肖艷春,陳 彪,黃 婧,劉瑞來
Fe2O3-TiO2/UV/O3+PSAF協(xié)同處理豬場廢水效果及其除碳脫氮機制
肖艷春1,2,陳 彪1※,黃 婧1,劉瑞來3
(1. 福建省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)工程技術(shù)研究所,福州 350003;2. 福建技術(shù)師范學(xué)院近海流域環(huán)境測控治理福建省高校重點實驗室,福清 350300;3. 武夷學(xué)院福建省生態(tài)產(chǎn)業(yè)綠色技術(shù)重點實驗室,武夷山 354300)
為實現(xiàn)低碳高氨氮豬場廢水深度除碳脫氮,該研究提出了Fe2O3-TiO2/UV/O3+PSAF組合處理工藝技術(shù)。應(yīng)用響應(yīng)面法確立了組合工藝的最優(yōu)工況條件,采用三維熒光和紫外-可見吸收光譜分析了有機物的熒光和分子結(jié)構(gòu)變化特征,并結(jié)合碳、氮形態(tài)變化探明了其協(xié)同處理特性及除碳脫氮機制。結(jié)果表明,F(xiàn)e2O3-TiO2投加量為1.06 g/L、O3流量為3.02 g/h、曝氣時間為90.75 min、聚硅酸鋁鐵(PSAF)用量為833.29 mg/L,COD及NH3-N去除效果最好,試驗值與預(yù)測值偏差0.75%和0.56%,擬合性良好;組合工藝對豬場廢水中的溶解性微生物代謝產(chǎn)物和類腐殖質(zhì)處理效果顯著,溶解性有機碳和總?cè)芙庑缘コ史謩e達77.7%和82.6%,協(xié)同因子分別為1.11和1.50。其中,F(xiàn)e2O3-TiO2/UV/O3對類腐殖質(zhì)削減效果顯著,O3和·OH協(xié)同氧化類腐殖質(zhì)、NH3-N為小分子物質(zhì)、NO3--N和N2(N2轉(zhuǎn)化率達39.71%),提高了富氧官能團的數(shù)量,促進了氮素的轉(zhuǎn)化和礦化,利于PSAF對小分子物質(zhì)和NO3--N等污染物的去除,組合工藝協(xié)同互補作用明顯。研究結(jié)果為深度處理低碳高氨氮有機廢水提供一種新思路。
廢水;豬場;光催化臭氧氧化;混凝;3DEEMs;UV-Vis;DOC;TDN;DOM
2020年第二次全國污染源普查[1]顯示,畜禽養(yǎng)殖污染已成為中國農(nóng)業(yè)面源污染之首,2017年化學(xué)需氧量(COD)、氨氮(NH3-N)和總氮(TN)排放量分別占農(nóng)業(yè)源污染物總量的 93.8%、51.3%和42.1%。畜禽養(yǎng)殖廢水尤其是豬場廢水成分復(fù)雜且含有高濃度有機物、NH3-N、氯離子(Cl-)、懸浮固體和相當(dāng)數(shù)量的病原體以及特定結(jié)構(gòu)的有毒有害物質(zhì)(激素/抗生素等),經(jīng)厭氧生物處理形成的沼液多為低碳高氨氮(碳氮比為0.5:1~2:1)有機廢水,可生化性差,不利于后續(xù)微生物除碳脫氮[2-5]。為滿足日益提高的污染排放標(biāo)準(zhǔn)要求,亟需研發(fā)快速高效的除碳脫氮技術(shù)。
近年來,高級氧化(如Fenton氧化、光催化氧化和臭氧氧化等)與化學(xué)混凝結(jié)合可降低廢水處理成本,提高處理效率,廣泛應(yīng)用于畜禽養(yǎng)殖廢水深度處理中[6-7]。汪文強等[8]研究發(fā)現(xiàn)“Fenton高級氧化+聚丙烯酰胺(PAM)混凝”組合工藝對碳素去除效果顯著,COD去除率達(88.11±4.39)%,但對氮素的削減作用較低,NH3-N和TN去除率分別為(12.33±20.59)%和(16.48±6.38)%。氮素削減率低主要是因為Fenton產(chǎn)生的羥基自由基(·OH)大部分用于降解COD,無法為氮素的氧化提供過多的·OH。此外,Zhang等[9]研究了TiO2-有機膨潤土光催化劑與聚合氯化鋁(PAC)混凝劑結(jié)合的處理性能,在pH值為5.53、TiO2-CTAC2.0投加量為5.09 g/L、反應(yīng)時間為180 min和PAC用量為1 062 mg/L的條件下,COD和NH3-N去除率分別為84%和44%。從處理效果來看,光催化氧化+混凝的脫氮效果優(yōu)于芬頓氧化+混凝,且不需額外投加酸堿調(diào)節(jié)pH值,降低了運行成本,但NH3-N去除率仍較低,可能是因為豬場廢水含鹽量高,廢水中的Cl-會與有機物競爭·OH,使得NH3-N降解效率受到影響。有研究證實臭氧(O3)作為電子俘獲劑能有效抑制光催化材料產(chǎn)生的電子(-)-空穴(+)對復(fù)合,提高·OH的產(chǎn)生量[10],而且O3本身對氮原子具有強烈的親和力[11],與光催化氧化結(jié)合可以大大縮短反應(yīng)時間,提高NH3-N降解效率。
基于此,該研究選用團隊獲得的國家發(fā)明專利產(chǎn)品Fe2O3-TiO2為光催化劑[12],聚硅酸鋁鐵(PSAF)為混凝劑,充分利用Fe2O3-TiO2/UV/O3光催化臭氧氧化體系中的O3、·OH高活性物種與PSAF混凝體系中的Fe3+、Al3+強鍵橋、絡(luò)合能力構(gòu)建Fe2O3-TiO2/UV/O3+PSAF組合處理工藝體系用于養(yǎng)殖廢水除碳脫氮研究。應(yīng)用響應(yīng)面法(Response Surface Method,RSM)優(yōu)化確立組合工藝的最佳工況條件;在此基礎(chǔ)上采用三維熒光光譜(Three- Dimensional Excitation-Emission Matrix Spectroscopy,3DEEMs)和紫外-可見吸收差光譜(UV-Vis)等技術(shù)手段分析溶解性有機物(Dissolved Organic Matter,DOM)的熒光和分子結(jié)構(gòu)變化特征,并結(jié)合溶解性有機碳(Dissolved Organic Carbon,DOC)和總?cè)芙庑缘═otal Dissolved Nitrogen,TDN)形態(tài)變化探索組合工藝的協(xié)同處理特性與除碳脫氮機制,以期為深度處理低碳高氨氮有機廢水提供一種新思路。
由于Fe2O3-TiO2的帶隙(3.0 eV)明顯小于納米TiO2(3.2 eV),在相同的光照時間內(nèi),F(xiàn)e2O3-TiO2對近可見光(425 nm)的吸收能力明顯高于納米TiO2,F(xiàn)e2O3-TiO2復(fù)合材料的光催化活性優(yōu)于納米TiO2,其作為光催化劑對有機污染物的降解將顯示出更高的活性,因此,本研究試驗選用Fe2O3-TiO2作為光催化劑,采用溶膠-凝膠法制備而成[12]。PSAF混凝劑購自河南泰源環(huán)??萍加邢薰荆琾H值適用范圍為5~9。原水取自福建平潭某規(guī)模化養(yǎng)豬場厭氧出水,pH值為7.8±0.1,顏色呈棕褐色。采集的廢水在3 500 r/min下離心10 min后,過0.45m CA膜,所得濾液4 ℃下保存,水樣水質(zhì)指標(biāo)見表1。
表1 水樣水質(zhì)指標(biāo) Table 1 Water quality indices for water sample mg·L-1
1.2.1 組合工藝試驗裝置及運行條件
試驗裝置主要由Fe2O3-TiO2/UV/O3光催化臭氧氧化反應(yīng)裝置和PSAF混凝裝置組成。Fe2O3-TiO2/UV/O3光催化臭氧氧化反應(yīng)裝置如圖1所示,自行設(shè)計的圓柱形石英反應(yīng)器(內(nèi)徑9 cm、壁厚4 mm、高度18 cm,有效容積約1 L)中間配置一盞11 W紫外燈并用石英套管與反應(yīng)液隔開,底部設(shè)有O3微孔曝氣板。試驗前開啟蠕動泵向反應(yīng)器進1 L左右的豬場廢水,并加入一定量的Fe2O3-TiO2催化劑,在黑暗中保持1 h,確保豬場廢水與催化劑間達吸附平衡。然后打開氧氣源臭氧發(fā)生器FL-815ET(深圳飛立),調(diào)節(jié)O3流量,產(chǎn)生的O3經(jīng)臭氧濃度分析儀、曝氣板進入反應(yīng)器反應(yīng),殘余O3經(jīng)臭氧破壞器分解為氧氣。試驗結(jié)束后取樣,并立即采用高純氮氣(99.99%)進行吹脫,終止O3反應(yīng)。PSAF混凝裝置為MY3000-6六聯(lián)攪拌機(武漢梅宇),取1 L Fe2O3-TiO2/UV/O3光催化臭氧氧化出水,投加一定量的PSAF混凝劑進行混凝試驗,設(shè)置操作條件為:先快速(300 r/min)攪拌2 min,再慢速(60 r/min)攪拌14 min,靜置沉降30 min后,在距底部5 cm處的取樣口取樣測定各指標(biāo)濃度。
1.2.2 組合工藝響應(yīng)面試驗設(shè)計及驗證
根據(jù)前期單因素(Fe2O3-TiO2投加量、O3流量、曝氣時間、PSAF用量、pH值和攪拌速率等)試驗結(jié)果,利用Design-expert8.06分析軟件進行Plackett-Burman設(shè)計,甄選確立影響COD、NH3-N去除率的4個顯著因素并進行最陡爬坡試驗,分析得出這4因素的最佳中心點,最后用分析軟件的Box-Behnken設(shè)計建立響應(yīng)曲面模型,優(yōu)化組合工藝的工況條件。試驗因素水平及編碼如表2所示。利用Box-Behnken設(shè)計建立的響應(yīng)曲面模型預(yù)測最優(yōu)的工藝參數(shù)進行3次平行試驗,取平均值,與預(yù)測的去除率進行比較,從而驗證模型的可靠性,進而得出最終優(yōu)化結(jié)果。
表2 響應(yīng)面試驗因素及水平
所有樣品經(jīng)0.45m CA膜過濾后測定各指標(biāo)濃度。CODCr、TDN、NH3-N、NO3--N、NO2--N、溶解性有機氮(Dissolved Organic Nitrogen,DON)等水質(zhì)指標(biāo)均參照《水和廢水監(jiān)測分析方法(第四版)》標(biāo)準(zhǔn)方法進行測試[13];DOC采用1020型總有機碳分析儀測定;DON組分采用LC-OCD分析儀測定;紫外-可見吸收光譜采用LAMBD A800 PE紫外可見分光光度計(美國珀金埃爾默公司)測定,并根據(jù)處理前與處理后的紫外-可見吸收光譜作差計算吸收差光譜;3DEEMs使用日立F-7000型熒光光譜分析儀測試[14]。
2.1.1 響應(yīng)面試驗結(jié)果
以Fe2O3-TiO2投加量(1)、O3流量(2)、曝氣時間(3)和PSAF用量(4)為自變量,以COD去除率(1)和NH3-N去除率(2)為響應(yīng)值,組合試驗設(shè)計及結(jié)果見表3。
2.1.2 二次響應(yīng)曲面方差分析
通過軟件Design-Expert 8.06進行數(shù)據(jù)分析,建立四元二次多項式回歸方程:
1=88.50+4.511?0.972+2.353+2.794+4.5512+
2.5713+3.0314?2.2523?2.4124+
0.4934?9.6812?6.1422?8.1932?7.3342
2=81.61+6.171+0.802?1.883+3.394+0.4312?
1.3613+1.7814+3.9023+2.5424+
1.9934?10.6312?8.8922?13.5732?15.2942
由表4可知,1模型的值為103.37,值<0.000 1,決定系數(shù)2為0.990 4,調(diào)整決定系數(shù)adj2為0.980 8,2?adj2<0.2;2模型的值為209.39,值<0.000 1,決定系數(shù)2為0.995 2,調(diào)整決定系數(shù)adj2為0.990 5,2?adj2<0.2;說明2個模型均是極顯著的,其可信度較高,模擬精確。值越大,對響應(yīng)值的影響越大,各因素影響順序從大到小依次為:Fe2O3-TiO2投加量、PSAF用量、曝氣時間、O3流量。綜上,該模型可以用來分析和預(yù)測組合工藝對COD和NH3-N的去除效果。
表3 組合試驗設(shè)計與結(jié)果
表4 組合試驗數(shù)據(jù)方差分析
2.1.3 因素效應(yīng)分析
響應(yīng)面圖是一個三維立體圖,既能反應(yīng)各因素對響應(yīng)值的影響,又能反應(yīng)各因素間的交互作用。由方差分析表4可知,F(xiàn)e2O3-TiO2投加量與O3流量、Fe2O3-TiO2投加量與PSAF用量的交互作用對COD去除影響極顯著(<0.000 1);O3流量與曝氣時間的交互作用對NH3-N去除影響極顯著(<0.000 1)。圖2顯示響應(yīng)曲面呈上凸?fàn)?,等高線呈橢圓狀,表明所選自變量間交互效應(yīng)顯著。
由圖2a、2b可知,在試驗條件范圍內(nèi),COD去除率隨Fe2O3-TiO2投加量、O3流量以及PSAF用量的增加呈先增大后減小的變化趨勢,在1.04~1.12 g/L Fe2O3-TiO2投加量、2.90~3.10 g/h O3流量及800~900 mg/L PSAF用量范圍內(nèi)達到最大值。這是因為Fe2O3-TiO2和O3濃度影響催化活性位,在一定范圍內(nèi)提高Fe2O3-TiO2和O3濃度可增加催化活性位,但隨著其濃度的增加,水體濁度和氣泡體積分數(shù)也隨之增加,形成的光散射效應(yīng)增強導(dǎo)致光穿透受到阻礙,從而影響Fe2O3-TiO2活性位點的激活效率[15]。此外,F(xiàn)e2O3-TiO2的pHpzc(等電點)為5.8,在原水pH值條件下由于Fe-O-和Ti-O-的形成,F(xiàn)e2O3-TiO2表現(xiàn)出負Zeta電位[16],在一定范圍內(nèi)提高Fe2O3-TiO2和PSAF用量可增強吸附電中和作用,但隨著Fe2O3-TiO2與PSAF投加量的增加,固體顆粒碰撞機率也隨之增加,使已脫穩(wěn)的含有機物膠狀顆粒達到另一種穩(wěn)定狀態(tài),不易凝聚,從而影響COD的去除。
由圖2c可知,在試驗條件范圍內(nèi),NH3-N去除率隨O3流量、曝氣時間的增加呈先增大后減小的變化趨勢,在2.90~3.10 g/h O3流量、84~96 min曝氣時間范圍內(nèi)達到最大值。O3鼓泡曝氣可保持Fe2O3-TiO2懸浮并與廢水混合均勻,通過傳質(zhì)平衡將有機污染物與O3分子轉(zhuǎn)移到Fe2O3-TiO2表面,隨著O3流量的增大,NH3-N去除率增大[17];然而,過高的O3流量會增加水體氣泡體積分數(shù),增強光散射效應(yīng),導(dǎo)致NH3-N去除率降低。
2.1.4 響應(yīng)面優(yōu)化結(jié)果及模型驗證
通過求解四元二次多項式模型的極值,得到該模型最大COD和NH3-N去除率分別為89.46%和82.70%,優(yōu)化工況條件為:Fe2O3-TiO2投加量1.06 g/L、O3流量3.02 g/h、曝氣時間90.75 min,PSAF投加量833.29 mg/L。為了對該預(yù)測結(jié)果進行驗證,在上述工況條件下進行3組平行試驗,得到COD、NH3-N平均去除率分別為88.79%和82.24%,與模型得到的預(yù)測值偏差0.75%和0.56%,低于5%,說明模型對試驗結(jié)果具有良好的預(yù)測效果,具有一定的指導(dǎo)意義。
為進一步明確組合工藝的協(xié)同增效機制,以下對DOM的去除機制進行深入探討。
2.2.1 3DEEMs變化特征
DOM是影響廢水深度處理效率的關(guān)鍵物質(zhì),其濃度與3DEEMs圖譜中熒光峰強度具有一定相關(guān)性。根據(jù)Chen等[18]區(qū)域熒光分類,原水的3DEEMs光譜圖顯示(圖3a):DOM主要為溶解性微生物代謝產(chǎn)物(Ⅳ)和腐殖酸類(Ⅴ),其他類物質(zhì)含量較低。在研究確立的工況條件下,各處理水樣的總熒光強度衰減趨勢從大到小依次為:Fe2O3-TiO2/UV/O3+PSAF、Fe2O3-TiO2/UV/O3、PSAF。與原水相比,F(xiàn)e2O3-TiO2/UV/O3出水中Ⅴ類物質(zhì)削減效果顯著且熒光峰位置發(fā)生了較為明顯的藍移(圖3b),說明苯環(huán)及共軛雙鍵數(shù)量減少,含氧官能團在苯環(huán)上的數(shù)量增加[19];PSAF出水的總熒光強度變化不大,但Ⅳ類物質(zhì)的熒光強度有所減弱(圖3c),說明PSAF對Ⅳ類物質(zhì)有較好的混凝效果;Fe2O3-TiO2/UV/O3+PSAF出水的總熒光強度下降最為顯著(圖3d),說明組合工藝對溶解性微生物代謝產(chǎn)物和類腐殖酸降解優(yōu)勢明顯,與臭氧/催化劑-BAF組合工藝的處理特性類似[20],F(xiàn)e2O3-TiO2/UV/O3預(yù)氧化單元通過破壞或改變Ⅴ類大分子物質(zhì)的結(jié)構(gòu),將其轉(zhuǎn)化為具有活性基團(如羧基、羥基和氨基等)的Ⅳ類物質(zhì),提高了Ⅳ類物質(zhì)的占比,強化了水中“三價金屬離子-Ⅳ類物質(zhì)-膠體物質(zhì)”的吸附架橋和電性中和作用,利于PSAF混凝去除。
2.2.2 特征分子結(jié)構(gòu)分析
各處理的紫外–可見吸收差光譜見圖4。Fe2O3-TiO2/UV/O3及Fe2O3-TiO2/UV/O3+PSAF出水的吸收差譜圖形狀相似,均在200 nm附近有顯著升高,239~400 nm范圍內(nèi)有明顯降低;PSAF出水的吸收差譜圖僅在200 nm附近有所降低。有研究認為200 nm附近主要為NO3--N、小分子有機物的吸收[21],239~400 nm為苯環(huán)類化合物的吸收[22]。Fe2O3-TiO2/UV/O3出水在200和239~400 nm的特異性變化表明NO3--N和小分子物質(zhì)的生成與腐殖質(zhì)類物質(zhì)(以苯環(huán)為核心的芳香族結(jié)構(gòu)[23])的降解密切相關(guān),間接證實了圖4b中Ⅴ類物質(zhì)熒光強度的衰減。與Fe2O3-TiO2/UV/O3出水相比,F(xiàn)e2O3-TiO2/UV/O3+ PSAF出水在200nm附近有明顯降低,說明Fe2O3-TiO2/UV/O3預(yù)氧化生成的NO3--N、小分子物質(zhì)在PSAF混凝單元得到了有效去除,約為PSAF出水的5倍多。Fe2O3-TiO2/UV/O3預(yù)氧化與PSAF混凝的協(xié)同交互作用體現(xiàn)在以下三方面:1)Fe2O3-TiO2/UV/O3通過改變大分子有機物的結(jié)構(gòu),提高了有機物的極性和氧碳比,利于PSAF混凝去除[24];2)Fe2O3-TiO2/UV/O3將大分子有機物轉(zhuǎn)化為小分子有機物,降低了有機物的靜電斥力和空間位阻,促進了PSAF混凝作用[25];3)Fe2O3-TiO2/UV/O3破壞了膠體表面有機物的結(jié)構(gòu),降低了它們的雙電層排斥作用,提高了膠體顆粒在PSAF混凝中的聚集效應(yīng)[26]。
2.2.3 DOC及TDN形態(tài)變化
為進一步量化分析DOM的去除特征,分析了各處理的DOC及TDN形態(tài)變化。由圖5可知,原水中的類腐殖質(zhì)物質(zhì)占DOC的65.4%,NH3-N、DON占TDN的66.8%和29.6%。不同處理的DOC、DON和TDN的變化趨勢與3DEEMs的變化趨勢基本一致。Fe2O3-TiO2/UV/O3出水的DOC、DON和TDN去除率分別為57.9%、48.3%和39.7%,NO3--N含量為原水的5.8倍左右,N2轉(zhuǎn)化率達39.71%,為Co3O4催化O3氧化氨氮對應(yīng)轉(zhuǎn)化率[27](17.2%)的2.3倍;PSAF出水的DOC、DON和TDN去除率較低,僅為12.0%、2.0%和15.5%;Fe2O3-TiO2/UV/O3+PSAF出水的DOC、DON和TDN去除率達77.7%、81.8%和82.6%,高于單獨Fe2O3-TiO2/UV/O3與單獨PSAF的簡單相加,協(xié)同效應(yīng)明顯。
為了更好地定量分析該協(xié)同作用,引入?yún)f(xié)同因子,計算公式如式(1)。
=(Fe2O3-TiO2/UV/O3+PSAF)/
(Fe2O3-TiO2/UV/O3+PSAF) (1)
式中Fe2O3-TiO2/UV/O3+PSAF、Fe2O3-TiO2/UV/O3、PSAF分別表示相應(yīng)處理的DOC、DON及TDN去除率。
據(jù)式(1)得出DOC、DON和TDN的協(xié)同因子分別為1.11、1.63和1.50,說明Fe2O3-TiO2/UV/O3預(yù)氧化顯著提高了PSAF對DON、TDN及DOC的去除效果,脫氮效應(yīng)強于除碳。組合工藝的協(xié)同除碳脫氮機制為:UV照射Fe2O3-TiO2催化劑產(chǎn)生光生e-和+,O3在Fe2O3-TiO2表面與e-發(fā)生一系列鏈?zhǔn)椒磻?yīng)生成·OH,降低了e-與+的復(fù)合機率[10]。存在于Fe2O3-TiO2/UV/O3氧化體系的O3、·OH和+三種活性物種協(xié)同破壞或改變水中有機污染物的表面結(jié)構(gòu)和性狀,含有不飽和碳(C═C)的芳香化合物(如:類腐殖質(zhì))逐漸被氧化為含羰基碳(C═O)或羧基碳(O─C═O)的小分子物質(zhì)[22],甚至直接被礦化為CO2和H2O,NH3-N被氧化為NO3--N和N2,提高了富氧官能團的數(shù)量,促進了氮素的轉(zhuǎn)化和礦化;在弱堿性條件下,PSAF水解生成線形多核羥基聚合物,含有富氧官能團的小分子物質(zhì)與Fe3+、Al3+發(fā)生鍵橋或雙齒絡(luò)合作用、NO3--N與Fe3+、Al3+發(fā)生電性中和作用共同吸附于多核羥基聚合物表面[28];小分子有機物間以范德華力、π-π鍵以及氫鍵等較弱的作用力結(jié)合成鏈狀與大分子有機物一起被多核羥基聚合物網(wǎng)捕卷掃沉于底泥中去除。研究結(jié)果從碳、氮循環(huán)角度解析了組合工藝的協(xié)同交互作用機制,也進一步佐證了2.2.1及2.2.2中各處理體系熒光峰和吸收峰對應(yīng)的特征分子結(jié)構(gòu)變化。
為充分利用豬場廢水中的營養(yǎng)物質(zhì),諸多研究學(xué)者從資源化利用角度采用小球藻凈化豬場廢水獲取生物量,但小球藻生長條件嚴苛。為此,Huo等[29]構(gòu)建了H2O2催化電芬頓混凝+小球藻凈化系統(tǒng),在豬場廢水稀釋兩倍的情況下,電芬頓混凝過程對COD去除率達88.4%,小球藻凈化過程對NH3-N去除率僅為27.5%,脫氮效應(yīng)遠低于除碳;但其巧妙之處在于充分利用了電芬頓混凝過程·OH的強氧化性和多羥基鐵聚合物的混凝特性,將沼液中的大分子降解為小分子物質(zhì),降低了色度和濁度,提高了小球藻對光、小分子物質(zhì)的吸收和耐高氨氮(約(1 195±20)mg/L)性能。為提高除碳脫氮效率,眾多研究學(xué)者提出了不同類型的高級氧化與混凝相結(jié)合的處理工藝技術(shù)解決方案。劉冰等[30]研究發(fā)現(xiàn),臭氧易與芳香環(huán)發(fā)生反應(yīng)生成小分子有機物,臭氧預(yù)氧化可提高混凝除碳脫氮效果。在pH值為7.4時,臭氧預(yù)氧化+混凝組合工藝對DOC和DON去除率分別為46%和49%。本工藝技術(shù)在Fe2O3-TiO2催化劑和UV照射的協(xié)同交互作用下,具有偶極子特性的O3從氣相向液相溶解再向Fe2O3-TiO2表面轉(zhuǎn)移并產(chǎn)生·OH與+等活性物種,實現(xiàn)了以·OH氧化為主的間接氧化[31-32],DOC和DON去除率分別達77.7%和81.8%,比劉冰等研究結(jié)果分別高68.9%和66.9%。閆婭慧等[33]采用混凝+臭氧/活性炭聯(lián)合處理反滲透濃水,結(jié)果顯示以活性炭為催化劑促進了O3分解生成·OH,但仍以臭氧直接氧化為主,而且混凝前置會導(dǎo)致臭氧催化氧化產(chǎn)物殘留于水體,從而影響除碳脫氮性能。本研究的工藝技術(shù),是在光催化臭氧間接氧化的基礎(chǔ)上進行混凝反應(yīng),不僅提高了臭氧催化氧化對有機污染物的氧化效率,而且增強了混凝對氧化產(chǎn)物的絡(luò)合和吸附作用,具有梯度去除污染物、工藝搭配合理、除碳脫氮較為徹底等技術(shù)優(yōu)勢,但反應(yīng)后的懸浮態(tài)Fe2O3-TiO2催化劑未進行分離回收,今后可借鑒Xu等[34]研究思路將納米Fe2O3-TiO2催化劑涂敷固定于活性炭或薄膜上,實現(xiàn)催化劑循環(huán)利用,降低處理成本,提高工程應(yīng)用前景。
1)應(yīng)用BBD響應(yīng)面法優(yōu)化確立了Fe2O3-TiO2/ UV/O3+PSAF組合工藝的工況條件:Fe2O3-TiO2投加量1.06 g/L、O3流量3.02 g/h、曝氣時間90.75 min、PSAF用量833.29 mg/L。Fe2O3-TiO2投加量與O3流量、Fe2O3-TiO2投加量與PSAF用量的交互作用對COD去除影響極顯著;O3流量與曝氣時間的交互作用對NH3-N去除影響極顯著。
2)3DEEMs顯示豬場廢水中主要含有溶解性微生物代謝產(chǎn)物和類腐殖質(zhì),采用UV-Vis解析了組合工藝協(xié)同處理廢水中溶解性微生物代謝產(chǎn)物和類腐殖質(zhì)的工藝技術(shù)特性及規(guī)律,其中Fe2O3-TiO2/UV/O3對類腐殖質(zhì)削減效果顯著,類腐殖質(zhì)逐漸轉(zhuǎn)化為NO3--N和小分子物質(zhì),且在PSAF混凝過程得到了有效去除,DOC和TDN去除率分別達77.7%和82.6%,協(xié)同互補作用明顯。
3)通過分析碳、氮形態(tài)變化探明了組合工藝的協(xié)同除碳脫氮機制,F(xiàn)e2O3-TiO2/UV/O3氧化體系中的O3、·OH與+協(xié)同作用將類腐殖質(zhì)等大分子物質(zhì)降解為小分子物質(zhì),提高了有機物的極性和含氧官能團數(shù)量,促進了氮素的轉(zhuǎn)化和礦化,為PSAF混凝創(chuàng)造了良好的進水條件,利于氧碳比較高的有機物和硝態(tài)氮無機物在PSAF混凝體系分別通過雙齒絡(luò)合和電性中和作用吸附于多核羥基聚合物表面沉于底泥中去除。
[1] 中華人民共和國生態(tài)環(huán)境部,國家統(tǒng)計局,中華人民共和國農(nóng)業(yè)農(nóng)村部. 第二次全國污染源普查公報[EB/OL]. [2020-07-26]. http: //www.eco.gov.cn/news/34155.html.
[2] Kim H C, Choi W J, Chae A N, et al. Evaluating integrated strategies for robust treatment of high saline piggery wastewater[J]. Water Research, 2016, 89: 222-231.
[3] 楊世東,陶文鑫,崔鑫鑫,等. 海綿鐵緩解污水厭氧氨氧化反應(yīng)器中硝酸鹽積累的效果[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(22):185-190.
Yang Shidong, Tao Wenxin, Cui Xinxin, et al. Sponge iron reliefing nitrate accumulation in wastewater anaerobic ammonium oxide reactor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 185-190. (in Chinese with English abstract)
[4] Zheng T, Li P, Ma X, et al. Pilot-scale experiments on multilevel contact oxidation treatment of poultry farm wastewater using saran lock carriers under different operation model[J]. Journal of Environmental Science, 2019, 77: 336-345.
[5] 劉向陽,張千,羅萬東,等. 菌劑掛膜3D-RBC聯(lián)合BCO工藝處理養(yǎng)豬沼液廢水[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(20):49-56.
Liu Xiangyang, Zhang Qian, Luo Wandong, et al. Treatment of pig biogas slurry wastewater by microbial inoculum 3D-RBC combined with BCO process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(20): 49-56. (in Chinese with English abstract)
[6] Luo Z, Wang D, Zeng W, et al. Removal of refractory organics from piggery bio-treatment effluent by the catalytic ozonation process with piggery biogas residue biochar as the catalyst[J]. Science of the Total Environment, 2020, 734: 139448.
[7] Kuang C, Xu Y, Xie G, et al. Preparation of CeO2-doped carbon nanotubes cathode and its mechanism for advanced treatment of pig farm wastewater[J]. Chemosphere, 2020, 262: 128215.
[8] 汪文強,王電站,顏成,等. 常規(guī)生化/物化工藝處理豬場廢水效果及存在問題[J]. 中國給水排水,2019,35(21):24-31.
Wang Wenqiang, Wang Dianzhan, Yan Cheng, et al. Efficiency and problems in conventional biochemical/ physicochemical combined process for swine wastewater treatment[J]. China Water & Wastewater, 2019, 35(21): 24-31. (in Chinese with English abstract)
[9] Zhang Y J, Yang Z H, Song P P, et al. Application of TiO2-organobentonite modified by cetyltrimethylammonium chloride photocatalyst and polyaluminum chloride coagulant for pretreatment of aging landfill leachate[J]. Environmental Science and Pollution Research. 2016, 23(18): 18552-18563.
[10] Jiang H B, Zhang R, Hao J L, et al. Design, preparation, characterization, and application of MnxCu1-xOy/- Al2O3catalysts in ozonation to achieve simultaneous organic carbon and nitrogen removal in pyridine wastewater[J]. The Science of the Total Environment, 2021, 774: 145189.
[11] ?uligoj A, Kete M, ?ernigoj U, et al. Synergism in TiO2photocatalytic ozonation for the removal of dichloroacetic acid and thiacloprid[J]. Environmental Research, 2021, 197: 110982.
[12] 陳彪. 一種改性二氧化鈦螯合聚硅酸鋁鐵的污水凈化劑:ZL201710502601.6[P]. 2019-08-27.
[13] 國家環(huán)境保護總局. 水和廢水監(jiān)測分析方法(第四版)[M]. 北京:中國環(huán)境科學(xué)出版社,2002.
[14] 張文浩,趙鐸霖,王曉毓,等. 太白山自然保護區(qū)水體CDOM吸收與三維熒光特征[J]. 環(huán)境科學(xué),2020,41(11):4958-4969.
Zhang Wenhao, Zhao Duolin, Wang Xiaoyu, et al. Absorption and three dimensional fluorescence spectra of CDOM in the water of the Taibaishan Nature Reserve[J]. Environmental Science, 2020, 41(11): 4958-4969. (in Chinese with English abstract)
[15] Subramonian W, Wu T Y, Chai S P. Photocatalytic degradation of industrial pulp and paper mill effluent using synthesized magnetic Fe2O3-TiO2: Treatment efficiency and characterizations of reused photocatalyst[J]. Journal of Environmental Management, 2017, 187: 298-310.
[16] Han C, Jing M X, Yang H, et al. An overlapped Nano-Fe2O3/TiO2composite coating on activated carbon fiber membrane with enhanced photocatalytic performance[J]. Journal of Nanoscience and Nanotechnology, 2019, 19(11): 7123-7130.
[17] Wang Z Y, Zhang Y, Li K L, et al. Enhanced mineralization of reactive brilliant red X-3B by UV driven photocatalytic membrane contact ozonation[J]. Journal of Hazardous Materials, 2020, 391: 122194.
[18] Chen W, Westerhoff P, Leenheer J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science and Technology, 2015, 37(24): 5701-5710.
[19] 袁博,吳巍,郭夢京,等. 灞河溶解性有機質(zhì)三維熒光光譜特征及相對分子質(zhì)量分布研究[J]. 安全與環(huán)境學(xué)報,2020,20(2):719-728.
Yuan Bo, Wu Wei, Guo Mengjing, et al. 3D fluorescence spectroscopic characteristics and relative molecular mass distribution of riverine dissolved organic matter in Bahe River, Xi’an, Shaanxi[J]. Journal of Safety and Environment, 2020, 20(2): 719-728. (in Chinese with English abstract)
[20] 付麗亞,吳昌永,周鑒,等. 3種一體式臭氧-BAF工藝對石化廢水生化出水有機物去除特性比較研究[J]. 環(huán)境工程技術(shù)學(xué)報,2021,11(1):135-143.
Fu Liya, Wu Changyong, Zhou Jian, et al. Comparison study of organics removal characteristcs by three kinds of integrated ozone-BAF processes treating biochemical effluent of petrochemical wastewater[J]. Journal of Environmental Engineering Technology, 2021, 11(1): 135-143. (in Chinese with English abstract)
[21] 李晴,劉書明,趙欣,等. 不同深度處理工藝再生水中余氯衰減規(guī)律及溶解性有機物變化特性比較[J]. 環(huán)境科學(xué)學(xué)報,2015,35(8):2387-2392.
Li Qing, Liu Shuming, Zhao Xin, et al. Comparison of residual chlorine decay in different reclaimed water and the relationship with the change in DOM[J]. Acta Scientiae Circumstantiae, 2015, 35(8): 2387-2392. (in Chinese with English abstract)
[22] Fathinia M, Khataee A, Vahid B, et al. Scrutinizing the vital role of various ultraviolet irradiations on the comparative photocatalytic ozonation of albendazole and metronidazole: Integration and synergistic reactions mechanism[J]. Journal of Environmental Management, 2020, 272: 111044.
[23] Li J C, Wang L Y, Geng J J, et al. Distribution and removal of fluorescent dissolved organic matter in 15 municipal wastewater treatment plants in China[J]. Chemosphere, 2020, 251: 126375.
[24] 李勝楠,耿金菊,李玨純,等.制藥廢水二級出水中溶解性有機物混凝去除特性研究[J]. 環(huán)境科學(xué)學(xué)報,2019,39(10):3364-3373.
Li Shengnan, Geng Jinju, Li Juechun, et al. A study on the characteristics of dissolved organic matters and their removal in the secondary treatment effluent of pharmaceutical wastewater by coagulation[J]. Acta Scientiae Circumstantiae, 2019, 39 (10): 3364-3373. (in Chinese with English abstract)
[25] 王敬博,張林楠,李振山. 滲濾液生化出水DOM在深度混凝過程中的去除特征[J]. 北京大學(xué)學(xué)報:自然科學(xué)版,2018,54(3):633-643.
Wang Jingbo, Zhang Linnan, Li Zhenshan. Removal features of DOM in Bio-Treated effluents by enhanced coagulation process[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54(3): 633-643. (in Chinese with English abstract)
[26] 潘碌亭,王文蕾,余波. 接觸氧化-強化混凝工藝處理崇明農(nóng)村生活污水特性[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(9):242-247.
Pan Luting, Wang Wenlei, Yu Bo. Characteristics of rural domestic sewage processed with contact oxidation-enhanced coagulation in Chongming island[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(9): 242-247. (in Chinese with English abstract)
[27] 樊佳煒,武海霞,陳衛(wèi)剛. 氨氮廢水的高級氧化處理技術(shù)研究進展[J]. 南京工業(yè)大學(xué)學(xué)報:自然科學(xué)版,2020,42(2):142-151.
Fan Jiawei, Wu Haixia, Chen Weigang. Reasearch progress on advanced oxidation technology for ammonia nitrogen wastewater[J]. Journal of Nanjing Tech University: Natural Science Edition, 2020, 42(2): 142-151. (in Chinese with English abstract)
[28] Regueiro I, Coutinho J, Fangueiro D. Alternatives to sulfuric acid for slurry acidification: impact on slurry composition and ammonia emissions during storage[J]. Journal of Cleaner Production, 2016, 131: 296-307.
[29] Huo S, Necas D, Zhu F, et al.Anaerobic digestion wastewater decolorization by H2O2-enhanced electro-Fenton coagulation following nutrients recovery via acid tolerant and protein-rich Chlorella production[J]. Chemical Engineering Journal, 2020, 406: 127160.
[30] 劉冰,鄭煜銘,王大祥,等. 臭氧預(yù)氧化強化混凝對二級出水中DON作用機制探討[J]. 環(huán)境科學(xué),2017,38(12):5106-5115.
Liu Bing, Zheng Yuming, Wang Daxiang, et al. Mechanism of pre-ozonation enhanced coagulation on DON in the secondary effluent[J]. Environmental Science, 2017, 38(12): 5106-5115. (in Chinese with English abstract)
[31] 田玲玉. 光催化-臭氧協(xié)同處理有機污染物的研究[D]. 唐山:華北理工大學(xué),2019.
Tian Lingyu. Study on Ozone-photocatalytic Degradation of Organic Pollutants[D]. Tangshan: North China University of Science and Technology, 2019. (in Chinese with English abstract)
[32] Liu B, Chen B, Zhang B, et al. Photocatalytic ozonation of offshore produced water by TiO2nanotube arrays coupled with UV-LED irradiation[J]. Journal of Hazardous Materials, 2021, 402: 123456.
[33] 閆婭慧. 混凝-臭氧聯(lián)合處理煤化工反滲透濃水[D]. 武漢:華中科技大學(xué),2018.
Yan Yahui. Treatment of Reverse Osmosis Concentrate From Coal Chemical Industry Using the Combination of Coagulation and Ozonation[D]. Wuhan: Huazhong University of Science and Technology, 2018. (in Chinese with English abstract)
[34] Xu F, Wang C, Xiao K, et al.Investigation of titanium dioxide/tungstic acid-based photocatalyst for human excrement wastewater treatment[J]. Acta Astronautica, 2018, 146: 7-14.
Effects and mechanism of carbon and nitrogen removal of wastewater using Fe2O3-TiO2/UV/O3+PSAF treatment on a swine farm
Xiao Yanchun1,2, Chen Biao1※, Huang Jing1, Liu Ruilai3
(1.,,350003,; 2.,,350300,;3.,,354300,)
Wastewater in livestock and poultry farming is the top priority to prevent and control the non-point source pollution in modern agriculture, due mainly to its high concentrations of nitrogen, suspended solids, and organic matter. In this research, a combined treatment was proposed to assemble Fe2O3-TiO2photocatalytic ozonation and polyaluminum ferric silicate coagulant (Fe2O3-TiO2/UV/O3+PSAF), in order to achieve the deep decarbonization and denitrification of swine farm wastewater with low-carbon and high-ammonia-nitrogen (NH3-N) content. Response Surface Method (RSM) was employed to optimize the operating conditions of the combined process: the dosage of Fe2O3-TiO2was 1.06 g/L, the flow rate of O3was 3.02 g/h, the aeration time was 90.75 min, and the dosage of aluminum ferropolysilicate (PSAF) was 833.29 mg/L. The experimental value (COD: 88.79%; NH3-N: 82.24%) and the model predicted value (COD: 89.46%; NH3-N: 82.70%) were deviated by 0.75% and 0.56%, lower than 5%, indicating the excellent performance of the model. The interaction of composite factors demonstrated that the COD removal rate increased firstly, and then decreased with the increase of Fe2O3-TiO2dosage, O3flow rate and PSAF dosage, and finally peaked at the maximum in the range of 1.04-1.12 g/L Fe2O3-TiO2dosage, 2.90-3.10 g/h O3flow rate and 800-900 mg/L PSAF dosages. The NH3-N removal rate increased first and then decreased, with the increase of O3flow rate and aeration time, and finally reached the maximum in the range of 2.90-3.10 g/h O3flow rate and 84-96 min aeration time. Furthermore, three-dimensional fluorescence spectroscopy (3DEEMs) and ultraviolet-visible absorption difference spectroscopy (UV-Vis) were utilized to analyze the variation characteristics of fluorescence and molecular structures of Dissolved Organic Matter (DOM) in wastewater. The features and mechanism of carbon and nitrogen removal in the combined treatment were elucidated using the morphological changes of Dissolved Organic Carbon (DOC) and the Total Dissolved Nitrogen (TDN). A remarkable effect was achieved under the optimal operating conditions, particularly on the treatment of soluble microbial metabolites and humus-like substances in swine farm wastewater. Specifically, the removal rates of DOC and TDN were 77.7% and 82.6%, and the synergy factors were 1.11 and 1.50, respectively. Anyway, the Fe2O3-TiO2/UV/O3unit behaved substantially reduced humus-like substances. Humus-like substances were transformed into small molecules through synergistic oxidation by O3,·OH andh, where NH3-N was oxidized to NO3--N and N2(N2conversion rate was 39.71%), indicating the improved polarity of organic matter and the number of oxygen-containing functional groups. As such, the conversion and mineralization of nitrogen was promoted to create great water inlet conditions for PSAF coagulation. The removal of organic matter was facilitated with high oxygen and carbon ratio, as well as inorganic nitrate nitrogen using the bidentate complexation and electrical neutralization, where the surface of polynuclear hydroxyl polymer was used to adsorb, and finally to deposit in the bottom sludge in the PSAF coagulation system. This finding can provide a novel idea for the advanced treatment of low-carbon and high-ammonia-nitrogen organic wastewater, particularly for the control of agricultural non-point source pollution and ecological treatment of the water environment.
wastewater; swine farm; photocatalytic ozone oxidation; coagulation; 3DEEMs;UV-Vis; DOC; TDN; DOM
肖艷春,陳彪,黃婧,等. Fe2O3-TiO2/UV/O3+PSAF協(xié)同處理豬場廢水效果及其除碳脫氮機制[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(13):224-231.
10.11975/j.issn.1002-6819.2021.13.026 http://www.tcsae.org
Xiao Yanchun, Chen Biao, Huang Jing, et al.Effects and mechanism of carbon and nitrogen removal of wastewater using Fe2O3-TiO2/UV/O3+PSAF treatment on a swine farm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(13): 224-231. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.13.026 http://www.tcsae.org
2021-02-24
2021-06-20
福建省自然科學(xué)基金項目(2020J011374);福建省省屬公益類科研專項(2018R1014-2;2020R1032002;2020R1032006);福建技術(shù)師范學(xué)院近海流域環(huán)境測控治理福建省高校重點實驗室開放基金(S1-KF1903)
肖艷春,助理研究員,研究方向為農(nóng)業(yè)環(huán)境污染治理與資源化利用。Email:523913032@qq.com
陳彪,副研究員,研究方向為農(nóng)業(yè)環(huán)境污染治理與資源化利用。Email:FAASHJKXGroup@163.com
10.11975/j.issn.1002-6819.2021.13.026
X713
A
1002-6819(2021)-13-0224-08