• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-dimensional DOA estimation based on thin array towed by a small autonomous platform

    2021-09-15 02:33:56JIANGJiajiaYANGGuoliangLIChunyueLIYaoWANGXianquanSUNZhongboDUANFajieFUXiao

    JIANG Jiajia,YANG Guoliang,LI Chunyue,LI Yao,WANG Xianquan, SUN Zhongbo,DUAN Fajie,F(xiàn)U Xiao

    (1. State Key Lab of Precision Measuring Technology and Instruments,Tianjin University,Tianjin 300072,China; 2. System Engineering Research Institute,China State Shipbuilding Corporation,Beijing 100036,China)

    Abstract:The small autonomous platform with a thin line array is an important tool for underwater acoustic mobile surveillance.Generally,only one-dimensional (1-D)direction-of-arrival (DOA)of the source signal can be estimated using a thin towed line array.In this work,the two-dimensional (2-D)DOA estimation is achieved by the thin line array towed by a small autonomous platform due to its flexible maneuver.Two perpendicular tow paths are formed through the fast turning of this array.An L-shaped array is formed by the same towed array on these two tow paths at different times.Using the array on these two straight paths,two 1-D DOAs of the source signal are obtained respectively,and then the 2-D DOA based on the formed L-shaped array can be estimated.The effectiveness of proposed approach is verified by numerical simulations and its theoretical error is analyzed.

    Key words:towed line array;autonomous platform;direction-of-arrival (DOA);underwater signal;passive sonar

    0 Introduction

    The passive sonars such as the fixed sonar system,sonobuoy,flank sonar and towed array are widely used in underwater acoustic surveillance[1].For the surveillance in a fixed sea area,the fixed sonar system has high direction-of-arrival (DOA)estimation accuracy because the element position of its sonar array can be accurately calibrated.Sonobuoys are consumables that can be deployed by helicopters or airplanes,which are more flexible and cost-effective than fixed sonar systems.However,it is a more common requirement to realize low-cost and flexible surveillance in mobile areas,for instance,vast ocean patrol,the submarine detection around a voyaging ship and marine animal survey[2-4].

    For mobile surveillance,the commonly used tools are towed arrays and flank sonars.The flank sonar is installed on the surface of a ship or submarine.Its acoustic aperture is limited by the size of its carriers.The traditional towed array is a single neutrally buoyant line array towed behind a surface ship or submarine.Unlike the flank sonar,the hydrophone array of towed array which is towed by a long tow cable is far away from its towing platform,noise and vibration of the platform hardly have any effect on its acoustic performance.Additionally,the acoustic aperture of hydrophone array is usually made quite large for a good DOA performance,so it is widely used in military applications[5-6].However,the long tow cable and large acoustic aperture of hydrophone array make the traditional array long and heavy.Therefore,the traditional towed array requires immense resources for its deployment and recovery,which results in high operational costs and limits the speed and turn rate of towing platform[7].In order to realize mobile surveillance flexibly and at low cost,thin line arrays have been developed for small autonomous platforms such as the autonomous underwater vehicle (AUV)and the unmanned surface vehicle (USV)in recent years[8-9].Based on this,the excellent coherent beamforming results of the thin array towed by AUV are verified,and the AUV with thin towed array are used as sensing platforms in antisubmarine warfare (ASW)[10-11].Similarly,the USV with thin array is used to detect and track submarine targets and monitor marine mammals[12].

    The autonomous platform with a thin line array plays an important role in underwater acoustic surveillance applications due to its low cost,easy deployment and high flexibility.However,only one-dimensional (1-D)DOA estimations of the source signal can be obtained based on a single towed line array,while the two-dimensional (2-D)DOA information is needed to find the position of a source signal in the three-dimensional (3-D)physical space.Generally speaking,planar arrays are used to estimate the 2-D DOA,such as the uniform circular array(UCA),the parallel array and the L-shaped array.By rotating two elements and setting a fixed time delay,a virtual UCA is formed in Ref.[13] to estimate the 2-D DOA.And a circular synthetic array is also formed by two rotating sensors in Ref.[14].In addition,a parallel array is formed by a 1-D array moving vertically along its axis and the 2-D DOA estimation is obtained in Ref.[15].Obviously,the above approaches are not suitable for the thin array towed by a small autonomous platform because the array can only move along its axis.

    In order to improve the performance of underwater target positioning using the autonomous platform with a thin array,an approach is proposed to estimate the 2-D DOA of the source signal in this work based on the characteristic that the towed array can only move along it axis.That is,an L-shaped array is formed through a 90-degree turn of the towed array to realize 2-D DOA estimation.

    This approach does not require a planar array,nor does it need to rotate and translate the 1-D array.It only uses the maneuver of the thin array towed by a small autonomous platform,which is simpler and more implementable.

    1 Basic assumptions and data model

    Assuming that a thinM-element uniform linear array (ULA)is towed by an AUV or USV with a constant velocity in a calm water environment,this ULA is in a horizontal and straight state when working.A far-field narrowband source signal impinges on this ULA which is assumed to be on a straight tow path.After the signal is sampled,the ULA need to have a turn to the heading which is perpendicular to the original one.The signal is sampled again after the array is restored to the linear shape.The time interval between these two samples is short due to the small size of the autonomous platform and the thin array,and the source signal is assumed to be static during this period of time.When we establish a 3-D coordinate system based on this pair of vertical straight arrays,an L-shaped array is formed by a subarrayXonx-axis and a subarrayYony-axis,as illustrated in Fig.1.

    Fig.1 L-shaped array formed by a single towed line array

    The source signal impinges on the L-shaped array from the direction at 2-D angles (θ,φ),whereθandφdenote the elevation and azimuth,respectively.Due to the short time and small space required to form an L-shaped array using the thin array towed by an autonomous platform,the elevation and azimuth are assumed to keep constant during the process of forming the L-shaped array.And in a short time and small space,the changes in marine environment parameters are assumed to be minor,which is not enough to affect the work of the subarrayXand subarrayY.

    The DOA of this signal can also be represented by the direction cosine alongx-axis andy-axis in this established coordinate system.Obviously,

    cosα=sinθcosφ,

    (1)

    cosβ=sinθsinφ.

    (2)

    Due to the different headings of the towed array on these two tow paths,the same signal observed by subarrayXand subarrayYhave different Doppler shifts.Taking the element close to the origin as the reference,the observed vectors at subarrayXandYare given by

    x(tx)=As(tx)+nx(tx),

    (3)

    y(ty)=Bs′(ty)+ny(ty),

    (4)

    2 2-D DOA estimation

    As shown in Fig.1,αandβare the 1-D DOAs when the source signal impinges on subarrayXandY.Therefore,they can be estimated respectively using subarrayXandYby the 1-D DOA estimation algorithms such as estimation of signal parameters via rotational invariance techniques (ESPRIT)[16]and multiple signal classification (MUSIC)[17].Then,according to Eqs.(1)and (2),the 2-D DOA estimation of the source signal can be calculated.

    Considering the computational efficiency,the ESPRIT algorithm is used to estimate the 1-D DOA.First,we estimatethe 1-D DOA based on subarrayX.Dividing the subarrayXinto two subarrays,according to Eq.(3),their output can be written as

    x1(tx)=A′s(tx)+n1,

    (5)

    (6)

    (7)

    (8)

    whereRSis the signal covariance matrix,I2(M-1)is a 2(M-1)×1 order identical matrix.H denotes the complex conjugate transpose.According to the eigenvalue ofRx,the signal subspace can be obtained and be divided into

    (9)

    whereE1andE2are (M-1)×1 vectors,andTis a unique full rank matrix.Therefore,

    E2=E1T-1ΦxT=E1Ψx,

    (10)

    whereΨx=T-1ΦxT.Since a perfect measurement ofRxcannot be obtained,the sample covariance is defined by

    (11)

    whereLis the number of snapshots.According to the total least squares (TLS)criterion[16],we can get

    (12)

    (13)

    Then,the direction cosine alongx-axis in the established coordinate system can be calculated by

    (14)

    Finally,according to Eqs.(1)and (2),the elevation and azimuth angles of source signal can be calculated by

    (15)

    (16)

    3 Numerical simulation

    For the thin array towed by a small autonomous platform,there is currently no reported effective ways of estimating 2-D DOA of underwater signals.Therefore,there is no comparison between proposed approach and other methods in the numerical simulation.

    Firstly,the performance of the proposed approach in terms of the SNR is examined when the number of snapshots is fixed at 500.Fig.2 shows the root mean squared error (RMSE)of the 2-D DOA estimation of the source signal according to the SNR.The RMSE is defined as

    Fig.2 RMSEs of elevation and azimuth angle estimates versus SNR

    (17)

    As shown in Fig.2,when the SNR increases from 0 dB to 50 dB,the RMSEs of 2-D DOA estimation of the source signal gradually decreases,and the performance curves become stabilized as the SNR increases.

    Next,the performance of the proposed approach in terms of number of snapshots are examined when the SNR is fixed at 15 dB.

    As shown in Fig.3,when the number of snapshots increases from 100 to 2 500,the RMSEs of 2-D DOA estimation of the source signal also gradually decreases.Thus in Fig.2,the curves also become stabilized as the number of snapshots increases.

    In Figs.2 and 3,as SNR and number of snapshots increase,the RMSEs of the 2-D DOA estimation of the source signal decrease and stabilize gradually.So the effectiveness of the proposed method is verified.

    4 Performance analysis

    4.1 Heading estimation error

    For the proposed approach,the 3-D coordinate system to define the 2-D DOA of source signal is established based on the headingof towed array which is estimated by the compass or other heading sensors.When these two 1-D DOAs are estimated based on the towed array which is not on thex-axis ory-axis,the 2-D DOAs are calculated with error even the 1-D DOAs are estimated correctly.The heading estimation error makes the towed array deviate from the coordinate axis,causing 2-D DOA estimation error.

    Fig.4 Heading estimation error

    According to Eqs.(3)and (4),the observed vectors of these two subarrays of nominally L-shaped array are given by

    (18)

    (19)

    When only the heading estimation error is considered,the errors of the direction cosine of the source signal in the established 3-D coordinate system are given by

    (20)

    (21)

    In order to illustrate the relationship between direction cosine estimations and heading estimation errors,the simulations are performed.The RMSE is defined according to Eq.(17).Other simulation parameters are the same as those in the first example except that there are Δhxand Δhy.In order to estimate the 1-D DOA more accurate,no noise is added.The other simulations in this section are also carried out under the same conditions as above.

    As shown in Fig.5,when the towed array deviates from thex-axis by 150° to the right and 30° to the left,the heading of towed array is parallel to the projection of the signal incident direction.Therefore,the direction cosine estimation error reaches the extremum.When the array deviates from thex-axis by 60° to the left,the error is the same as that when it moves along thex-axis.

    Fig.5 RMSEs of the estimates of direction cosine along x-axis versus heading estimation error

    As shown in Fig.6,when the towed array deviates from they-axis by 60° to the right and 120° to the left,the heading of towed array is also parallel to the projection.Therefore,the direction cosine estimation error also reaches extremums.And when the array moves in the direction of 0° and 60°,the error is the same and smallest.

    Fig.6 RMSEs of the estimates of direction cosine along y-axis versus heading estimation error

    There is no doubt that the direction cosine estimation error is related to the incident angle of the source.Generally speaking,the heading error is varied in a small range.In this range,as the absolute value of the heading error increases,the direction cosine error also increases.

    (22)

    (23)

    {Δhy=Δhx+Kπ} or

    (24)

    Fig.7 RMSEs of elevation estimates versus heading estimation errors

    (25)

    Fig.8 RMSEs of azimuth estimates versus heading estimation errors

    As shown in Figs.7 and 8,even the heading error is varied in a small rang,from -2 to 2 degrees,its impact on the 2-D DOA estimation is already significant.Therefore,the proposed approach needs to use a higher accuracy heading sensor to ensure better 2-D DOA estimation performance.

    4.2 Array shape perturbation

    Unlike the fixed arrays,the nominally linear geometry of towed array may be distorted by the varying speed and transverse motion of towing vessel,by the hydrodynamic effects plus oceanic swells and currents[18].For the ESPRIT algorithm,the perturbation of the array shape destroys the rotation invariance between the subarrays and causes the performance of 1-D DOA estimation to decrease.Therefore,the 2-D DOA estimation performance of the approach proposed based on two 1-D DOA estimates also decrease.

    Deviations of towed array from the linear shape are also dependent on its construction parameters like length,thickness and number of mechanical section.Generally speaking,for planned tow-ship maneuvers,the shape of array is modeled using a bow[19].And for unplanned variations in the tow-ship trajectory,the array shape is modeled using undamped and damped sinusoidal[20].Due to the short length of the thin towed array used in this work,the array shape is modeled using undamped sinusoidal to investigate the effect of array shape perturbation on 2-D DOA estimation.

    The linear thin array is simulated to contain a forward vibration isolation module (VIM)with length of 12d.The first hydrophone is at an length ofdfrom the point where the VIM connects to the hydrophone array.So the total array length is 20d.When there is array shape perturbation,the equation for the array shape can be written as

    y=asin(qx),

    (26)

    whereaandqare the parameters to determine the sinusoidal.Assuming that the total length of the towed array keeps constant,the position of each hydrophone can be determined by the arc-length integral.In proposed approach,two direction cosines are estimated respectively.Assuming that the array deformation is the same in these two processes,seven patterns of array are considered and the array shape is shown in Fig.9.

    Fig.9 Array shapes

    As Fig.9 shows,the array shapes are named “shape 1”-“shape 7”,whose hydrophone positions are calculated and marked.“shape 1”is a linear array without array perturbation whose hydrophone position is treat as balance position.“shape 2”-“shape 4”are sinusoidal curves whose parameterqare smaller.And their hydrophones are distributed on both sides of balance position.“shape 5”-“shape 7”are also sinusoidal curves whose parameterqare larger.Their hydrophones are distributed on one side of balance position.

    Then,the simulations are performed to exam the effect of array shape perturbation on direction cosine estimation and 2-D DOA estimation performance.The other simulation parameters are the same as those in the first example.

    As shown in Figs.10 and 11,by comparing the RMSEs of “shape 2”and “shape 4”,“shape 5”and “shape 7”,it is clear that the error of the direction cosine estimation grows with the increase of the value of parametera.And by comparing “shape 2”and “shape 3”,“shape 5”and “shape 6”,we get that the error of the direction cosine estimation decreases as the parameterqincreases.

    Fig.10 RMSEs of the estimates of direction cosine along x-axis versus the SNR

    Fig.11 RMSEs of the estimates of direction cosine along y-axis versus the SNR

    As shown in Fig.12,by comparing the RMSEs of “shape 2”and “shape 4”,“shape 5”and “shape 7”,the RMSE of azimuth angle estimation also grows with the increase of the value of parametera.And by comparing “shape 2”and “shape 3”,“shape 5”and “shape 6”,the RMSE of azimuth angle estimation also decreases as the parameterqincreases

    Fig.12 RMSEs of azimuth estimates versus the SNR

    However,for the elevation estimation RMSE in Fig.13,the performance of sinusoidal array is similar to that of the linear array whenqis larger.This is because the array elements are distributed on one side of balance position.The array shape is approximately straight.And the towed array with the same perturbation forms the L-shaped array.The headings of the array with largerqare approximately perpendicular.According to Eq.(24),the elevation estimation error is small.

    Fig.13 RMSEs of elevation estimates versus the SNR

    As Figs.12 and 13 depict,the effect of the array shape perturbation on the 2-D DOA estimation is significant when the hydrophones of towed array are distributed on both sides of balance position.Therefore,the towed array shape should be calibrated before the proposed approach is applied.

    5 Conclusions

    In this work,we present a 2-D DOA estimation approach to improve the performance of underwater target positioning using the autonomous platform with a thin array.This approach only uses the maneuver of the thin array,which is simpler and more implementable.The effectiveness of this approach is verified through numerical simulations.Through our work,the 2-D DOA estimation performance of the proposed approach is analyzed from heading estimation errors and array shape perturbation.It is clear that the influence of heading error and array shape perturbation on 2-D DOA estimation performance is significant.High-precision heading sensor and array shape calibration are the basis of high 2-D DOA estimation performance of proposed approach.

    1000部很黄的大片| 国产有黄有色有爽视频| 国产亚洲精品av在线| 午夜免费男女啪啪视频观看| 中文字幕av在线有码专区| 美女被艹到高潮喷水动态| 99re6热这里在线精品视频| 丝袜美腿在线中文| 亚洲精品色激情综合| 亚洲熟女精品中文字幕| 亚洲怡红院男人天堂| 日日撸夜夜添| av国产免费在线观看| 午夜福利在线在线| 99视频精品全部免费 在线| 寂寞人妻少妇视频99o| 免费观看av网站的网址| 在线天堂最新版资源| 午夜福利高清视频| 国产精品无大码| 国内揄拍国产精品人妻在线| 亚洲精品色激情综合| 舔av片在线| 久久6这里有精品| 2021少妇久久久久久久久久久| 免费黄色在线免费观看| 中文字幕制服av| 久久久a久久爽久久v久久| 天堂av国产一区二区熟女人妻| 全区人妻精品视频| 美女大奶头视频| 成人特级av手机在线观看| 久久久久网色| 亚洲av中文字字幕乱码综合| 亚洲av中文av极速乱| 亚洲内射少妇av| 精品久久久久久久末码| 在线观看人妻少妇| 熟女电影av网| 又粗又硬又长又爽又黄的视频| 高清欧美精品videossex| 高清在线视频一区二区三区| 成年女人看的毛片在线观看| 美女国产视频在线观看| 国产淫片久久久久久久久| 天堂影院成人在线观看| 最近中文字幕2019免费版| 成人国产麻豆网| 午夜福利视频精品| 狠狠精品人妻久久久久久综合| 内射极品少妇av片p| 2021天堂中文幕一二区在线观| av一本久久久久| 能在线免费观看的黄片| 80岁老熟妇乱子伦牲交| 国产精品福利在线免费观看| 两个人视频免费观看高清| 国产一级毛片在线| 人人妻人人澡人人爽人人夜夜 | 国产精品久久久久久av不卡| 高清在线视频一区二区三区| 欧美日韩综合久久久久久| 亚洲欧洲国产日韩| 国产精品久久视频播放| 国产色爽女视频免费观看| 插逼视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 中文乱码字字幕精品一区二区三区 | 免费av毛片视频| 国精品久久久久久国模美| 亚洲精品国产av蜜桃| 亚洲,欧美,日韩| 街头女战士在线观看网站| 99九九线精品视频在线观看视频| 三级国产精品片| 高清视频免费观看一区二区 | 国产91av在线免费观看| 精品国产一区二区三区久久久樱花 | 天美传媒精品一区二区| 久久精品国产自在天天线| 久久97久久精品| 免费看av在线观看网站| 成年版毛片免费区| 国产伦精品一区二区三区视频9| 综合色丁香网| 国产单亲对白刺激| 日本熟妇午夜| 国产不卡一卡二| 卡戴珊不雅视频在线播放| 中文字幕亚洲精品专区| 亚洲国产高清在线一区二区三| 五月玫瑰六月丁香| 一级黄片播放器| 免费av观看视频| 亚洲精品,欧美精品| 美女xxoo啪啪120秒动态图| 久久午夜福利片| 精品人妻一区二区三区麻豆| 成人毛片60女人毛片免费| 一边亲一边摸免费视频| 免费看日本二区| 日日摸夜夜添夜夜添av毛片| 日韩中字成人| 99久久精品国产国产毛片| 日韩电影二区| 精品人妻视频免费看| 国产av国产精品国产| 亚洲av电影不卡..在线观看| 伦理电影大哥的女人| 亚洲欧美成人综合另类久久久| 国产成人a∨麻豆精品| 亚洲av在线观看美女高潮| 三级男女做爰猛烈吃奶摸视频| 亚洲av.av天堂| 久久国内精品自在自线图片| 亚洲人成网站在线观看播放| 中文欧美无线码| 国产高清有码在线观看视频| 国产在线一区二区三区精| 熟女电影av网| 亚洲精品国产成人久久av| 国产视频内射| 免费av观看视频| 亚洲欧美一区二区三区黑人 | 啦啦啦韩国在线观看视频| 亚洲人成网站高清观看| 天天一区二区日本电影三级| 成人毛片60女人毛片免费| 亚洲国产av新网站| 青青草视频在线视频观看| 午夜激情欧美在线| 成人综合一区亚洲| 免费av不卡在线播放| 久久99蜜桃精品久久| 久久精品综合一区二区三区| 最后的刺客免费高清国语| 免费看日本二区| 91精品一卡2卡3卡4卡| 国产精品久久久久久久电影| eeuss影院久久| 18禁裸乳无遮挡免费网站照片| 欧美一级a爱片免费观看看| 国内少妇人妻偷人精品xxx网站| 男女边吃奶边做爰视频| 99热这里只有精品一区| 日本-黄色视频高清免费观看| 国产av不卡久久| 亚洲精品成人av观看孕妇| 搞女人的毛片| 国产精品一区二区三区四区久久| 国产69精品久久久久777片| 国产成人精品福利久久| 色哟哟·www| 国产69精品久久久久777片| 亚洲成色77777| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一区二区三区乱码不卡18| 日韩电影二区| 最新中文字幕久久久久| 老司机影院成人| 伦精品一区二区三区| 美女主播在线视频| 日韩不卡一区二区三区视频在线| 波多野结衣巨乳人妻| 欧美人与善性xxx| 亚洲第一区二区三区不卡| 亚洲第一区二区三区不卡| 亚洲激情五月婷婷啪啪| 亚洲综合色惰| 成人特级av手机在线观看| 啦啦啦中文免费视频观看日本| 麻豆av噜噜一区二区三区| 最近最新中文字幕大全电影3| 高清视频免费观看一区二区 | 日本免费a在线| 少妇熟女欧美另类| 亚洲国产精品成人久久小说| 免费少妇av软件| 美女脱内裤让男人舔精品视频| 国产伦精品一区二区三区视频9| 亚洲精品国产成人久久av| 精品欧美国产一区二区三| 午夜精品一区二区三区免费看| 色网站视频免费| 男女下面进入的视频免费午夜| 久久99热这里只频精品6学生| 欧美xxxx性猛交bbbb| 国产伦理片在线播放av一区| 亚洲自拍偷在线| 国产成人精品婷婷| 成人午夜高清在线视频| 一级黄片播放器| 夜夜爽夜夜爽视频| 国产熟女欧美一区二区| 久久久久精品久久久久真实原创| 青春草亚洲视频在线观看| 国产片特级美女逼逼视频| 尤物成人国产欧美一区二区三区| 成人亚洲精品一区在线观看 | 午夜激情福利司机影院| 成人综合一区亚洲| 人妻夜夜爽99麻豆av| 国产精品一区二区三区四区久久| 国产在视频线精品| 日韩欧美国产在线观看| av天堂中文字幕网| 男女下面进入的视频免费午夜| 午夜福利视频精品| 精品久久久久久成人av| 欧美激情国产日韩精品一区| av在线观看视频网站免费| 亚洲自偷自拍三级| 婷婷色综合www| 九九爱精品视频在线观看| 久久鲁丝午夜福利片| 亚洲激情五月婷婷啪啪| 亚洲美女视频黄频| 两个人视频免费观看高清| 国产v大片淫在线免费观看| 久久精品熟女亚洲av麻豆精品 | 日韩人妻高清精品专区| 亚洲熟妇中文字幕五十中出| 国产一区二区三区综合在线观看 | 麻豆国产97在线/欧美| 高清欧美精品videossex| 国产日韩欧美在线精品| 午夜福利在线观看免费完整高清在| 99久久中文字幕三级久久日本| 亚洲欧美日韩卡通动漫| 久久久午夜欧美精品| 久久人人爽人人爽人人片va| 久久久久九九精品影院| 熟妇人妻不卡中文字幕| 亚洲成人av在线免费| 久久久久久久久大av| 日本一二三区视频观看| 午夜久久久久精精品| 精品不卡国产一区二区三区| 国内揄拍国产精品人妻在线| 免费观看性生交大片5| 天堂俺去俺来也www色官网 | 久久鲁丝午夜福利片| 五月伊人婷婷丁香| 卡戴珊不雅视频在线播放| 直男gayav资源| 天堂中文最新版在线下载 | av免费观看日本| 亚洲国产精品成人综合色| 国产在线一区二区三区精| 肉色欧美久久久久久久蜜桃 | 嫩草影院精品99| 午夜激情欧美在线| 伊人久久精品亚洲午夜| 亚洲欧美精品专区久久| 嫩草影院精品99| 国产精品一区www在线观看| 如何舔出高潮| 精品熟女少妇av免费看| 综合色av麻豆| 51国产日韩欧美| 日韩视频在线欧美| 午夜日本视频在线| 亚洲精品乱久久久久久| 亚洲综合精品二区| 九九爱精品视频在线观看| .国产精品久久| 亚洲一级一片aⅴ在线观看| 男插女下体视频免费在线播放| 天堂网av新在线| 午夜福利高清视频| 男女国产视频网站| 建设人人有责人人尽责人人享有的 | 中文字幕免费在线视频6| 特级一级黄色大片| 久久国产乱子免费精品| 91在线精品国自产拍蜜月| 国模一区二区三区四区视频| 日日摸夜夜添夜夜添av毛片| 国产男人的电影天堂91| 人妻少妇偷人精品九色| 精品国产一区二区三区久久久樱花 | 久久精品国产亚洲av涩爱| 亚洲国产欧美人成| 中文字幕人妻熟人妻熟丝袜美| 精品熟女少妇av免费看| 一边亲一边摸免费视频| 男人和女人高潮做爰伦理| 狠狠精品人妻久久久久久综合| 免费观看在线日韩| 日韩av免费高清视频| 特大巨黑吊av在线直播| 狠狠精品人妻久久久久久综合| 久久这里有精品视频免费| 日本熟妇午夜| 欧美区成人在线视频| eeuss影院久久| 亚洲伊人久久精品综合| or卡值多少钱| 一个人观看的视频www高清免费观看| 男人爽女人下面视频在线观看| 女人被狂操c到高潮| 乱码一卡2卡4卡精品| 亚洲av中文av极速乱| 嫩草影院新地址| 亚洲天堂国产精品一区在线| 日韩精品青青久久久久久| 卡戴珊不雅视频在线播放| 日韩电影二区| 婷婷色综合大香蕉| 国产精品熟女久久久久浪| 91狼人影院| 亚洲伊人久久精品综合| 亚洲成人一二三区av| 国产免费福利视频在线观看| 国产成人精品婷婷| 国内精品宾馆在线| 亚洲不卡免费看| 99视频精品全部免费 在线| 久久久亚洲精品成人影院| 国产成年人精品一区二区| av又黄又爽大尺度在线免费看| 日韩不卡一区二区三区视频在线| 99热网站在线观看| 超碰av人人做人人爽久久| 蜜桃亚洲精品一区二区三区| av天堂中文字幕网| 亚洲熟女精品中文字幕| 一级毛片电影观看| 午夜激情欧美在线| 男女那种视频在线观看| 少妇高潮的动态图| 精华霜和精华液先用哪个| 视频中文字幕在线观看| 久久人人爽人人片av| 欧美不卡视频在线免费观看| 国产永久视频网站| 五月伊人婷婷丁香| 亚洲av成人av| 一本一本综合久久| 亚洲人成网站在线观看播放| 精华霜和精华液先用哪个| 久久久久九九精品影院| 赤兔流量卡办理| 少妇被粗大猛烈的视频| 久久久久九九精品影院| av专区在线播放| 少妇被粗大猛烈的视频| 亚洲国产精品成人久久小说| 天天一区二区日本电影三级| 黑人高潮一二区| 欧美3d第一页| 亚洲电影在线观看av| 欧美性感艳星| 免费黄频网站在线观看国产| 日本与韩国留学比较| 亚洲va在线va天堂va国产| 联通29元200g的流量卡| 国产一区二区三区av在线| 国产精品熟女久久久久浪| 十八禁网站网址无遮挡 | 国产精品久久久久久av不卡| 秋霞伦理黄片| 成人特级av手机在线观看| 国产伦精品一区二区三区四那| 亚洲内射少妇av| 一级毛片aaaaaa免费看小| 亚洲国产欧美在线一区| 日韩一区二区视频免费看| 国产成人福利小说| 国产在视频线在精品| 婷婷六月久久综合丁香| 亚洲成人一二三区av| 日韩欧美精品v在线| 亚洲精品中文字幕在线视频 | 午夜老司机福利剧场| 美女脱内裤让男人舔精品视频| 插阴视频在线观看视频| 你懂的网址亚洲精品在线观看| 18禁在线无遮挡免费观看视频| 黄色日韩在线| 国国产精品蜜臀av免费| 18+在线观看网站| av一本久久久久| kizo精华| 国产高清国产精品国产三级 | 日韩在线高清观看一区二区三区| 中文欧美无线码| 国产亚洲精品久久久com| 色综合色国产| 中国国产av一级| 久久久a久久爽久久v久久| 日韩欧美精品v在线| 久久久久精品性色| 天天一区二区日本电影三级| 国产精品三级大全| 国产乱人偷精品视频| 中文天堂在线官网| 亚洲av一区综合| 尤物成人国产欧美一区二区三区| 国产精品综合久久久久久久免费| av卡一久久| 亚洲三级黄色毛片| www.色视频.com| av女优亚洲男人天堂| 天天一区二区日本电影三级| 一级a做视频免费观看| 免费黄网站久久成人精品| ponron亚洲| 国产亚洲最大av| 日本欧美国产在线视频| av在线亚洲专区| 亚洲精品日韩在线中文字幕| 国产高清国产精品国产三级 | 亚洲精品成人久久久久久| 精品人妻熟女av久视频| .国产精品久久| 视频中文字幕在线观看| 天堂av国产一区二区熟女人妻| 国产成人免费观看mmmm| 嘟嘟电影网在线观看| 亚洲精品视频女| 午夜福利视频1000在线观看| 国产成人精品福利久久| 欧美性猛交╳xxx乱大交人| 亚洲丝袜综合中文字幕| 色吧在线观看| 国产久久久一区二区三区| 国产真实伦视频高清在线观看| 国产精品蜜桃在线观看| 久久久成人免费电影| 老师上课跳d突然被开到最大视频| 丰满人妻一区二区三区视频av| 日本一本二区三区精品| 日本猛色少妇xxxxx猛交久久| 午夜视频国产福利| 欧美日韩视频高清一区二区三区二| 国产毛片a区久久久久| 能在线免费看毛片的网站| 欧美三级亚洲精品| 国产美女午夜福利| 97人妻精品一区二区三区麻豆| 高清毛片免费看| 七月丁香在线播放| 午夜视频国产福利| 国产高清有码在线观看视频| .国产精品久久| 一本一本综合久久| 久久99精品国语久久久| 午夜福利成人在线免费观看| 亚洲精品乱久久久久久| 97超碰精品成人国产| 成人午夜高清在线视频| 精品熟女少妇av免费看| 麻豆乱淫一区二区| 搡女人真爽免费视频火全软件| 麻豆成人午夜福利视频| 身体一侧抽搐| 久久人人爽人人片av| 欧美日韩精品成人综合77777| 尤物成人国产欧美一区二区三区| 精品久久国产蜜桃| 尾随美女入室| 大片免费播放器 马上看| av.在线天堂| 狂野欧美白嫩少妇大欣赏| 亚洲精品日韩av片在线观看| 别揉我奶头 嗯啊视频| 欧美精品国产亚洲| 亚洲精品一二三| 69人妻影院| 在线a可以看的网站| 久久久久九九精品影院| 91午夜精品亚洲一区二区三区| 成年免费大片在线观看| 免费av毛片视频| 久久这里有精品视频免费| 久久99热6这里只有精品| 美女脱内裤让男人舔精品视频| 亚洲国产精品成人综合色| 欧美激情国产日韩精品一区| 国产精品女同一区二区软件| 国产日韩欧美在线精品| 九九久久精品国产亚洲av麻豆| 极品教师在线视频| 三级国产精品欧美在线观看| 国产免费视频播放在线视频 | 久久久久久国产a免费观看| 精品一区二区三卡| 亚洲av福利一区| 中文在线观看免费www的网站| 亚洲欧洲国产日韩| 亚洲人成网站在线播| 国产一区二区在线观看日韩| 国产乱来视频区| 插逼视频在线观看| 超碰av人人做人人爽久久| 日韩视频在线欧美| eeuss影院久久| 99热全是精品| 熟女电影av网| 99久久精品国产国产毛片| 日韩欧美 国产精品| 精品欧美国产一区二区三| 免费看光身美女| 日本免费a在线| 黄色一级大片看看| 精品久久久久久久末码| 在线a可以看的网站| 最近手机中文字幕大全| 天堂中文最新版在线下载 | 久久97久久精品| 国产午夜精品一二区理论片| 免费不卡的大黄色大毛片视频在线观看 | 搡老妇女老女人老熟妇| 一级爰片在线观看| 日本色播在线视频| 国产乱来视频区| 日韩中字成人| 伊人久久国产一区二区| 男女下面进入的视频免费午夜| 日本三级黄在线观看| 国产永久视频网站| 成人午夜高清在线视频| 国产 一区 欧美 日韩| 亚洲精品乱码久久久久久按摩| or卡值多少钱| 亚洲精品乱码久久久v下载方式| 国产一级毛片七仙女欲春2| 丰满乱子伦码专区| 特大巨黑吊av在线直播| 亚洲第一区二区三区不卡| 久久久久久国产a免费观看| 亚洲精品中文字幕在线视频 | 69av精品久久久久久| 国产91av在线免费观看| 身体一侧抽搐| 亚洲av一区综合| 国产大屁股一区二区在线视频| 国产免费福利视频在线观看| 美女xxoo啪啪120秒动态图| 久久精品国产鲁丝片午夜精品| 久久久久久九九精品二区国产| 国产高清国产精品国产三级 | 熟女电影av网| 中国国产av一级| 尤物成人国产欧美一区二区三区| 久久久久久九九精品二区国产| 69人妻影院| 黄色欧美视频在线观看| 美女大奶头视频| 亚洲av免费高清在线观看| 国产精品99久久久久久久久| 97超视频在线观看视频| 日韩一区二区三区影片| 日本熟妇午夜| 日韩av免费高清视频| 午夜精品国产一区二区电影 | 亚洲美女视频黄频| 一二三四中文在线观看免费高清| 国产成人a区在线观看| 亚洲欧美日韩无卡精品| 亚洲av免费高清在线观看| 国产成人freesex在线| 国产亚洲91精品色在线| 国产精品蜜桃在线观看| 日韩欧美 国产精品| 一个人观看的视频www高清免费观看| 美女被艹到高潮喷水动态| 成人国产麻豆网| 久久久久性生活片| 天堂中文最新版在线下载 | .国产精品久久| 18禁在线播放成人免费| 免费少妇av软件| 日韩不卡一区二区三区视频在线| 国产精品一区www在线观看| 一个人看视频在线观看www免费| 又粗又硬又长又爽又黄的视频| 精品99又大又爽又粗少妇毛片| 亚洲精品亚洲一区二区| 午夜福利视频1000在线观看| 久久精品国产亚洲av涩爱| 有码 亚洲区| 国产 一区 欧美 日韩| 3wmmmm亚洲av在线观看| 一级黄片播放器| 我的老师免费观看完整版| 美女内射精品一级片tv| 男女那种视频在线观看| 最新中文字幕久久久久| 韩国av在线不卡| 国产免费一级a男人的天堂| 深爱激情五月婷婷| 日韩欧美一区视频在线观看 | 三级经典国产精品| 超碰av人人做人人爽久久| 青春草视频在线免费观看| 欧美日韩精品成人综合77777| 一级黄片播放器| 一区二区三区高清视频在线| 18禁裸乳无遮挡免费网站照片| 不卡视频在线观看欧美| 成人特级av手机在线观看| 国产色婷婷99| 日韩大片免费观看网站| 亚洲精品一二三| 亚洲国产精品成人综合色| 国产精品一区二区性色av| 亚洲成人一二三区av| 国产成人免费观看mmmm| 久久久久久久久中文| 中国国产av一级| 亚洲经典国产精华液单| 亚洲精品国产av成人精品| 只有这里有精品99|