范秀梅,張勝茂,崔雪森,楊勝龍
?農(nóng)業(yè)信息與電氣技術(shù)?
浙江省近海漁運(yùn)船轉(zhuǎn)載信息提取
范秀梅,張勝茂※,崔雪森,楊勝龍
(中國(guó)水產(chǎn)科學(xué)研究院東海水產(chǎn)研究所,農(nóng)業(yè)農(nóng)村部遠(yuǎn)洋與極地漁業(yè)創(chuàng)新重點(diǎn)實(shí)驗(yàn)室,上海 200090)
漁運(yùn)船是從事漁獲物運(yùn)輸?shù)膶S么?,能夠提高捕撈漁船作業(yè)效率,增加捕撈漁船的作業(yè)強(qiáng)度。為掌握漁運(yùn)船在海上的轉(zhuǎn)載情況,從而間接了解捕撈漁船作業(yè)強(qiáng)度,該研究提出一種基于北斗船位數(shù)據(jù)的以設(shè)定航速閾值、距離閾值和時(shí)間閾值來(lái)提取漁運(yùn)船轉(zhuǎn)載信息的方法。如果漁運(yùn)船和捕撈漁船距離小于50 m,且期間有持續(xù)3條以上的船舶監(jiān)控系統(tǒng)(Vessel Monitoring Systems,VMS)記錄,則認(rèn)為可能發(fā)生了1次轉(zhuǎn)載,并記錄下相遇的時(shí)長(zhǎng)、船名、空間位置。以浙江省為例,利用該方法從2018年浙江省的北斗船位數(shù)據(jù)中提取漁運(yùn)船的海上轉(zhuǎn)載信息,并進(jìn)行統(tǒng)計(jì)分析。結(jié)果表明,有轉(zhuǎn)載記錄的漁運(yùn)船808條,參與轉(zhuǎn)載的捕撈漁船3 548條,共轉(zhuǎn)載28 916次。漁運(yùn)船停船轉(zhuǎn)載占比21.0%,以1~1.4 m/s低速航行的作業(yè)狀態(tài)轉(zhuǎn)載占比53.7%,轉(zhuǎn)載時(shí)長(zhǎng)小于12.5 min的占比81.3%,同時(shí)得到漁運(yùn)船轉(zhuǎn)載的熱點(diǎn)分布,轉(zhuǎn)載累積時(shí)長(zhǎng)最長(zhǎng)的空間網(wǎng)格為122.5°E~123°E,31.5°N~32°N,轉(zhuǎn)載累積時(shí)長(zhǎng)187 h,其次為122°E~122.5°E,28°N~28.5°N,轉(zhuǎn)載累積時(shí)長(zhǎng)150 h。通過(guò)分析漁運(yùn)船海上轉(zhuǎn)載位置和轉(zhuǎn)載累積時(shí)長(zhǎng)的空間分布情況可掌握捕撈漁船作業(yè)的時(shí)空變化特點(diǎn),為漁業(yè)限額捕撈精細(xì)化管理提供依據(jù)。
漁船;漁業(yè);北斗衛(wèi)星導(dǎo)航系統(tǒng);船舶監(jiān)控系統(tǒng);轉(zhuǎn)載
漁獲物漁運(yùn)船(以下簡(jiǎn)稱漁運(yùn)船)屬于捕撈輔助船的一種,可同時(shí)為多艘捕撈漁船提供補(bǔ)給和轉(zhuǎn)載漁獲。漁運(yùn)船進(jìn)行漁獲的轉(zhuǎn)載一般在離港口較遠(yuǎn)的海上,其中轉(zhuǎn)載地點(diǎn)為漁運(yùn)船與漁船在海上會(huì)合后進(jìn)行漁獲轉(zhuǎn)載的地點(diǎn)[1]。漁運(yùn)船可以節(jié)省海洋捕撈機(jī)動(dòng)漁船(以下簡(jiǎn)稱捕撈漁船)往返漁港的航行時(shí)間,減少燃油消耗,增加作業(yè)時(shí)間,提高捕撈漁船作業(yè)效率,但也增加了漁船的捕撈強(qiáng)度,降低了捕撈漁船作業(yè)的透明度和漁獲物來(lái)源的可追溯性,增加了漁業(yè)資源管理的難度[2-3]。
船舶自動(dòng)識(shí)別系統(tǒng)(Automatic Identification System,AIS)和船舶監(jiān)控系統(tǒng)(Vessel Monitoring Systems,VMS)提供了海量的漁船(漁運(yùn)船、捕撈漁船)的船位數(shù)據(jù),包括時(shí)間、位置和速度等信息[4-5]。捕撈漁船的船位數(shù)據(jù)已被廣泛用來(lái)識(shí)別漁船作業(yè)類型[6]和作業(yè)狀態(tài)[7-8],計(jì)算捕撈努力量[9-12]等,漁運(yùn)船船位數(shù)據(jù)的研究近些年也逐漸增多。Miller等[1, 13-15]開(kāi)發(fā)了基于漁船AIS軌跡數(shù)據(jù)庫(kù),自動(dòng)探測(cè)和顯示遠(yuǎn)洋捕撈漁船(拖網(wǎng)、延繩釣、魷釣、圍網(wǎng))與漁運(yùn)船在海上會(huì)合轉(zhuǎn)載的機(jī)器學(xué)習(xí)算法,可得到全球遠(yuǎn)洋漁獲轉(zhuǎn)載的熱點(diǎn)區(qū)等。基于2012-2017年全球漁船與漁運(yùn)船的AIS的軌跡數(shù)據(jù),Kristina等[14]從220億條AIS船位記錄中查到501條漁運(yùn)船與1 856條捕撈漁船相遇,約發(fā)生10 510次轉(zhuǎn)載事件,其中35%的轉(zhuǎn)載發(fā)生在公海,65%在專屬經(jīng)濟(jì)區(qū)(Exclusive Economic Zones, EZZ)。
基于北斗衛(wèi)星導(dǎo)航系統(tǒng)的VMS在國(guó)內(nèi)漁業(yè)中的應(yīng)用起步較晚,但發(fā)展較快[16-18],目前國(guó)內(nèi)安裝北斗VMS終端的近海捕撈漁船和漁運(yùn)船已超過(guò)7萬(wàn)艘[19],初步實(shí)現(xiàn)了對(duì)船舶的實(shí)時(shí)聯(lián)絡(luò)及跟蹤監(jiān)控[20],同時(shí)也已累積了大量具有時(shí)空特性的船位數(shù)據(jù)。對(duì)捕撈漁船的北斗船位數(shù)據(jù)進(jìn)行統(tǒng)計(jì)和挖掘分析已經(jīng)有一些相關(guān)的研究成果[21-24],但對(duì)漁運(yùn)船北斗船位數(shù)據(jù)的分析還未見(jiàn)有相關(guān)研究。為獲得近海漁運(yùn)船的轉(zhuǎn)載信息,本文以浙江省2018年北斗船位數(shù)據(jù)為例,提出了一種漁運(yùn)船海上轉(zhuǎn)載特征信息提取和分析的方法,以期為漁業(yè)資源可持續(xù)利用和管理政策制定提供參考。
北斗VMS船位數(shù)據(jù)由北斗民用分理服務(wù)商提供,數(shù)據(jù)的時(shí)間分辨率約為3 min,空間分辨率約為10 m,測(cè)速精度約為0.2 m/s。數(shù)據(jù)的文件名為年份+船名,一條船對(duì)應(yīng)于一個(gè)文件,文件中的信息包括船名、時(shí)間、經(jīng)度、緯度、航速、航向等。文中使用的數(shù)據(jù)為浙江省2018年漁運(yùn)船和捕撈漁船的北斗VMS船位數(shù)據(jù)。原始數(shù)據(jù)存儲(chǔ)在.csv文件中,每次讀取時(shí)都需要轉(zhuǎn)變變量類型,而將字符串變量轉(zhuǎn)變?yōu)槿掌陬愋洼^耗時(shí)[25]。為了提高讀取速度,可先將數(shù)據(jù)讀入內(nèi)存,轉(zhuǎn)變成正確的數(shù)據(jù)類型變量后,再將變量保存至.mat文件中。matlab可以直接加載.mat文件中的變量到內(nèi)存中,無(wú)需再次轉(zhuǎn)變數(shù)據(jù)類型,與直接加載.csv文件相比,可以提高約5倍的運(yùn)算速度。
北斗船位數(shù)據(jù)中存在幾種異常數(shù)據(jù)[26]:第一種是時(shí)間異常,通過(guò)設(shè)置時(shí)間范圍剔除,本文設(shè)置的有效時(shí)間范圍為2018年1月1日0時(shí)0分0秒至2018年12月31日23時(shí)59分59秒;第二種是經(jīng)緯度異常,例如經(jīng)度或者緯度出現(xiàn)0值,可直接剔除。或者出現(xiàn)漁船定位在內(nèi)陸地區(qū)的異常,表現(xiàn)為經(jīng)度、緯度記錄與相鄰記錄值相差較大,可通過(guò)設(shè)置閾值刪除,例如將經(jīng)緯度與前后記錄值相差超過(guò)1°的值刪除。在數(shù)據(jù)載入內(nèi)存后,算法執(zhí)行前直接在內(nèi)存中剔除異常數(shù)據(jù),不改變?cè)嘉募械臄?shù)據(jù)記錄。
文中漁運(yùn)船轉(zhuǎn)載信息的提取流程如圖1所示,主要分為3個(gè)步驟:首先查找所有航速值小于1.5 m/s(經(jīng)過(guò)統(tǒng)計(jì)分析得到,細(xì)節(jié)見(jiàn)下文)時(shí)間段;其次得到漁運(yùn)船各航次的開(kāi)始時(shí)間和結(jié)束時(shí)間,并獲得各航次中航速值小于1.5 m/s時(shí)間段;最后查找漁運(yùn)船在各航次的航速值小于1.5 m/s時(shí)間段內(nèi)與捕撈漁船距離小于50 m,且期間有持續(xù)3條以上的船舶監(jiān)控系統(tǒng)(Vessel Monitoring Systems,VMS)記錄的事件。
1)查找航速值小于1.5 m/s時(shí)間段
首先,將漁運(yùn)船的數(shù)據(jù)讀入內(nèi)存,船名、時(shí)間、航速、經(jīng)度、緯度分別存儲(chǔ)于字符串類型數(shù)組SHIPE_NAME、日期類型數(shù)組TIME、浮點(diǎn)數(shù)類型數(shù)組V、浮點(diǎn)數(shù)類型數(shù)組LON、浮點(diǎn)數(shù)類型數(shù)組LAT,其中∈(1,2,3,…,)表示漁運(yùn)船的序號(hào),表示漁運(yùn)船總數(shù)。
漁運(yùn)船轉(zhuǎn)載時(shí)的航速分布范圍0~1.5 m/s通過(guò)統(tǒng)計(jì)浙江省1 052條漁運(yùn)船的航速分布得到。將所有漁運(yùn)船的航速離散到以0.3 m/s(可調(diào)參數(shù),只要能將漁運(yùn)船的3種狀態(tài)區(qū)分開(kāi)即可)為間隔的數(shù)值上,再進(jìn)行航速值的頻次統(tǒng)計(jì)分析,結(jié)果如圖2所示。由圖2可知漁運(yùn)船主要有3種狀態(tài):第一種是停船狀態(tài)(靠港或者轉(zhuǎn)運(yùn)),0~7 m/s航速值頻次占比分布中,0值附近的航速值占比較高,占比46.4%,對(duì)應(yīng)于停船狀態(tài);第二種是低速航行轉(zhuǎn)運(yùn),0.3~7 m/s航速值頻次占比分布中,第一個(gè)峰值在0.6 m/s附近,對(duì)應(yīng)低速航行轉(zhuǎn)運(yùn)狀態(tài);第三種是正常航行狀態(tài),對(duì)應(yīng)于第二個(gè)峰值區(qū),在4.5 m/s附近。轉(zhuǎn)運(yùn)時(shí)船速對(duì)應(yīng)于第一種和第二種狀態(tài),這2種狀態(tài)的峰值在0~1.5 m/s之間,當(dāng)速度小于1.5 m/s時(shí),認(rèn)為有正在轉(zhuǎn)載的可能。
2)查找漁運(yùn)船各航次的開(kāi)始時(shí)間和結(jié)束時(shí)間,并獲得各航次中航速值小于1.5 m/s時(shí)間段
3)查找漁運(yùn)船在各航次的航速值小于1.5 m/s時(shí)間段與捕撈漁船之間轉(zhuǎn)載信息
最后,計(jì)算同一時(shí)間段內(nèi)的漁運(yùn)船和捕撈漁船的距離,如果小于50 m,且持續(xù)時(shí)間大于3條記錄,則認(rèn)為2條船軌跡重疊,正在轉(zhuǎn)載。根據(jù)經(jīng)緯度計(jì)算任意2個(gè)點(diǎn)(如C,D點(diǎn))球面距離的公式為
式中Radius為地球半徑,取WGS84標(biāo)準(zhǔn)參考橢球中的地球長(zhǎng)半徑[27]6 378.137 km,C、C表示點(diǎn)的經(jīng)度和緯度,D、D表示點(diǎn)的經(jīng)度和緯度。
以浙江省2018年的4條漁運(yùn)船北斗VMS終端記錄的船位數(shù)據(jù)為例,利用上述方法,查找2018年浙江省所有與這4條漁運(yùn)船進(jìn)行轉(zhuǎn)載的近海捕撈漁船,并對(duì)漁運(yùn)船的轉(zhuǎn)載信息進(jìn)行分析。結(jié)果如圖3所示。
2018年漁運(yùn)船1總共出海204個(gè)航次,轉(zhuǎn)載213次,總轉(zhuǎn)載時(shí)長(zhǎng)為1315 min,??窟^(guò)1個(gè)地點(diǎn),經(jīng)緯度之一為(121.635 4°E,28.293 4°N)。根據(jù)經(jīng)緯度坐標(biāo)調(diào)用高德地圖[28]的逆地理編碼web服務(wù)查詢具體的地址,即船只所在的省、市、縣。調(diào)用的url格式為https://restapi.amap.com/v3/geocode/regeo?location=Lon,Lat&key=yourkey&output=json,其中‘Lon’,‘Lat’替換為實(shí)際的經(jīng)度和緯度,‘yourkey’為在高德平臺(tái)上申請(qǐng)的web應(yīng)用服務(wù)的Key碼。根據(jù)逆地理編碼查詢到漁運(yùn)船1??康攸c(diǎn)為浙江省臺(tái)州市溫嶺市石塘鎮(zhèn)。漁運(yùn)船2出海航次為185次,共轉(zhuǎn)載191次,總轉(zhuǎn)載時(shí)長(zhǎng)為185 5 min,??窟^(guò)1個(gè)地點(diǎn),經(jīng)緯度之一為(121.570 9°E,28.256 5°N),對(duì)應(yīng)的地點(diǎn)為浙江省臺(tái)州市溫嶺市石塘鎮(zhèn)。漁運(yùn)船3出海航次為259次,轉(zhuǎn)載285次,總轉(zhuǎn)載時(shí)長(zhǎng)為3372 min,??窟^(guò)1個(gè)地點(diǎn),經(jīng)緯度之一為(121.571 8°E,28.263 6°N),對(duì)應(yīng)的地點(diǎn)為浙江省臺(tái)州市溫嶺市石塘鎮(zhèn)。漁運(yùn)船4出海航次為287次,轉(zhuǎn)載323次,總轉(zhuǎn)載時(shí)長(zhǎng)為2 325 min,??窟^(guò)3個(gè)地點(diǎn),分別為浙江省舟山市普陀區(qū)沈家門,經(jīng)緯度之一為(122.2815°E,29.9402°N);浙江省臺(tái)州市溫嶺市石塘鎮(zhèn),經(jīng)緯度之一為(121.6419°E,28.3016°N),浙江省溫州市蒼南縣,經(jīng)緯度為(120.6439°E,28.3017°N)。
漁運(yùn)船轉(zhuǎn)載信息查詢程序執(zhí)行過(guò)程中不斷輸出查詢到的轉(zhuǎn)載信息,輸出的內(nèi)容如表1所示??梢愿鶕?jù)這些記錄查找漁運(yùn)船轉(zhuǎn)載時(shí)的航速,計(jì)算轉(zhuǎn)載時(shí)長(zhǎng),轉(zhuǎn)載所在的月份,時(shí)間,并進(jìn)行統(tǒng)計(jì)分析,另外還可以查找轉(zhuǎn)載所在的經(jīng)緯度分布,統(tǒng)計(jì)累計(jì)轉(zhuǎn)載時(shí)長(zhǎng)的空間分布。
表1 漁運(yùn)船轉(zhuǎn)載信息輸出結(jié)果
從北斗民用分理服務(wù)商處獲得了2018年浙江省1 052條漁運(yùn)船的北斗船位數(shù)據(jù),7 249條捕撈漁船船位數(shù)據(jù),經(jīng)過(guò)計(jì)算,有轉(zhuǎn)載記錄的漁運(yùn)船有808條,共轉(zhuǎn)載28 916次,參與轉(zhuǎn)載的捕撈漁船3 548條。
將漁運(yùn)船轉(zhuǎn)載時(shí)的航速離散至0.1 m/s(可調(diào),能體現(xiàn)航速分布的特征即可)間隔的航速上,然后統(tǒng)計(jì)各航速值出現(xiàn)的占比(結(jié)果見(jiàn)圖4a),圖4a中可見(jiàn)轉(zhuǎn)載速度分布有2個(gè)峰值,第一個(gè)峰值船速為0 m/s,即停船轉(zhuǎn)載,占比21.0%。第二個(gè)峰值在1.2 m/s左右,即航行轉(zhuǎn)載,捕撈漁船在低速航行的作業(yè)狀態(tài)下完成漁獲物的轉(zhuǎn)載。以1~1.4 m/s船速進(jìn)行轉(zhuǎn)載的占比53.7%,故捕撈漁船在低速航行的作業(yè)狀態(tài)下轉(zhuǎn)載為主。以小時(shí)為單位統(tǒng)計(jì)0:00—24:00之間24個(gè)時(shí)間段(1 h為1個(gè)時(shí)間段)中轉(zhuǎn)載頻次的占比,得到23:00—24:00轉(zhuǎn)載頻次占比接近0,00:00—5:00之間的5個(gè)時(shí)間段轉(zhuǎn)載頻次稍低,占比2%~4%,其他時(shí)間段轉(zhuǎn)載頻次稍高,占比4%~5%(圖4b)。統(tǒng)計(jì)各月轉(zhuǎn)載頻次的占比,圖4c中5、6、7月處于禁漁期,故這期間的轉(zhuǎn)載頻次占比接近0,其他月份的頻次占比位于5%~16%之間。統(tǒng)計(jì)28 916次轉(zhuǎn)載時(shí)長(zhǎng)的分布結(jié)果見(jiàn)圖4d,轉(zhuǎn)載時(shí)長(zhǎng)在(5±2.5)min的頻次最高,占比49.0%,轉(zhuǎn)載時(shí)長(zhǎng)在(10±2.5)min的頻次占比30.7%,小于12.5 min的轉(zhuǎn)載占比81.3%。
近海海上漁獲轉(zhuǎn)載地點(diǎn)基本位于捕撈漁船作業(yè)海域,如低速航行時(shí)轉(zhuǎn)載地點(diǎn)是捕撈漁船正在作業(yè)的位置,停泊轉(zhuǎn)載地點(diǎn)也在捕撈漁船作業(yè)海域的附近。因此,漁運(yùn)船的轉(zhuǎn)載時(shí)長(zhǎng)可以反映捕撈漁船的作業(yè)強(qiáng)度,轉(zhuǎn)載地點(diǎn)反映捕撈漁船作業(yè)的空間分布。圖5a顯示了轉(zhuǎn)載累計(jì)時(shí)長(zhǎng)的空間分布,位于122.5°E~123°E,31.5°N~32°N內(nèi)的轉(zhuǎn)載時(shí)長(zhǎng)最長(zhǎng),為187 h,位于122°E~122.5°E,28°N~28.5°N內(nèi)的轉(zhuǎn)載時(shí)長(zhǎng)次之,為150 h。圖5b中彩色小實(shí)心圓點(diǎn)顯示了浙江省2018年808條漁運(yùn)船28 916次轉(zhuǎn)載位置的空間分布,紅色至綠色的顏色漸變表示轉(zhuǎn)載時(shí)間1月至12月的變化。根據(jù)4a,捕撈漁船在作業(yè)狀態(tài)下完成轉(zhuǎn)載的頻次占比53.7%,表明轉(zhuǎn)載的位置主要在捕撈漁船作業(yè)的位置,轉(zhuǎn)載時(shí)間的長(zhǎng)短可作為漁獲物多少的一個(gè)衡量指標(biāo),漁獲物越多需要轉(zhuǎn)載的時(shí)間越長(zhǎng),故轉(zhuǎn)載時(shí)長(zhǎng)的空間分布一定程度上可以反映捕撈強(qiáng)度的分布。
在海上漁運(yùn)船和捕撈漁船出現(xiàn)持續(xù)一段時(shí)間的軌跡重疊(漁運(yùn)船和捕撈漁船相遇)有很大的概率是正在轉(zhuǎn)載,且一般漁獲物越多,所需的轉(zhuǎn)載時(shí)間也會(huì)越長(zhǎng)。本研究基于北斗衛(wèi)星導(dǎo)航系統(tǒng)的高時(shí)空分辨率的VMS船位數(shù)據(jù),給出了一個(gè)提取漁運(yùn)船轉(zhuǎn)載信息的方法。該方法將漁運(yùn)船航速小于1.5 m/s,與捕撈漁船之間的距離小于50 m,且2條船距離小于50 m的連續(xù)船位記錄大于3條的情況判斷為二者在海上相遇,可能正在轉(zhuǎn)載。使用到的數(shù)據(jù)包括浙江省2018年1 052條漁運(yùn)船和7 249條捕撈漁船的北斗船位數(shù)據(jù),獲得了28 916次的漁運(yùn)船轉(zhuǎn)載時(shí)的經(jīng)緯度位置、時(shí)間、航速、轉(zhuǎn)載時(shí)長(zhǎng)等。
需要注意的是,得到的28 916次轉(zhuǎn)載都是指可能發(fā)生的轉(zhuǎn)載(漁運(yùn)船和捕撈漁船會(huì)合),雖然無(wú)法證實(shí)轉(zhuǎn)運(yùn)是否真實(shí)發(fā)生,但通過(guò)分析實(shí)際的船位數(shù)據(jù)得到的漁運(yùn)船和捕撈漁船在海上會(huì)合事件是真實(shí)發(fā)生的,也是得到漁獲物轉(zhuǎn)載信息的重要途徑。根據(jù)漁運(yùn)船轉(zhuǎn)載時(shí)的航速分布可知漁運(yùn)船轉(zhuǎn)載狀態(tài)有2種,分別為停船狀態(tài)轉(zhuǎn)載和以低速航行的作業(yè)狀態(tài)轉(zhuǎn)載。23:00—5:00轉(zhuǎn)載頻次較低,其他時(shí)間段轉(zhuǎn)載頻次較高。大部分的轉(zhuǎn)載時(shí)長(zhǎng)小于12.5 min。通過(guò)統(tǒng)計(jì)各漁區(qū)轉(zhuǎn)載累積時(shí)長(zhǎng),得到轉(zhuǎn)載熱點(diǎn)主要分布在122.5°E~123°E,31.5°N~32°N,和122°E~122.5°E,28°N~28.5°N的漁區(qū)網(wǎng)格內(nèi)。
為解決數(shù)據(jù)量大,計(jì)算慢的問(wèn)題,將漁運(yùn)船和捕撈漁船的.csv文件處理成matlab可以直接加載的.mat文件,并且將對(duì)漁運(yùn)船的遍歷設(shè)置為并行運(yùn)行,即程序分為多個(gè)線程同時(shí)為不同的漁運(yùn)船查找轉(zhuǎn)載信息,使得程序運(yùn)行比直接讀取.csv文件的單線程程序提速了約250倍。通過(guò)分析提取到的漁運(yùn)船轉(zhuǎn)載特征數(shù)據(jù),不僅可以了解和掌握單個(gè)漁運(yùn)船的轉(zhuǎn)載量和轉(zhuǎn)載位置等,還可獲得所有漁運(yùn)船在各空間網(wǎng)格中的轉(zhuǎn)載累積時(shí)長(zhǎng),獲得轉(zhuǎn)載熱點(diǎn)分布,了解各漁區(qū)的捕撈強(qiáng)度,為漁業(yè)資源的養(yǎng)護(hù)和可持續(xù)利用政策的制定提供實(shí)際數(shù)據(jù)的支撐。
[1] Miller N A, Roan A, Hochberg T, et al. Identifying global patterns of transshipment behavior[J]. Frontiers in Marine Science, 2018, 5(240): 1-9.
[2] Telesetsky A. Laundering fish in the global undercurrents: illegal, unreported, and unregulated fishing and transnational organized crime[J]. Ecology Law Quarterly, 2014, 41(4): 939-997.
[3] Ewell C, Cullis-Suzuki S, Ediger M, et al. Potential ecological and social benefits of a moratorium on transshipment on the high seas[J]. Marine Policy, 2017, 81: 293-300.
[4] Dunn D C, Jablonicky C, Crespo G O, et al. Empowering high seas governance with satellite vessel tracking data[J]. Fish and Fisheries, 2018, 19: 729-739.
[5] Russo T, D'Andrea L, Parisi A, et al. Assessing the fishing footprint using data integrated from different tracking devices: Issues and opportunities[J]. Ecological Indicators, 2016, 69: 818-827.
[6] Marzuki M I, Gaspar P, Garello R, et al. Fishing gear identification from vessel-monitoring-system-based fishing vessel trajectories[J]. IEEE Journal of Oceanic Engineering. 2017, 43(3): 689-699.
[7] Souza E N, Boerder K, Matwin S, et al. Improving fishing pattern detection from satellite AIS using data mining and machine learning[J]. Plos One. 2016, 11(7): e0158248.
[8] Gascuel D. Identifying fishing trip behaviour and estimating fishing effort from VMS data using Bayesian Hidden Markov Models[J]. Ecological Modelling, 2010, 221(15): 1757-1769.
[9] 楊勝龍,張勝茂,周為峰,等. 采用AIS計(jì)算中西太平洋延繩釣漁船捕撈努力量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(3):198-203.
Yang Shenglong, Zhang Shengmao, Zhou Weifeng, et al. Calculating the fishing effort of longline fishing vessel in the western and central pacific ocean using AIS[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 198-203. (in Chinese with English abstract)
[10] Russo T, Parisi A, Prorgi M, et al. When behaviour reveals activity: Assigning fishing effort to métiers based on VMS data using artificial neural networks[J]. Fisheries Research, 2011, 111(6): 53-64.
[11] Natale F, Gibin M, Alessandrini A, et al. Mapping fishing effort through AIS data[J]. Plos One. 2015, 10(6): e0130746.
[12] Janette L, South A B, Simon J. Developing reliable, repeatable, and accessible methods to provide high-resolution estimates of fishing-effort distributions from vessel monitoring system (VMS) data[J]. Ices Journal of Marine Science. 2010, 67(6): 1260-1271.
[13] Kroodsma D A, Mayorga J, Hochberg T, et al. Tracking the global footprint of fisheries[J]. Science. 2018, 359(6378): 904-908.
[14] Kristina B, Miller N A, Boris W, et al. Global hot spots of transshipment of fish catch at sea[J]. Science Advances. 2018, 4(7): eaat7159. doi: 10.1126/sciadv.aat7159.
[15] Seto K, Miller N, Young M, et al. Toward transparent governance of transboundary fisheries: The case of Pacific tuna transshipment[J]. Marine Policy. 2020: 104200
[16] 崔秀芳,黃新勝,王世明,等. 漁船監(jiān)控系統(tǒng)(VMS)設(shè)計(jì)[J]. 漁業(yè)現(xiàn)代化,2010,37(1):67-69.
Cui Xiufang, Huang Xingsheng, Wang Shiming, et al. Research on vessel monitoring system (VMS)[J]. Fishery Modernization, 2010, 37(1): 67-69. (in Chinese with English abstract)
[17] 郝金明,劉偉平,楊力,等. 北斗衛(wèi)星導(dǎo)航系統(tǒng)精密定軌技術(shù)研究現(xiàn)狀[J]. 測(cè)繪科學(xué)技術(shù)學(xué)報(bào),2015,32(3):221-225.
Hao Jinming, Liu Weiping, Yang Li, et al. Status of precise orbit determination of Beidou navigation satellite system[J]. Journal of Geomatics Science and Technology, 2015, 32(3): 221-225. (in Chinese with English abstract)
[18] 郭剛剛,樊偉,張勝茂,等. 船位監(jiān)控系統(tǒng)數(shù)據(jù)挖掘與應(yīng)用研究進(jìn)展[J]. 海洋漁業(yè),2016,38(2):217-224.
Guo Ganggang, Fan Wei, Zhang Shengmao, et al. Advances in mining and application of vessel monitoring system data[J]. Marine Fisheries,2016, 38(2): 217-224. (in Chinese with English abstract)
[19] 薛嘉倫. 基于北斗船位數(shù)據(jù)的浙江省近海漁船航次分析與漁船編隊(duì)調(diào)度方案研究[D]. 上海:上海海洋大學(xué),2018.
Xue Jialun. Analysis of Voyage Analysis and Fleet Scheduling Scheme of Zhejiang Province Fishing Boats Based on the Beidou Ship's Position Data[D]. Shanghai: Shanghai Ocean University, 2018. (in Chinese with English abstract)
[20] Chang S K, Liu K Y, Song Y H. Distant water fisheries development and vessel monitoring system implementation in taiwan-history and driving forces[J]. Marine Policy, 2010, 34(3): 541-548.
[21] Huang Haiguang, Hong Feng, Liu Jing, et al. FVID: Fishing vessel type identification based on VMS trajectories[J]. Journal of Ocean University of China, 2019, 18(2): 403-412.
[22] Wang Y, Wang Y B, Zheng J. Analyses of trawling track and fishing activity based on the data of vessel monitoring system (VMS):A case study of the single otter trawl vessels in the Zhoushan fishing ground[J]. Journal of Ocean University of China, 2015, 14(1): 89-96.
[23] 張榮瀚,張勝茂,陳雪忠,等. 基于北斗船位數(shù)據(jù)的流刺網(wǎng)網(wǎng)次和方向提取方法研究[J]. 海洋漁業(yè),2019,41(2):169-178.
Zhang Ronghan, Zhang Shengmao, Chen Xuezhong, et al. Research on extract floating gill net hauls and direction on Beidou data[J]. Marine Fisheries, 2019, 41(2): 169-178. (in Chinese with English abstract)
[24] 張勝茂,崔雪森,伍玉梅,等. 基于北斗衛(wèi)星船位數(shù)據(jù)分析象山拖網(wǎng)捕撈時(shí)空特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(7):151-156.
Zhang Shengmao, Cui Xuesen, Wu Yumei, et al. Analyzing space-time characteristics of Xiangshan trawling based on Beidou vessel monitoring system data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(7): 151-156. (in Chinese with English abstract)
[25] 耿家利. 漁船軌跡大數(shù)據(jù)存儲(chǔ)優(yōu)化與行為識(shí)別技術(shù)研究[D]. 杭州:杭州電子科技大學(xué),2018.
Geng Jiali. Research on Storage Optimization and Fishing Behavior Identification Technology of Vessel Trajectory[D]. Hangzhou:Hangzhou Dianzi University, 2018. (in Chinese with English abstract)
[26] 范秀梅,張勝茂,楊勝龍,等. 浙江省近海海洋捕撈漁船異地??啃畔⑻崛∨c分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(11):203-209.
Fan Xiumei, Zhang Shengmao, Yang Shenglong, et al. Extraction and analysis of off-site docking information of offshore fishing vessels in Zhejiang Province of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(11): 203-209. (in Chinese with English abstract)
[27] 林吉兆,賈登科,武警. CGCS2000及WGS84坐標(biāo)系若干問(wèn)題探討及應(yīng)對(duì)策略[J]. 水運(yùn)工程,2014(2):27-30.
Lin Jizhao, Jia Dengke, Wu jing. Discussion and strategies about CGCS 2000 and WGS84 coordinate system[J]. Port & Waterway Engineering, 2014(2): 27-30. (in Chinese with English abstract)
[28] 劉曉. 面向高德地圖的自然語(yǔ)言接口語(yǔ)義解析系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[D]. 南京:南京師范大學(xué),2015.
Liu Xiao. The Design and Implementation of Natural Language Interface for Highmoralmap Via Semantic Parsing[D]. Nanjing: Nanjing Normal University, 2015. (in Chinese with English abstract)
Extraction of transshipment information of offshore fish carrier vessels in Zhejiang Province of China
Fan Xiumei, Zhang Shengmao※, Cui Xuesen, Yang Shenglong
(Key Laboratory of Fisheries Remote Sensing and Information Technology, East China Sea Fisheries Research Institute, Academy of Fisheries Science, Shanghai 200090, China)
Fish carrier vessels are engaged in the transportation of catch for high efficiency and effort of vessels, as fishing intensity redoubles in recent years. This study aims to extract the characteristic data in the transshipment of fish carrier vessels at sea in Zhengjiang Province of China, and then indirectly determine the fishing intensity of vessels. Beidou Vessel Monitoring System (VMS) position signals were also used to set the threshold of speed, distance, and time during extraction. If the distance between fish carrier and fishing vessel at sea was less than 50 m, and the duration was longer than 3 VMS position records, the system assumed that a transshipment event possibly happened, where the duration of the encounter, the names of vessels, and the spatial location were also recorded in real time. As such, the possible transshipment events were identified using the Beidou VMS position data in 2018, and then statistical analysis was also made for verification. It was found that there were 28 916 transshipment events between 808 fish carriers and 3 548 fishing vessels. Specifically, 21.0% of transshipment events happened, when the fish carrier vessels were stopped, whereas, 53.7% of transshipment events happened when the fish carrier vessels were sailing at a low speed between 1-1.4 m/s. The transshipment events with a duration of less than 12.5 min accounted for 81.3% of the total. Furthermore, the distribution of hot spots was finally obtained for the transshipment of fish carrier vessels. Additionally, the longest cumulative duration of transshipment was 187 hours at the space grid of 122.5-123°E and 31.5-32°N, followed by 150 h at the space grid of 122-122.5°E and 28-28.5°N. Consequently, it is widely expected to analyze the spatial distribution and the cumulative duration of transshipment events at sea, thereby clarifying the temporal and spatial changes in fishing vessel efforts.
fish vessel; fisheries; Beidou navigation satellite system; ship monitoring system; transshipment
范秀梅,張勝茂,崔雪森,等. 浙江省近海漁運(yùn)船轉(zhuǎn)載信息提取[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(13):128-134.
10.11975/j.issn.1002-6819.2021.13.015 http://www.tcsae.org
Fan Xiumei, Zhang Shengmao, Cui Xuesen, et al. Extraction of transshipment information of offshore fish carrier vessels in Zhejiang Province of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(13): 128-134. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.13.015 http://www.tcsae.org
2021-01-20
2021-06-30
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2019YFD0901405);國(guó)家自然科學(xué)基金項(xiàng)目(31772899);浙江省海洋漁業(yè)資源可持續(xù)利用技術(shù)研究重點(diǎn)實(shí)驗(yàn)室開(kāi)放課題(2020KF001);WWF/OPF蔚藍(lán)星球基金項(xiàng)目(P04593)
范秀梅,助理研究員,研究方向?yàn)闈O業(yè)數(shù)據(jù)挖掘。Email:fxm1fxm@163.com
張勝茂,博士,副研究員,研究方向?yàn)闈O業(yè)數(shù)據(jù)挖掘、遙感與地理信息。Email:ryshengmao@126.com
10.11975/j.issn.1002-6819.2021.13.015
S975
A
1002-6819(2021)-13-0128-07