēng)干后測量處理果穗穗長、行粒數(shù)、單穗重、百粒重。測單穗重時(shí),按質(zhì)量平均法選取10株果穗,將每株果穗的籽粒手工搓下,剔除發(fā)霉變色和有蟲傷的籽粒后稱重;測百粒重時(shí),將剩余果穗的籽?;旌暇鶆?,隨機(jī)數(shù)出100粒,記錄完好籽粒的質(zhì)量。隨后計(jì)算籽粒損失率(%)=(1-完好粒數(shù)/總粒數(shù))×100和單穗增產(chǎn)率(%)=(處理穗重/對照穗重-1)×100。
1.2.4 伏馬毒素測定 分析所用儀器為高效液相色譜Agilent ultivo triple Quad LC/MS1290-6465。
樣品采集與前處理:將各小區(qū)測產(chǎn)剩下的籽粒混合均勻,隨機(jī)取100 g籽粒加入粉碎機(jī)研磨,并使磨碎的玉米粉通過40目網(wǎng)篩,編號,分裝備用。
樣品提?。簻?zhǔn)確稱取25 g樣品至燒杯中,加入50 mL甲醇﹕水溶液(3﹕1)。均質(zhì)充分后靜置10 min,取上清,1 800 r/min離心5 min,取上清液過濾,收集5 mL至離心管中,用1 mol·L-1NaOH溶液調(diào)節(jié)pH至5.8—6.5。
樣品凈化:采用Bond Elut SAX固相萃取柱,規(guī)格500 mg,3 mL。用5 mL甲醇淋洗固相萃取柱,再以5 mL甲醇-水溶液(3﹕1)淋洗。移取過濾液2 mL,以<2 mL·min-1的速度過柱上樣。以5 mL甲醇-水(3﹕1)淋洗一遍,然后3 mL甲醇淋洗一次。以9 mL 1%甲酸甲醇溶液為洗脫液,以<1 mL·min-1的速度上柱洗脫,洗脫液收集于離心管中,氮吹濃縮,用0.5 mL乙腈-水(1﹕1)溶液復(fù)溶,渦旋30 s,過0.22 μm濾膜至進(jìn)樣瓶中。
高效液相色譜分析條件參考KUSHIRO等[30]的方法,略有改動(dòng)。
采用統(tǒng)計(jì)軟件SAS 9.4對試驗(yàn)數(shù)據(jù)進(jìn)行ANOVA單因素方差分析,在分析之前,將病情指數(shù)、平均蟲害級別、發(fā)病率、籽粒損失率開方后進(jìn)行反三角函數(shù)轉(zhuǎn)化;將伏馬毒素B1、B2濃度按照’=ln(+1)進(jìn)行數(shù)據(jù)轉(zhuǎn)化。處理間差異顯著性以Student-Newman- Keuls法檢驗(yàn)。表中所有數(shù)據(jù)均為轉(zhuǎn)化前原始數(shù)據(jù)。
兩次試驗(yàn)的對照蛀穗率較高,均超過70%,但多數(shù)玉米僅頂部5行籽粒受到蟲害。玉米穗腐病的主要發(fā)病部位為受蟲害的籽粒及其相鄰籽粒,而未受蟲害的果穗發(fā)病率極低。在春玉米和夏玉米試驗(yàn)中,各施藥處理蛀穗率、平均蟲害級別均顯著低于對照,氯蟲苯甲酰胺及其與殺菌劑的混劑各處理的蛀穗率、蟲害級別均低于甲維鹽及其相對應(yīng)的混劑,但僅有個(gè)別處理達(dá)到了顯著水平(<0.05);與對照相比,各施藥處理均可顯著降低穗腐病發(fā)病率、病情指數(shù)和伏馬毒素含量,兩種殺蟲劑間以及對應(yīng)的混劑間的穗腐病發(fā)病率、病情指數(shù)和伏馬毒素含量均無顯著差異。兩種殺蟲劑與殺菌劑混用的處理與僅施用殺蟲劑相比,蛀穗率、平均蟲害級別、穗腐病發(fā)病率、病情指數(shù)和伏馬毒素含量均無顯著差異。各藥劑處理在兩次試驗(yàn)中的伏馬毒素總含量均低于500 μg·kg-1,而春玉米試驗(yàn)的對照伏馬毒素總含量可達(dá)2 817 μg·kg-1,接近于各國規(guī)定的毒素限量(表2)。
在春玉米試驗(yàn)中,25 g·hm-2氯蟲苯甲酰胺及其與殺菌劑的混劑對穗期蟲害的防治效果均顯著好于30 g·hm-2甲維鹽及相應(yīng)的混劑;而在夏玉米試驗(yàn)中殺蟲劑及相應(yīng)混劑對穗期蟲害的防治效果無顯著差異。兩次試驗(yàn)中殺蟲劑單劑與混劑對穗期蟲害和穗腐病的防治效果均無顯著差異。春玉米試驗(yàn)中,各藥劑對穗腐病的防治效果>60%,夏玉米試驗(yàn)中,各藥劑對穗腐病的防治效果>88%(表2)。
表2 殺蟲/殺菌劑混用對蟲害和擬輪枝鐮孢穗腐病發(fā)生、防控的影響
接菌處理的蛀穗率在兩次試驗(yàn)中均超過60%,與對照無顯著差異。未受蟲害的果穗發(fā)病率極低。接菌處理的穗腐病發(fā)病率、病情指數(shù)和伏馬毒素含量均高于對照,在春玉米試驗(yàn)中兩者差異達(dá)到顯著水平。與接菌處理相比,接菌前施用殺蟲劑均能顯著降低蛀穗率、平均蟲害級別、穗腐病發(fā)病率、病情指數(shù)和伏馬毒素含量。春玉米接菌后,玉米中伏馬毒素含量可達(dá)8 710 μg·kg-1,超過限定標(biāo)準(zhǔn)的兩倍,而接菌前施藥的伏馬毒素含量<1 500 μg·kg-1(表3)。
表3 接菌前施藥對蟲害和擬輪枝鐮孢穗腐病發(fā)生的影響
綜合春、夏玉米兩次試驗(yàn)可見,施用殺蟲劑和殺菌劑對穗長和行粒數(shù)無顯著影響。春玉米各施藥處理均能顯著減少損失,增加百粒重和穗重,增產(chǎn)率為5.49%—13.49%。從夏玉米來看,與對照相比,玉米各施藥處理均能顯著減少損失,增加穗重,增產(chǎn)率為9.20%—13.95%;施用甲維鹽與苯醚甲環(huán)唑混劑、甲維鹽與氰烯菌酯的混劑顯著增加百粒重,而其余處理增加百粒重的效果不顯著。施用殺蟲劑后,接菌對產(chǎn)量無顯著影響(表4)。
國外對于防治玉米穗期害蟲對穗腐病發(fā)生的影響有著較為詳盡的報(bào)道,也存在著一定爭議。多數(shù)學(xué)者認(rèn)為,用適宜的方法防治穗期害蟲,包括物理隔離[31]、施用殺蟲劑[32-34]、種植轉(zhuǎn)Bt基因抗蟲玉米[35-36],不僅能減少產(chǎn)量損失,促進(jìn)豐產(chǎn),還能降低穗腐病的發(fā)生和籽粒伏馬毒素含量,提高品質(zhì)。然而,也有研究得到了相反的結(jié)論,即與對照相比,轉(zhuǎn)基因抗蟲玉米[37]和高效氯氟氰菊酯[38]的應(yīng)用并未顯著降低伏馬毒素含量。另有文獻(xiàn)報(bào)道,防控穗期害蟲能否降低伏馬毒素含量受到環(huán)境的影響[39-40]。國內(nèi)在這方面的研究,特別是化學(xué)防治對伏馬毒素含量影響的研究相對較少。
本研究中,氯蟲苯甲酰胺和甲維鹽各處理下蛀穗率、平均蟲害級別均顯著低于對照;且施用量25 g·hm-2的氯蟲苯甲酰胺的防治效果顯著好于施用量30 g·hm-2的甲維鹽,是控制穗期害蟲較為理想的殺蟲劑。兩次試驗(yàn)中,施用殺蟲劑的處理與對照相比均能降低穗腐病發(fā)病率、病情指數(shù)和伏馬毒素含量,這與前人研究的結(jié)論相一致[32,34]。穗腐病發(fā)病減輕的原因可能是殺蟲劑減少了害蟲對擬輪枝鐮孢的傳播和擬輪枝鐮孢通過害蟲造成的籽粒傷口侵染玉米的機(jī)會(huì)。施用殺蟲/殺菌劑混劑與單獨(dú)使用殺蟲劑相比,對病蟲害的防治效果不能顯著提升,也不能顯著降低籽粒中伏馬毒素含量。這意味著相比單用殺蟲劑,使用殺蟲/殺菌劑混劑防治穗腐病并無優(yōu)勢,MAZZONI等[19]經(jīng)過6年的田間試驗(yàn),認(rèn)為通過控制歐洲玉米螟可以減少穗腐病的發(fā)生,進(jìn)而減輕籽粒中伏馬毒素B1的污染,而針對擬輪枝鐮孢添加的殺菌劑成分作用不明顯。本研究結(jié)論與此研究相一致,進(jìn)一步驗(yàn)證了穗期害蟲危害對擬輪枝鐮孢穗腐病誘發(fā)的重要作用,也在一定程度上解釋了田間單獨(dú)施用殺菌劑不能有效控制擬輪枝鐮孢穗腐病的原因是存在大量蛀穗害蟲[18,41]。
表4 化學(xué)防治對玉米產(chǎn)量的影響
接菌后在大量病原菌存在的情況下,單獨(dú)施用殺蟲劑的兩個(gè)處理發(fā)病率、病情指數(shù)和伏馬毒素含量與對照達(dá)到顯著差異,在夏玉米試驗(yàn)中,施用氯蟲苯甲酰胺后接菌的擬輪枝鐮孢穗腐病發(fā)病率為0。上述結(jié)果表明在大田生產(chǎn)中蟲害在擬輪枝鐮孢引起發(fā)病的過程中具有極其重要的作用。擬輪枝鐮孢侵染籽粒引起穗腐病的途徑主要有兩種:傷口或者花粉管途徑[42-43]。在病害流行年份,氣候適宜擬輪枝鐮孢侵染時(shí),擬輪枝鐮孢可以通過開放的花粉管侵染易感品種的籽粒[44],這種侵染不依賴害蟲造成的傷口,因此控制蟲害對于穗腐病發(fā)病的影響可能不顯著。而在大多數(shù)年份,如本研究所處階段,即使有大量病原菌存在(人為接菌),氣候不適宜發(fā)病,擬輪枝鐮孢也很難直接通過花絲侵染引起穗腐病的發(fā)生。而蛀穗害蟲造成的傷口,給擬輪枝鐮孢的侵染提供了捷徑,促進(jìn)并加重了穗腐病的發(fā)生。施用殺蟲劑減輕了穗期害蟲的危害,從而減少對擬輪枝鐮孢的傳播和擬輪枝鐮孢利用傷口侵染的機(jī)會(huì),擬輪枝鐮孢穗腐病的發(fā)病率顯著下降。因此,防控穗期害蟲在降低擬輪枝鐮孢穗腐病的發(fā)生中具有至關(guān)重要的作用。
由于穗期害蟲在擬輪枝鐮孢侵染果穗過程中起著關(guān)鍵作用,在鑒定玉米品種抗性時(shí),應(yīng)將玉米品種對穗腐病的抗性和穗期的抗蟲性相結(jié)合,綜合考慮病蟲害和環(huán)境關(guān)系,制訂更完善的抗性鑒定方法,篩選出抗擬輪枝鐮孢穗腐病的優(yōu)良品種,提高玉米產(chǎn)量和品質(zhì),保障食品安全。
本研究中施用殺蟲劑或其混劑后,玉米籽粒中伏馬毒素的含量遠(yuǎn)低于各國對伏馬毒素的限量;這意味著在適當(dāng)?shù)幕瘜W(xué)保護(hù)方案下,玉米籽粒的伏馬毒素不會(huì)危及人、畜健康。而春玉米試驗(yàn)中,對照玉米籽粒中伏馬毒素的含量已接近伏馬毒素的最大限量,超過了食用限量;可見在不進(jìn)行防治的情況下,籽粒的伏馬毒素存在潛在風(fēng)險(xiǎn),可能不適于食用。春玉米接菌處理的玉米,籽粒中伏馬毒素含量高達(dá)8 710 μg·kg-1,超過最大限量兩倍以上;因此當(dāng)環(huán)境中菌量較大時(shí),若不進(jìn)行防治,玉米籽粒中伏馬毒素可能對食品安全造成嚴(yán)重的威脅。接菌前施用殺蟲劑則可將玉米中的伏馬毒素含量降低至最大限度的一半以下。由此可見,即使環(huán)境中菌源量較大,施用殺蟲劑也可通過保護(hù)玉米籽粒不受蟲害而將籽粒中伏馬毒素降低至安全范圍內(nèi)。
結(jié)合春玉米和夏玉米的兩次試驗(yàn)結(jié)果,總體來看,各藥劑處理對產(chǎn)量的影響有明顯的規(guī)律性。與對照相比,各施藥處理的穗長和行粒數(shù)均無顯著差異,但均可顯著降低籽粒損失率、增加穗重和單穗產(chǎn)量,減少籽粒中伏馬毒素的含量。這意味著殺蟲/殺菌劑混用和單用殺蟲劑均可顯著增產(chǎn),提高籽粒品質(zhì),且效果無顯著差異。因此從促進(jìn)豐產(chǎn)、保障食品安全,同時(shí)保護(hù)環(huán)境、節(jié)約成本的角度來看,無需在殺蟲劑中添加殺菌劑成分。當(dāng)然,在保證防治效果的同時(shí)提高收益,需全面考慮各種相關(guān)因素,建立完善的病蟲害綜合防治制度或體系。由于導(dǎo)致玉米穗腐病的病原菌種類較多,在不是以擬輪枝鐮孢為優(yōu)勢致病菌的地區(qū),防治穗期害蟲和穗腐病是否需要增加殺菌劑則還需要深入研究。
綜合各藥劑處理后玉米病蟲害、產(chǎn)量和伏馬毒素含量情況,同時(shí)考慮成本、生態(tài)和食品安全因素,筆者認(rèn)為在當(dāng)?shù)赜衩姿肫诤οx產(chǎn)卵高峰期前后兩次施用25 g·hm-2氯蟲苯甲酰胺為防治擬輪枝鐮孢穗腐病的最佳方案。
[1] PRESELLO D A, BOTTA G, IGLESIAS J, EYHéRABIDE G H. Effect of disease severity on yield and grain fumonisin concentration of maize hybrids inoculated with. Crop Protection, 2008, 27(3/5): 572-576.
[2] PIENAAR J G, KELLERMAN T S, MARASAS W F. Field outbreaks of leukoencephalomalacia in horses consuming maize infected by(=) in South Africa. Journal of the South African Veterinary Association, 1981, 52(1): 21-24.
[3] ROSS P F, NELSON P E, RICHARD J L, OSWEILER G D, RICE L G, PLATTNER R D, WILSON T M. Production of fumonisins byandisolates associated with equine leukoencephalomalacia and a pulmonary edema syndrome in swine. Applied and Environmental Microbiology, 1990, 56(10): 3225-3226.
[4] WILSON T M, ROSS P F, RICE L G, OSWEILER G D, NELSON H A, OWENS D L, PLATTNER R D, REGGIARDO C, NOON T H, PICKRELL J W. Fumonisin B1 levels associated with an epizootic of equine leukoencephalomalacia. Journal of Veterinary Diagnostic Investigation, 1990, 2(3): 213-216.
[5] MARIN S, RAMOS A J, CANO-SANCHO G, SANCHIS V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology, 2013, 60: 218-237.
[6] FRANCESCHI S, BIDOLI E, BARóN A E, LA VECCHIA C. Maize and risk of cancers of the oral cavity, pharynx, and esophagus in northeastern Italy. Journal of the National Cancer Institute, 1990, 82(17): 1407-1411.
[7] CHU F S, LI G Y. Simultaneous occurrence of fumonisin B1 and other mycotoxins in moldy corn collected from the People’s Republic of China in regions with high incidences of esophageal cancer. Applied and Environmental Microbiology, 1994, 60(3): 847-852.
[8] THIEL P G, MARASAS W F, SYDENHAM E W, SHEPHARD G S, GELDERBLOM W C. The implications of naturally occurring levels of fumonisins in corn for human and animal health. Mycopathologia, 1992, 117(1/2): 3-9.
[9] ALIZADEH A M, ROHANDEL G, ROUDBARMOHAMMADI S, ROUDBARY M,Sohanaki H, Ghiasian S A, Taherkhani A, Semnani S,AGHASI M. Fumonisin B1 contamination of cereals and risk of esophageal cancer in a high risk area in northeastern Iran. Asian Pacific journal of cancer prevention, 2012, 13(6): 2625-2628.
[10] 劉玥, 李榮榮, 何康來, 白樹雄, 張?zhí)鞚? 叢斌, 王振營. 桃蛀螟為害對春玉米鐮孢穗腐病發(fā)生及產(chǎn)量損失的影響. 昆蟲學(xué)報(bào), 2017, 60(5): 576-581.
LIU Y, LI R R, HE K L, BAI S X, ZHANG T T, CONG B, WANG Z Y. Effects of(Lepidopteran: Crambidae) infestation on the occurrence of Fusarium ear rot and yield loss of spring corn. Acta Entomologica Sinica, 2017, 60(5): 576-581. (in Chinese)
[11] 宋立秋, 石潔, 王振營, 何康來, 叢斌. 亞洲玉米螟為害對玉米鐮孢穗腐病發(fā)生程度的影響. 植物保護(hù), 2012, 38(6): 50-53, 58.
SONG L Q, SHI J, WANG Z Y, HE K L, CONG B. Effects of the Asian corn borer injury on the incidence of Fusarium ear rot caused byat different developmental stages of corn ear. Plant Protection, 2012, 38(6): 50-53, 58. (in Chinese)
[12] NCUBE E, FLETT B C, VAN DEN BERG J, ERASMUS A, VILJOEN A. The effect ofinfestation, fungal inoculation and mechanical wounding on Fusarium ear rot development and fumonisin production in maize. Crop Protection, 2017, 99: 177-183.
[13] SCHULTHESS F, CARDWELL K F, GOUNOU S. The effect of endophyticon infestation of two maize varieties by lepidopterous stemborers and coleopteran grain feeders. Phytopathology, 2002, 92(2): 120-128.
[14] CHRISTENSEN J J, SCHNEIDER C L. European corn borer (Hbn.) in relation to shank, stalk and ear rots of corn. Phytopathology, 1950, 40(3): 284-291.
[15] AVANTAGGIATO G, QUARANTA F, DESIDERIO E, VISCONTI A. Fumonisin contamination of maize hybrids visibly damaged by. Journal of the Science of Food and Agriculture, 2003, 83(1): 13-18.
[16] BLANDINO M, SCARPINO V, VANARA F, SULYOK M, KRSKA R, REYNERI A. Role of the European corn borer () on contamination of maize with 13 Fusarium mycotoxins. Food Additives and Contaminants Part A: Chemistry, Analysis, Control Exposure and Risk Assessment, 2015, 32(4): 533-543.
[17] MADEGE R R, LANDSCHOOT S, KIMANYA M, TIISEKWA B, DE MEULENAER B, BEKAERT B, AUDENAERT K, HAESAERT G. Early sowing and harvesting as effective measures to reduce stalk borer injury,incidence and associated fumonisin production in maize. Tropical Plant Pathology, 2019, 44(2): 151-161.
[18] FOLCHER L, JARRY M, WEISSENBERGER A, GéRAULT F, EYCHENNE N, DELOS M, REGNAULT-ROGER C. Comparative activity of agrochemical treatments on mycotoxin levels with regard to corn borers andmycoflora in maize (L.) fields. Crop Protection, 2009, 28(4): 302-308.
[19] MAZZONI E, SCANDOLARA A, GIORNI P, PIETRI A, BATTILANI P. Field control of Fusarium ear rot,(Hu?bner), and fumonisins in maize kernels. Pest Management Science, 2011, 67(4): 458-465.
[20] DARVAS B, BáNáTI H, TAKáCS E, LAUBER é, SZéCSI á, SZéKáCS A. Relationships of,andon MON 810 maize. Insects, 2011, 2(1): 1-11.
[21] BOWERS E, HELLMICH R, MUNKVOLD G. Comparison of fumonisin contamination using HPLC and ELISA methods in bt and near-isogenic maize hybrids infested with European corn borer or western bean cutworm. Journal of Agricultural and Food Chemistry, 2014, 62(27): 6463-6472.
[22] BOWERS E, HELLMICH R, MUNKVOLD G. Vip3Aa and Cry1Ab proteins in maize reduce Fusariumear rot and fumonisins by deterring kernel injury from multiple Lepidopteran pests. World Mycotoxin Journal, 2013, 6(2): 127-135.
[23] HAMMOND B G, CAMPBELL K W, PILCHER C D, DEGOOYER T A, ROBINSON A E, MCMILLEN B L, SPANGLER S M, RIORDAN S G, RICE L G, RICHARD J L. Lower fumonisin mycotoxin levels in the grain of Bt corn grown in the United States in 2000-2002. Journal of Agricultural and Food Chemistry, 2004, 52(5): 1390-1397.
[24] ALMA A, LESSIO F, REYNERI A, BLANDINO M. Relationships between(Lepidoptera: Crambidae) feeding activity, crop technique and mycotoxin contamination of corn kernel in northwestern Italy. International Journal of Pest Management, 2005, 51(3): 165-173.
[25] BLANDINO M, REYNERI A, VANARA F, PASCALE M, HAIDUKOWSKI M, CAMPAGNA C. Managing fumonisin contamination in maize kernels through the timing of insecticide application against European corn borerHu?bner. Food Additives and Contaminants Part A: Chemistry, Analysis, Control Exposure and Risk Assessment, 2009, 26(11): 1501-1514.
[26] DE CURTIS F, DE CICCO V, HAIDUKOWSKI M, PASCALE M, SOMMA S, MORETTI A. Effects of agrochemical treatments on the occurrence of Fusarium ear rot and fumonisin contamination of maize in Southern Italy. Field Crops Research, 2011, 123(2): 161-169.
[27] 尚艷娥, 楊衛(wèi)民. CAC、歐盟、美國與中國糧食中真菌毒素限量標(biāo)準(zhǔn)的差異分析. 食品科學(xué)技術(shù)學(xué)報(bào), 2019, 37(1): 10-15.
SHANG Y E, YANG W M. Variation analysis of cereals mycotoxin limit standards of CAC, EU, USA, and China. Journal of Food Science and Technology, 2019, 37(1): 10-15. (in Chinese)
[28] WINDHAM G L, WILLIAMS W P, DAVIS F M. Effects of the southwestern corn borer onkernel infection and aflatoxin accumulation in maize hybrids. Plant disease, 1999, 83(6): 535-540.
[29] 中華人民共和國農(nóng)業(yè)農(nóng)村部. 轉(zhuǎn)基因玉米環(huán)境安全檢測技術(shù)規(guī)范: NY/T720.1-720.3, 2003.
Ministry of Agriculture and Rural Affairs,The People’s Republic of ChinaEnvironmental impact testing of genetically modified maize: NY/T720.1-720.3, 2003. (in Chinese)
[30] KUSHIRO M, NAGATA R, NAKAGAWA H, NAGASHIMA H. Liquid chromatographic detection of fumonisins in rice seed. Report of National Food Research Institute, 2008, 72: 37-44.
[31] SCARPINO V, REYNERI A, VANARA F, SCOPEL C, CAUSIN R, BLANDINO M. Relationship between European corn borer injury,andinfection and moniliformin contamination in maize. Field Crops Research, 2015, 183: 69-78.
[32] BLANDINO M, PEILA A, REYNERI A. Timing clorpirifos + cypermethrin and indoxacarb applications to control European corn borer damage and fumonisin contamination in maize kernels. Journal of the Science of Food and Agriculture, 2010, 90(3): 521-529.
[33] PARSONS M W, MUNKVOLD G P. Associations of planting date, drought stress, and insects with Fusarium ear rot and fumonisin B1 contamination in California maize. Food Additives and Contaminants Part A: Chemistry, Analysis, Control, Exposure and Risk Assessment, 2010, 27(5): 591-607.
[34] BLANDINO M, REYNERI A, VANARA F, PASCALE M, HAIDUKOWSKI M, SAPORITI M. Effect of sowing date and insecticide application against European corn borer (Lepidoptera: Crambidae) on fumonisin contamination in maize kernels. Crop Protection, 2008, 27(11): 1432-1436.
[35] PAPST C, UTZ H F, MELCHINGER A E, EDER J, MAGG T, KLEIN D, BOHN M. Mycotoxins produced byspp. in isogenic Bt vs. non-Bt maize hybrids under European corn borer pressure. Agronomy Journal, 2005, 97(1): 219-224.
[36] BAKAN B, MELCION D, RICHARD-MOLARD D, CAHAGNIER B. Fungal growth andmycotoxin content in isogenic traditional maize and genetically modified maize grown in France and Spain. Journal of Agricultural and Food Chemistry, 2002, 50(4): 728-731.
[37] MAGG T, MELCHINGER A E, KLEIN D, BOHN M. Relationship between European corn borer resistance and concentration of mycotoxins produced byspp. in grains of transgenic Bt maize hybrids, their isogenic counterparts, and commercial varieties. Plant Breeding, 2002, 121(2): 146-154.
[38] NCUBE E, FLETT B C, VAN DEN BERG J, ERASMUS A, VILJOEN A. Fusarium ear rot and fumonisins in maize kernels when comparing a Bt hybrid with its non-Bt isohybrid and under conventional insecticide control ofinfestations. Crop Protection, 2018, 110: 183-190.
[39] SANTIAGO R, CAO A, MALVAR R A, BUTRON A. Is it possible to control fumonisin contamination in maize kernels by using genotypes resistant to the Mediterranean corn borer?. Journal of economic entomology, 2013, 106(5): 2241-2246.
[40] CLEMENTS M J, CAMPBELL K W, MARAGOS C M, PILCHER C, HEADRICK J M, PATAKY J K, WHITE D G. Influence of Cry1Ab protein and hybrid genotype on fumonisin contamination and Fusarium ear rot of corn. Crop Science, 2003, 43(4): 1283-1293.
[41] PARKER N S, ANDERSON N R, RICHMOND D S, LONG E Y, WISE K A, KRUPKE C H. Larval western bean cutworm feeding damage encourages the development of Gibberella ear rot on field corn. Pest management science, 2017, 73(3): 546-553.
[42] MUNKVOLD G P. Epidemiology ofdiseases and their mycotoxins in maize ears. European Journal of Plant Pathology, 2003, 109(7): 705-713.
[43] MUNKVOLD G P, MCGEE D C, CARLTON W M. Importance of different pathways for maize kernel infection by. Phytopathology, 1997, 87(2): 209-217.
[44] DUNCAN K E, HOWARD R J. Biology of maize kernel infection by. Molecular Plant-Microbe Interactions, 2010, 23(1): 6-16.
Effects of Chemical Control of Ear Borers on ReducingEar Rot and Fumonisin Level
LI QinCheng1, SHI Jie2, HE KangLai1, WANG ZhenYing1
1State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193;2Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071030, Hebei
【】is responsible for ear rot occurrence and quality degradation in maize. It gives rise to the production of fumonisin and poses a threat on food security. Ear borers inculdingandcan cause severe yield loss and lead to an increase in ear rot occurrence.【】The objective of this study is to evaluate the efficacy of two insecticides (emamectin benzoate and chlorantraniliprole) combined with three fungicides (phenamacril, tebuconazole and difenoconazole) in promoting yield, reducing ear rot severity and fumonisin kernel contamination under natural conditions, clarify the effect of artificial inoculation ofon insecticide efficacy, define an effective schedule for the control of maize pests and provide a theoretical basis for the pesticide field application.【】Hybrid Zhengdan 958 typically cultivated in China was selected in this study. Field experiments were conducted in Langfang, Hebei Province. Pesticide treatments were conducted 5 d and 20 d after silking, and artificial inoculation ofwas conducted 7 d after silking. Insect damage, ear rot occurrence, ear length, kernels per row, 100-grain weight and ear weight were investigated and recorded at harvest phenological stage. Fumonisins B1 and B2 level in kernels was analyzed by LC-MS/MS.【】Compared with controls,emamectin benzoate and chlorantraniliproleapplication could significantly reduce borer damage, ear rot occurrence and fumonisins level. While insecticides have been shown to give advantages in their application, adding a fungicide didn’t lead to a significant lower insect damage, ear rot occurrence or fumonisins level. Additional fungicide didn’t lead a significant higher control effect or yield. After inoculating, chlorantraniliprole application led to a significant decrease in fumonisins level, ear rot incidence and severity. Control effect of 25 g·hm-2chlorantraniliprole and its combinations on insect damage was 82.1%-92.7% and 94.2%-95.0% in spring and summer maize, respectively. Control effect of 30 g·hm-2emamectin benzoate was significantly lower, at the level of 57.8%-78.0% in spring maize and 83.1%-89.9% in summer maize. Control effect on ear rot occurrence was >60% in spring maize and >88% in summer maize. No significant difference was found among pesticide treatments. Regarding yield, insecticide application had no significant effect on ear length or kernels per row, while significantly promoted ear weight compared with controls. No significant difference was found among insecticide treatments and mixture treatments. Artificial inoculation ofhad no significant impact on yield after insecticide application. The yield of spring and summer maize increased by 5.49%-13.49% and 9.20%-13.95% after applying insecticides or mixture of insecticides with fungicides, respectively. Kernel fumonisins level was lower than 500 μg·kg-1after insecticide or mixture of insecticides with fungicides application, while the level in controls was 2 817 μg·kg-1. Kernel fumonisins level afterinoculatingreached up to 8 710 μg·kg-1, while the number could be reduced to 1 500 μg·kg-1after insecticide application.【】These results indicated that 25 g·hm-2chlorantraniliprole and 30 g·hm-2emamectin benzoate application can reduce ear rot occurrence and fumonisin level, improve maize yield and quality by controlling insect damage. No significant difference was found in insecticide treatments and mixture of insecticide with fungicide treatments. Insect infestation plays a decisive role in theinfection. Taking all aspects into consideration, 25 g·hm-2chlorantraniliprole is relative ideal in maize pest control.
chemical control; pest;; maize ear rot; yield; fumonisin
10.3864/j.issn.0578-1752.2021.17.012
2020-12-05;
2020-12-28
國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-02)、中國農(nóng)業(yè)科學(xué)院重大科研任務(wù)(CAAS-ZDRW202004)
李琴珵,E-mail:ashofmournhold@163.com。通信作者王振營,E-mail:zywang@ippcaas.cn
(責(zé)任編輯 岳梅)