• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Signal pre-processing method and application design of edge nodes for distributed electromechanical system

    2021-09-15 03:12:32LIUPeijinZHANGXiangxiangSUNYuSHIMengtaoHENing

    LIU Peijin,ZHANG Xiangxiang,SUN Yu,SHI Mengtao,HE Ning

    (School of Mechatronic Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China)

    Abstract:A signal pre-processing method based on optimal variational mode decomposition (OVMD)is proposed to improve the efficiency and accuracy of local data filtering and analysis of edge nodes in distributed electromechanical systems.Firstly,the singular points of original signals are eliminated effectively by using the first-order difference method.Then the OVMD method is applied for signal modal decomposition.Furthermore,correlation analysis is conducted to determine the degree of correlation between each mode and the original signal,so as to accurately separate the real operating signal from noise signal.On the basis of theoretical analysis and simulation,an edge node pre-processing system for distributed electromechanical system is designed.Finally,by virtue of the signal-to-noise ratio (SNR)and root-mean-square error (RMSE)indicators,the signal pre-processing effect is evaluated.The experimental results show that the OVMD-based edge node pre-processing system can extract signals with different characteristics and improve the SNR of reconstructed signals.Due to its high fidelity and reliability,this system can also provide data quality assurance for subsequent system health monitoring and fault diagnosis.

    Key words:distributed electromechanical system;electromechanical signal;edge node;optimal variational mode decomposition(OVMD);signal pre-processing system

    0 Introduction

    Signal pre-processing is of great significance for the health monitoring and fault diagnosis of distributed electromechanical systems.Edge nodes in different directions are responsible for filtering and efficient analysis of local device data,supporting real-time intelligent processing and execution of local devices.Accounting for 39% of cloud computing cost alone,its efficiency can greatly affect the entire system research performance[1-2].In the era where “data is the king”,it is the quality of data involved in the analysis that will eventually determine the accuracy of monitoring and diagnosis results.However,the signals collected at the edge nodes under actual operating conditions will exhibit “secondary effect”due to serious signal overlap resulting from various physical effects.And most useful signals are buried in strong noise signals.The overlapping of signals and noise has caused great difficulties in analyzing noise laws and signal characteristics[3-6].Therefore,it is vital for diagnostic monitoring or device anti-jamming analysis to extract the real and interference signals of reaction operation status efficiently and accurately from the edge node signal.

    In recent years,researchers have carried out a lot of pre-processing research work such as related filtering and noise reduction in response to the signal pollution in monitoring and diagnosis.The short-time Fourier transform (STFT)proposed by Gabor made up for the defects of non-stationary signal processing methods in traditional frequency domain[7].Wu et al.analyzed the spectral characteristics of vibration signals based on STFT,and further obtained decomposed signals at different frequencies[8].However,the usage of this method is limited to time window function fixation,which makes the pre-processing technology not universal.Furthermore,the wavelet transform (WT)proposed in Ref.[9] addresses the issues of the fixed window size of STFT.In addition,many other scholars have made their contributions in the improvements and optimizations based on WT with respect to different scenarios.Unfortunately,it is more difficult to choose proper wavelet basis functions,which have great impacts on the filtering effect[10-13].In recent years,empirical modal decomposition (EMD)has been widely used in the decomposition of complex signals,which can be adaptively decomposed into several relatively stable modal components[14].Xie et al.realized multi-channel signal processing based on EMD[15].Nevertheless,EMD has a serious modal aliasing effect.Although some methods such as ensemble EMD (EEMD)and complementary ensemble EMD (CEEMD)can effectively overcome the modal aliasing phenomenon of EMD,the tremendous computations are not affordable for the signal pre-processing stage[16-17].In response to the drawbacks of EMD,dragomiretskiy et al.proposed a variational modal decomposition (VMD)method such that the modal ambiguities and endpoint effect can be successfully suppressed[18].Compared with the methods in the aforementioned Refs.[7-17],VMD not only achieves the purpose of noise reduction,but also retains the signals of different levels in the signal resulting in higher fidelity of the system.It is more suitable for electromechanical signal processing where different fields are inter-coupled in a distributed electromechanical system.Thus,based on the research of VMD,a signal pre-processing system with the implementation of optimal VMD (OVMD)is designed.Firstly,by taking advantage of the first-order difference method,the singular points of the original signals are effectively eliminated.Then,OVMD is applied to decompose the singularity-eliminated signals.Finally,correlation analysis is performed to determine the degree of correlation between each mode and the original signal,and then accurately distinguish the real operating signal and noise signal to accomplish the signal pre-processing functionalities of the edge node for the electromechanical system.

    1 Pre-processing method

    The pre-processing method is mainly composed of several sequential steps,in which the first-order difference method,OVMD method and correlation analysis are applied accordingly.The pre-processing evaluation index is also provided at last,so as to fulfill the entire pre-processing function of edge node electromechanical signal.

    1.1 First difference method

    Based on the 3σcriterion,the first difference method[19]is proposed to handle the scenarios with a large amount of data to be processed.In this study,the first difference method is used to eliminate the singular points of the experimental data.In the case of a higher sampling rate,the continuous sampling data interval becomes small,so it satisfies

    x(t)-x(t-1)≈x(t+1)-x(t),

    (1)

    wherex(t)is the sampled value at timet.

    Therefore,according to the sampling value at timet-1 andt,the estimation at timet+1 is recorded as

    x′(t+1)=2x(t)-x(t-1),

    (2)

    wherex′(t+1)is the predicted value at timet+1.Assuming thatωis the threshold,if the criteria |x(t)-x′(t)|>ωis satisfied,the value at timetis considered to be a singular point,which should be eliminated and replaced with the predicted valuex′(t)ofx(t).Takeω=nσ,whereσis the sample standard deviation,andnis generally an integer and selected according to the sampling rate and data characteristics.

    1.2 VMD

    The goal of VMD is to decompose the original signal into the optimal solutionKintrinsic mode function (IMF)by iterative method.In this study,VMD is adopted to realize the effective separation of the original signalffrom low frequency to high frequency in the frequency domain.Its variational model is constructed as

    (3)

    In order to take advantages of reconstruction accuracy and the strictness of constraint execution to solve the variational model of Eq.(3),the quadratic penalty factorαand Lagrange multiplierλare introduced to convert the constrained variational problem into an unconstrained variational problem.The enhanced Lagrange equation is expressed as

    L({uk},{ωk},λ(t))=

    (4)

    k∈{1,K}.

    (5)

    1.3 Determination of optimal number K

    When using the VMD method,the number of decomposition modesKdirectly affects the accuracy of the decomposition.If over-decomposition occurs,the components will show intermittence,leading to frequency aliasing,while under-decomposition will cause modal aliasing effects[20].This study uses the instantaneous frequency average method to determine theKvalue instead of empirical selection method to increase the system reliability.The instantaneous frequency characterizes the frequency change of the modal components.If there are too many decomposition layers,the magnitude of instantaneous frequency change of each mode will be greater,and the frequency curve will mutate.According to the principle of instantaneous frequency ambiance[21],the average instantaneous frequency value of the modal component is expressed as

    (6)

    whereiis theith IMF of VMD;Nis the number of instantaneous frequencies of the component;m means there aremsample points;andjis thejth sampling point.

    In the decomposition process,the VMD algorithm is taken for modal decomposition first,and then the Hilbert transform is performed on each modal component such that the average instantaneous frequency value is obtained.Finally,from the average value curve of each instantaneous frequency,after locating the curvature mutation point,theKvalue can be found by taking the critical value before the mutation.

    1.4 Correlation analysis

    1.5 Evaluation index

    In this study,the signal-to-noise ratio (SNR)and root-mean-square error (RMSE)are combined together to evaluate the signal pre-processing effect.SNR represents the signal-to-noise ratio change before and after reconstruction,while the RMSE represents the deviation change before and after reconstruction.The larger the SNR,the smaller the RMSE,the better extraction effect of effective components is expected[22].The SNR and RMSE values can be obtained as

    (7)

    (8)

    wherex(t)is original signal;x(t)′ is the reconstructed signal;andNis the number of samples.

    2 Simulation

    The operating signal of the electromechanical system has considerable interference,including the high-order harmonics and singular points.In combination with the actual working conditions,a current simulation signal is established containing white Gaussian noise with the standard deviation of 1 together with both the seventh and ninth harmonics and singular points.The fundamental frequency is 50 Hz,and the harmonic frequencies are 350 Hz and 450 Hz,respectively.The time-domain waveform of the simulated signal is shown in Fig.1,and the simulation signal is

    f(t)=20sin(100πt)+7sin(700πt)+

    3sin(900πt)+u(t)+v(t),

    (9)

    whereu(t)is white Gaussian noise with a standard deviation of 1,andv(t)is the singularity signal.

    The result after the removal of singular points by using the first difference method is shown in Fig.2.Compared with the original waveform in Fig.1,the singular points are apparently eliminated while all other data point information remains untouched.

    Fig.1 Time-domain waveform of simulated signal

    Fig.2 Waveform after eliminating signal singular points

    Through the calculation on the mean value of instantaneous frequency of IMF decomposed for 6 times by VMD in Fig.2,the result curves are obtained as shown in Fig.3.

    Fig.3 Curve of mean instantaneous frequency

    It can be seen from Fig.3 that when the signal is decomposed at the fifth time,the mean value of instantaneous frequency has mutation,so we chooseK=4 as the decomposition number.Then the decomposition effects are compared and analyzed with different methods.The modal components and frequencies of each modal component and frequency decomposed by VMD and EMD methods are shown in Fig.4.

    (a)VMD decomposition diagram

    It can be found from Figs.4(a)and (c)that the VMD method can decompose the fundamental wave,the seventh and ninth harmonics as well as noise components more effectively compared with the EMD method.Also it can be noticed from Figs.4(b)and (d)that serious spectrum aliasing occurs in the EMD decomposition mode,and the main frequency component cannot be decomposed.Therefore,it can be concluded that OVMD method is capable of decomposing signals of various levels.

    On the basis of the correlation principle,the pre-processed signals are explored further with the correlation analysis completed between the modal components obtained by VMD and EMD decomposition and the original signals.The correlation coefficients are shown in Table 1.

    Table 1 Correlation coefficients of components with different methods

    From Table 1,strong correlation is observed between the IMF1 obtained by the OVMD and the original signal with coefficient 0.988,while for EMD method,the maximum correlation modal component is IMF4 with the coefficient value 0.84.Combined with Fig.4(b),it can be seen that IMF4 is far from the fundamental wave of the simulated signal 50 Hz and 20 mA,while the IMF1 decomposed by the VMD method is basically the same as the fundamental wave.

    After the VMD and EMD components are reconstructed respectively with the correlation coefficients greater than the threshold,the SNR and RMSE are compared to evaluate the reconstruction outcome.The reconstructed signals and the original total harmonic distortion (THD)as well as the SNR and RMSE of reconstructed signals under different methods are shown in Table 2.Significant improvement is observed with both methods,despite the fact that the original signal has been seriously polluted by noise and harmonics.Specifically,the SNR using OVMD for pre-processing is improved by 1.9 dB compared with EMD.And the THD after OVMD pre-processing and reconstruction is reduced by 36.9%,8.5% lower than EMD pre-processing,which means that the collected signal can be processed better.

    Table 2 Reconstructed values of SNR,RMSE and THD

    3 Design of pre-processing system

    3.1 Scheme design

    The hardware architecture and experimental platform of the edge node pre-processing system of the distributed electromechanical system are shown in Figs.5 and 6,respectively,which mainly consists of three parts as follows:

    Fig.5 Architecture of system hardware

    1)Research object.Data are fed from electromechanical systems and high-performance sensors;

    2)Data collection and transmission.The data acquisition and transmission functions are implemented with the aid of the virtual instrument cRIO controller;

    3)Signal pre-processing and storage.The related functionalities are realized on the upper computer at the edge node.

    Fig.6 Experimental platform

    3.2 Signal acquisition and transmission

    The embedded FPGA and industrial-grade I/O acquisition card is used in the system for signal acquisition.The data are retrieved from the acquisition program of the LabVIEW FPGA module,and then transmitted from the FPGA chassis to the real-time system through the PCI bus.The FPGA on the chassis is directly connected to the I/O acquisition card,and the hardware data can be directly accessed when collected under FPGA.vi,which reaches microsecond level of signal acquisition with almost no response delay,such that the high-speed and completeness of signal acquisition is achieved.In order to improve the real-time performance of the system,data reading and transmission function blocks are accomplished by the RT main program,and the pre-processing work is completed at the PC layer.The data transmission between FPGA and RT adopts DMA FIFO mode.To avoid FIFO buffer overflow,the FIFO depth can be set according to the sampling rate,and data transmission is carried out in the way of network flow between RT and upper computer.

    3.3 Signal pre-processing and storage

    The edge node pre-processing and storage functions are developed and debugged by LabVIEW and Matlab.The pre-processing process is illustrated in Fig.7.

    Fig.7 Signal pre-processing process

    To facilitate independent development and debugging,the functions of data acquisition,processing and storage are developed by virtue of modularized programming,and the data and messages between modules are transmitted in queued mode.The different characteristic signals after pre-processing are respectively transmitted to the data storage module in queued mode,and stored in terms of the unique TDMS data format of LabVIEW,which is a binary mode to support high-speed data management.

    4 Experiments

    A V-phase input current signal of the variable frequency motor in an edge node for pre-processing analysis is selected for the experimental case studies.With the frequency of the variable frequency motor at 50 Hz,the sampling rate at 10 kHz,and we take part of the signal to verify the pre-processing method.The signal time-domain waveform is shown in Fig.8.

    Fig.8 Time-domain waveform of actual signal

    There are obvious zero-valued singular points between 0.03 s and 0.04 s in the actual obtained signal.After the singular points are eliminated by the system,the signal waveform is much cleaner,as shown in Fig.9.The singular points are successfully eliminated and then the result of Eq.(2)is taken instead of zero.

    Fig.9 Waveform of singularity eliminated signal

    With the instantaneous frequency mean value method,the number of decomposition levelsKis determined to be 4.The result of 4-order decomposition by VMD is shown in Fig.10.It can be seen from Fig.10(a)that theoriginal signal is nicely decomposed.Combined with Fig.10(b),it can be seen that the fundamental components,harmonic components and noise components are extracted after using OVMD.

    (a)Decomposition diagram

    The result of correlation analysis on the original signal and each IMF as well as its auto-correlation function are shown in Fig.11.

    Fig.11 Analysis of IMF (h)auto-correlation function

    Combining Fig.10(b)and Fig.11,it can be determined preliminarily that IMF 2 is the harmonic component on the motor input side.From the auto-correlation diagrams of IMF 3 and IMF 4 in Fig.11,the peak value is higher with low auto-correlation delay.And the autocorrelation approximates to 0 gradually as the delay grows.Moreover,there is a trend of oscillation,which is obviously aperiodic.Combined with the actual working conditions,it can be determined that IMF3 and IMF4 components are high-frequency noise signals.Based on the calculation of the correlation coefficient between each IMF and the original signal,the component withrgreater than the threshold value for reconstruction is taken and the noise component with the auto-correlation analysis result is extracted.The reconstructed signal and the noise extraction result are shown in Fig.12.

    (a)Result of reconstruction

    The SNR,RMSE and THD calculation results of the reconstructed signal and the original signal are shown in Table 3.

    Table 3 Calculation results of various indicators

    The following conclusions can be drawn from Fig.10 and Table 3.

    1)The THD after pre-processing and reconstruction is reduced by 4.5%.The SNR and RMSE of the reconstructed signal with the OVMD method are calculated and compared,in which the former indicates the improvement by about 22 dB,while the RMSE of the latter is at small value.Therefore,better performance is achieved and verified.

    2)The pre-processing system can reliably decompose the original signal,effectively improve the SNR and extract signals of different levels,hence high fidelity and reliability is guaranteed.

    5 Conclusions

    In this study,as the traditional filtering technology “one-size-fits-all”processing method was broken,a hybrid pre-processing method suitable for edge node signal of the electromechanical system was proposed.The edge node signal pre-processing system was designed and developed,which realized a primary development at the edge nodes of distributed systems.Experimentally,the application of pre-processing system not only can achieve reliable extraction and reconstruction of analytical signals,but also provides a reliable data base for subsequent accurate analysis and diagnosis while maintaining high signal fidelity.It is proved to be practical to certain extents for the health detection and fault diagnosis of distributed electromechanical systems.Additionally,by the analysis index this method can solve the problem of signal pollution at the edge node of the distributed electromechanical system very well,which lays solid foundation for further development of the remote monitoring and diagnosis platform of the distributed electromechanical system.

    女人高潮潮喷娇喘18禁视频| 级片在线观看| 人妻久久中文字幕网| 成人三级做爰电影| 久久久久精品国产欧美久久久| 人妻丰满熟妇av一区二区三区| 国产伦精品一区二区三区四那| 91九色精品人成在线观看| 亚洲精品一卡2卡三卡4卡5卡| 人妻夜夜爽99麻豆av| 男人舔女人的私密视频| 国产精品综合久久久久久久免费| 99国产极品粉嫩在线观看| 男女做爰动态图高潮gif福利片| 久久久水蜜桃国产精品网| 国产精品自产拍在线观看55亚洲| 夜夜爽天天搞| 后天国语完整版免费观看| 99热6这里只有精品| 一进一出抽搐动态| 亚洲人成伊人成综合网2020| 首页视频小说图片口味搜索| 性欧美人与动物交配| 黄片大片在线免费观看| 亚洲国产色片| 午夜精品在线福利| 国产精品美女特级片免费视频播放器 | 欧美又色又爽又黄视频| 日韩免费av在线播放| 精品国产亚洲在线| 亚洲av成人不卡在线观看播放网| 亚洲精品一区av在线观看| 欧美日本亚洲视频在线播放| 亚洲欧美日韩无卡精品| 亚洲国产看品久久| 他把我摸到了高潮在线观看| 国产成年人精品一区二区| 深夜精品福利| АⅤ资源中文在线天堂| cao死你这个sao货| 亚洲色图 男人天堂 中文字幕| 最新在线观看一区二区三区| 日本熟妇午夜| 婷婷六月久久综合丁香| 日本一二三区视频观看| 日韩大尺度精品在线看网址| 两个人的视频大全免费| 亚洲国产欧美人成| 可以在线观看的亚洲视频| 亚洲欧美日韩高清在线视频| 男人舔奶头视频| 亚洲av日韩精品久久久久久密| 午夜精品久久久久久毛片777| 亚洲人成网站高清观看| 日本免费一区二区三区高清不卡| 国产一区二区激情短视频| 国产真实乱freesex| 中文字幕久久专区| 亚洲成人久久性| 亚洲av免费在线观看| 俺也久久电影网| 精品久久久久久久久久久久久| 网址你懂的国产日韩在线| 亚洲片人在线观看| 中国美女看黄片| 高清在线国产一区| 999精品在线视频| 日本精品一区二区三区蜜桃| 亚洲欧美日韩高清专用| 中文字幕av在线有码专区| 日韩人妻高清精品专区| 香蕉丝袜av| av片东京热男人的天堂| 国产精品99久久久久久久久| 九九久久精品国产亚洲av麻豆 | 国产伦精品一区二区三区四那| 国内少妇人妻偷人精品xxx网站 | 国产精品98久久久久久宅男小说| 一二三四社区在线视频社区8| 久久午夜亚洲精品久久| 一级毛片精品| 国产精品久久久av美女十八| 亚洲国产欧美一区二区综合| 国产又黄又爽又无遮挡在线| 日本免费一区二区三区高清不卡| 国产黄色小视频在线观看| 久久久国产成人精品二区| 国产亚洲精品一区二区www| 亚洲乱码一区二区免费版| 国产精品av久久久久免费| 美女 人体艺术 gogo| 在线国产一区二区在线| 亚洲成人中文字幕在线播放| 老鸭窝网址在线观看| 中文字幕最新亚洲高清| 人妻夜夜爽99麻豆av| 久久香蕉国产精品| 亚洲欧美精品综合久久99| 国产精品国产高清国产av| 亚洲国产高清在线一区二区三| 国产精品免费一区二区三区在线| 在线免费观看不下载黄p国产 | 欧美日韩中文字幕国产精品一区二区三区| 国产69精品久久久久777片 | 美女cb高潮喷水在线观看 | 亚洲av电影在线进入| 亚洲欧美激情综合另类| 国产精品野战在线观看| 欧美+亚洲+日韩+国产| 亚洲中文av在线| 免费在线观看成人毛片| 搞女人的毛片| 黄片小视频在线播放| 国产淫片久久久久久久久 | 欧美日韩福利视频一区二区| www日本在线高清视频| 在线观看一区二区三区| 1024手机看黄色片| 亚洲专区字幕在线| 他把我摸到了高潮在线观看| 国产成人一区二区三区免费视频网站| 一本综合久久免费| 丰满人妻一区二区三区视频av | 最新在线观看一区二区三区| 午夜两性在线视频| 国产精品精品国产色婷婷| 亚洲第一欧美日韩一区二区三区| 在线观看66精品国产| 国产私拍福利视频在线观看| 在线免费观看不下载黄p国产 | 男人的好看免费观看在线视频| 日韩大尺度精品在线看网址| 一级a爱片免费观看的视频| 男女视频在线观看网站免费| 日韩大尺度精品在线看网址| 国产精品久久久av美女十八| 亚洲精品久久国产高清桃花| 小蜜桃在线观看免费完整版高清| 亚洲国产看品久久| 99精品久久久久人妻精品| 亚洲午夜理论影院| 久久天堂一区二区三区四区| 可以在线观看的亚洲视频| 欧美日韩国产亚洲二区| 99热只有精品国产| 国产精品亚洲av一区麻豆| 日韩精品中文字幕看吧| 国产精品九九99| 国产97色在线日韩免费| 在线观看免费视频日本深夜| 老汉色av国产亚洲站长工具| 亚洲欧美精品综合久久99| 久久香蕉精品热| 亚洲精品粉嫩美女一区| 成人亚洲精品av一区二区| 国产精品亚洲一级av第二区| 天天添夜夜摸| 国产人伦9x9x在线观看| 好男人电影高清在线观看| 51午夜福利影视在线观看| 国产成人啪精品午夜网站| 老汉色∧v一级毛片| 天天添夜夜摸| 国产在线精品亚洲第一网站| 亚洲国产精品999在线| 丝袜人妻中文字幕| 国产亚洲精品一区二区www| 国产蜜桃级精品一区二区三区| 午夜精品久久久久久毛片777| 久久精品亚洲精品国产色婷小说| 免费高清视频大片| 欧美极品一区二区三区四区| 国产精品综合久久久久久久免费| 亚洲五月天丁香| 成人一区二区视频在线观看| 一区福利在线观看| 亚洲成av人片免费观看| 亚洲最大成人中文| 十八禁网站免费在线| 免费在线观看成人毛片| av天堂中文字幕网| 免费大片18禁| 欧美大码av| 午夜福利在线在线| 免费观看的影片在线观看| 99久久99久久久精品蜜桃| 精品国产三级普通话版| 亚洲国产色片| 无限看片的www在线观看| 人人妻人人澡欧美一区二区| 1024香蕉在线观看| 极品教师在线免费播放| 欧美在线一区亚洲| 精品午夜福利视频在线观看一区| 亚洲成av人片在线播放无| 国产毛片a区久久久久| 伊人久久大香线蕉亚洲五| 琪琪午夜伦伦电影理论片6080| 男插女下体视频免费在线播放| 国产精品美女特级片免费视频播放器 | 观看免费一级毛片| 亚洲色图av天堂| 亚洲成人中文字幕在线播放| 国产精品自产拍在线观看55亚洲| 亚洲成人久久爱视频| 国产探花在线观看一区二区| 999精品在线视频| 女生性感内裤真人,穿戴方法视频| cao死你这个sao货| 亚洲欧洲精品一区二区精品久久久| 一级黄色大片毛片| 19禁男女啪啪无遮挡网站| 男插女下体视频免费在线播放| 欧美日韩亚洲国产一区二区在线观看| 好看av亚洲va欧美ⅴa在| 欧美又色又爽又黄视频| 天堂动漫精品| 亚洲av熟女| 亚洲第一欧美日韩一区二区三区| 一个人看视频在线观看www免费 | 成年女人看的毛片在线观看| 床上黄色一级片| 两个人视频免费观看高清| 国产69精品久久久久777片 | 亚洲国产欧美人成| 最近在线观看免费完整版| 老司机福利观看| 国内精品久久久久精免费| 成人国产综合亚洲| 最好的美女福利视频网| 窝窝影院91人妻| av福利片在线观看| 丰满的人妻完整版| 亚洲狠狠婷婷综合久久图片| 十八禁人妻一区二区| 色尼玛亚洲综合影院| 婷婷亚洲欧美| 一级a爱片免费观看的视频| 亚洲av熟女| 男女那种视频在线观看| 网址你懂的国产日韩在线| 国内揄拍国产精品人妻在线| 国产精品 国内视频| 欧美大码av| 国产视频一区二区在线看| 亚洲片人在线观看| 狠狠狠狠99中文字幕| 午夜激情福利司机影院| 欧美最黄视频在线播放免费| 999久久久精品免费观看国产| 国产91精品成人一区二区三区| 亚洲国产精品成人综合色| 蜜桃久久精品国产亚洲av| 久久久久国产精品人妻aⅴ院| 欧美一区二区精品小视频在线| 美女黄网站色视频| 色播亚洲综合网| 一卡2卡三卡四卡精品乱码亚洲| 亚洲午夜精品一区,二区,三区| 国产三级在线视频| 欧美激情在线99| 亚洲国产精品久久男人天堂| 亚洲一区二区三区色噜噜| 欧美av亚洲av综合av国产av| 极品教师在线免费播放| 一进一出抽搐动态| 国产熟女xx| 成人三级黄色视频| 91久久精品国产一区二区成人 | 国产91精品成人一区二区三区| 成人无遮挡网站| 亚洲av成人精品一区久久| 一区二区三区激情视频| 亚洲av免费在线观看| 欧美性猛交黑人性爽| 国内精品久久久久久久电影| 欧美日本视频| 国产一区二区在线观看日韩 | 少妇人妻一区二区三区视频| 偷拍熟女少妇极品色| 桃色一区二区三区在线观看| 亚洲专区字幕在线| 日韩欧美精品v在线| 在线观看午夜福利视频| 窝窝影院91人妻| 天天躁狠狠躁夜夜躁狠狠躁| 国产高清有码在线观看视频| 一本精品99久久精品77| 亚洲成人久久性| 午夜福利免费观看在线| 欧美另类亚洲清纯唯美| 小说图片视频综合网站| 亚洲精品美女久久av网站| 成人性生交大片免费视频hd| 欧美乱码精品一区二区三区| 精品久久久久久,| 岛国在线免费视频观看| 久久久国产成人精品二区| 免费在线观看视频国产中文字幕亚洲| 亚洲av成人不卡在线观看播放网| 18禁美女被吸乳视频| 成人18禁在线播放| 午夜视频精品福利| 一夜夜www| 观看免费一级毛片| 女人高潮潮喷娇喘18禁视频| 欧美激情在线99| 国产精品野战在线观看| 少妇丰满av| 精品欧美国产一区二区三| 一区二区三区国产精品乱码| 91字幕亚洲| 亚洲狠狠婷婷综合久久图片| 中文在线观看免费www的网站| 国产精品久久久久久亚洲av鲁大| 亚洲狠狠婷婷综合久久图片| 日本黄色片子视频| 一级毛片精品| 老熟妇乱子伦视频在线观看| 中文字幕人妻丝袜一区二区| 久久久久九九精品影院| 91麻豆av在线| 婷婷精品国产亚洲av| 久久精品影院6| 在线看三级毛片| 国产黄片美女视频| 久久香蕉国产精品| 精品午夜福利视频在线观看一区| 99视频精品全部免费 在线 | 国产成人啪精品午夜网站| 国产乱人伦免费视频| 精品乱码久久久久久99久播| 国产成人一区二区三区免费视频网站| 国产精品一区二区三区四区免费观看 | 国产欧美日韩一区二区精品| 天堂影院成人在线观看| 精品一区二区三区视频在线观看免费| 日本精品一区二区三区蜜桃| 国产麻豆成人av免费视频| 麻豆一二三区av精品| 久久国产乱子伦精品免费另类| 成在线人永久免费视频| 很黄的视频免费| 99国产精品一区二区三区| 少妇丰满av| 嫁个100分男人电影在线观看| 欧美日本视频| 99热只有精品国产| 亚洲第一欧美日韩一区二区三区| 黄色 视频免费看| 欧美激情在线99| 国产精品野战在线观看| 男女做爰动态图高潮gif福利片| 国产成人影院久久av| 国产亚洲精品综合一区在线观看| 巨乳人妻的诱惑在线观看| 国产av不卡久久| 熟女少妇亚洲综合色aaa.| 亚洲 欧美 日韩 在线 免费| 极品教师在线免费播放| 国产精品 欧美亚洲| 国产精品 国内视频| 国产精品久久电影中文字幕| 国内少妇人妻偷人精品xxx网站 | 日本熟妇午夜| 国产欧美日韩精品亚洲av| 非洲黑人性xxxx精品又粗又长| 精品久久久久久久久久免费视频| 无遮挡黄片免费观看| 精品国产乱码久久久久久男人| 久久这里只有精品19| 岛国在线观看网站| 国产一区二区在线观看日韩 | 午夜福利免费观看在线| 免费在线观看亚洲国产| 在线观看免费视频日本深夜| 国产成人福利小说| 日本在线视频免费播放| 日本五十路高清| 午夜福利视频1000在线观看| 色综合婷婷激情| 免费高清视频大片| 亚洲欧美精品综合久久99| 人人妻人人澡欧美一区二区| 国产美女午夜福利| 国产99白浆流出| 欧美xxxx黑人xx丫x性爽| 日韩精品中文字幕看吧| 视频区欧美日本亚洲| 国内久久婷婷六月综合欲色啪| 悠悠久久av| 男女视频在线观看网站免费| 亚洲av中文字字幕乱码综合| 18禁黄网站禁片免费观看直播| 香蕉国产在线看| 岛国在线观看网站| 久久久水蜜桃国产精品网| 亚洲精品乱码久久久v下载方式 | 亚洲中文字幕日韩| 天堂√8在线中文| 欧美极品一区二区三区四区| 久久国产乱子伦精品免费另类| 日本一二三区视频观看| 欧美精品啪啪一区二区三区| 久久精品影院6| 观看免费一级毛片| 午夜福利在线在线| 国产亚洲av嫩草精品影院| 99国产精品一区二区三区| 亚洲狠狠婷婷综合久久图片| 亚洲在线自拍视频| 国产野战对白在线观看| 男人和女人高潮做爰伦理| 麻豆成人av在线观看| 亚洲黑人精品在线| 免费在线观看视频国产中文字幕亚洲| 天堂动漫精品| 99久久综合精品五月天人人| 亚洲成人久久性| 嫩草影院入口| 亚洲色图av天堂| 精品国产乱码久久久久久男人| xxx96com| 色噜噜av男人的天堂激情| 美女 人体艺术 gogo| 白带黄色成豆腐渣| 淫秽高清视频在线观看| 99热这里只有是精品50| www日本黄色视频网| 成人无遮挡网站| 好看av亚洲va欧美ⅴa在| 五月玫瑰六月丁香| 色尼玛亚洲综合影院| 亚洲自拍偷在线| 好男人电影高清在线观看| 搡老妇女老女人老熟妇| 亚洲中文日韩欧美视频| 88av欧美| 精品久久久久久成人av| 国产三级在线视频| 麻豆成人午夜福利视频| 99视频精品全部免费 在线 | 久久精品亚洲精品国产色婷小说| 88av欧美| 99热这里只有精品一区 | 中国美女看黄片| 国产午夜精品论理片| 亚洲熟妇中文字幕五十中出| 法律面前人人平等表现在哪些方面| 午夜福利高清视频| tocl精华| 变态另类成人亚洲欧美熟女| 搡老妇女老女人老熟妇| 99久久99久久久精品蜜桃| 国产午夜精品久久久久久| 99热这里只有是精品50| 国产精品久久久久久精品电影| 成熟少妇高潮喷水视频| 欧美av亚洲av综合av国产av| 首页视频小说图片口味搜索| 午夜福利在线在线| 久久久国产成人免费| 三级国产精品欧美在线观看 | 搡老熟女国产l中国老女人| 国产一区二区在线av高清观看| 国产高清videossex| 美女午夜性视频免费| 欧美黄色淫秽网站| 美女免费视频网站| 国产97色在线日韩免费| 久久久久久九九精品二区国产| 高清毛片免费观看视频网站| 久久国产精品影院| a级毛片在线看网站| 国产精品一区二区精品视频观看| 国产高清有码在线观看视频| 国产熟女xx| or卡值多少钱| 日日摸夜夜添夜夜添小说| 欧美在线黄色| 亚洲一区高清亚洲精品| 亚洲精品在线观看二区| 一进一出抽搐动态| 国内精品美女久久久久久| 久久久久九九精品影院| 三级男女做爰猛烈吃奶摸视频| 99国产精品一区二区蜜桃av| 一个人看视频在线观看www免费 | 亚洲欧美日韩卡通动漫| 国产成+人综合+亚洲专区| 亚洲狠狠婷婷综合久久图片| 国产成人精品久久二区二区免费| 女生性感内裤真人,穿戴方法视频| 99热精品在线国产| 十八禁网站免费在线| 淫妇啪啪啪对白视频| 岛国视频午夜一区免费看| 制服人妻中文乱码| 美女黄网站色视频| xxx96com| 亚洲精品色激情综合| 啦啦啦观看免费观看视频高清| 天堂√8在线中文| 一级毛片精品| 综合色av麻豆| 欧美日韩国产亚洲二区| 午夜福利免费观看在线| 一本综合久久免费| 国产成人影院久久av| 国产精品久久久久久亚洲av鲁大| 欧美国产日韩亚洲一区| 久久香蕉国产精品| 久久久久国产精品人妻aⅴ院| 久久午夜亚洲精品久久| 国产精品久久久av美女十八| 两性夫妻黄色片| 亚洲乱码一区二区免费版| 伦理电影免费视频| 中文字幕熟女人妻在线| 欧美日韩综合久久久久久 | 国产精品久久久久久久电影 | 国产亚洲精品av在线| 久久天躁狠狠躁夜夜2o2o| 亚洲专区中文字幕在线| 成人亚洲精品av一区二区| АⅤ资源中文在线天堂| 久久久久国产精品人妻aⅴ院| 亚洲色图 男人天堂 中文字幕| 久久人人精品亚洲av| 黄色丝袜av网址大全| 日韩三级视频一区二区三区| 亚洲最大成人中文| 亚洲国产色片| av欧美777| 国产av麻豆久久久久久久| 成人午夜高清在线视频| 每晚都被弄得嗷嗷叫到高潮| 老司机福利观看| 九色成人免费人妻av| 国产精品乱码一区二三区的特点| 久9热在线精品视频| 亚洲国产精品999在线| av黄色大香蕉| 国产一区二区三区在线臀色熟女| av福利片在线观看| aaaaa片日本免费| 国产精品久久久人人做人人爽| 在线国产一区二区在线| 日韩高清综合在线| 2021天堂中文幕一二区在线观| 一本精品99久久精品77| 香蕉丝袜av| 不卡一级毛片| 成人亚洲精品av一区二区| 女生性感内裤真人,穿戴方法视频| 白带黄色成豆腐渣| 亚洲色图 男人天堂 中文字幕| 18禁黄网站禁片免费观看直播| 脱女人内裤的视频| 男女视频在线观看网站免费| 波多野结衣高清无吗| 午夜久久久久精精品| 偷拍熟女少妇极品色| 欧美日韩黄片免| 成人三级做爰电影| 欧美日韩中文字幕国产精品一区二区三区| 亚洲专区国产一区二区| xxxwww97欧美| 丰满人妻一区二区三区视频av | 国产精品久久久久久久电影 | 手机成人av网站| 午夜激情欧美在线| 久久中文看片网| 免费看光身美女| 亚洲人成电影免费在线| 男女做爰动态图高潮gif福利片| 亚洲午夜理论影院| 午夜福利视频1000在线观看| 美女免费视频网站| 麻豆一二三区av精品| 日韩高清综合在线| 亚洲国产精品sss在线观看| 99热精品在线国产| 国产精品久久视频播放| 久久人人精品亚洲av| 一级毛片女人18水好多| 亚洲国产精品成人综合色| 日韩欧美国产一区二区入口| 国产高清三级在线| 日本免费a在线| 日韩欧美 国产精品| 高清在线国产一区| 午夜亚洲福利在线播放| 一区二区三区高清视频在线| 欧美3d第一页| 久久亚洲精品不卡| 在线播放国产精品三级| 国产欧美日韩精品亚洲av| 99久久99久久久精品蜜桃| 99riav亚洲国产免费| 91av网一区二区| 成人一区二区视频在线观看| 中亚洲国语对白在线视频| 久久欧美精品欧美久久欧美| 亚洲av成人精品一区久久| 国产精品久久久久久人妻精品电影| 国产乱人视频| 国产又黄又爽又无遮挡在线| 欧美成人性av电影在线观看| 好男人电影高清在线观看| 真实男女啪啪啪动态图| а√天堂www在线а√下载| 18禁观看日本| 精品久久久久久久久久久久久| 18禁美女被吸乳视频|