• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A convolutional neural artistic stylization algorithm for suppressing image distortion

    2021-09-15 03:12:36SHENYuYANGQianZHANGHongguoWANGLin

    SHEN Yu,YANG Qian,ZHANG Hongguo,WANG Lin

    (School of Electronics and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)

    Abstract:Aiming at the problems of image semantic content distortion and blurred foreground and background boundaries during the transfer process of convolutional neural image stylization,we propose a convolutional neural artistic stylization algorithm for suppressing image distortion.Firstly,the VGG-19 network model is used to extract the feature map from the input content image and style image and to reconstruct the content and style.Then the transfer of the input content image and style image to the output image is constrained in the local affine transformation of the color space.And the Laplacian matting matrix is constructed by combining the local affine of the input image RGB channel.For each output blocks,affine transformation maps the RGB value of the input image to the corresponding output and position,which realizes the constraint of semantic content and the control of spatial layout.Finally,the synthesized image is superimposed on the white noise image and updated iteratively with the back propagation algorithm to minimize the loss function to complete the image stylization.Experimental results show that the method can generate images with obvious foreground and background edges,clear texture,restrained semantic content-distortion,realized spatial constraint and color mapping of the transfer images,and made the stylized images visually satisfactory.

    Key words:neural network;style transfer;deep learning;affine transformation

    0 Introduction

    Image artistic style rendering is an important research direction in the field of computer vision.Image artistic stylization means that the content of image A is represented as much as possible with the style of image B,which makes ordinary image change into an artist style image[1].The key point of simulation painting is to imitate the real painting process,including stroke attribute definition,stroke arrangement strategy and stroke direction design[2-3].However,most of them are manually modeled,and thus require professional experience and complex mathematical formulas.The development of deep learning has become the main research method for the artistic stylization of images,which can quickly achieve artistic creation.Deep learning method such as convolutional neural network has outstanding performance in image feature extraction,which is highly consistent with image style extraction and content extraction tasks.

    Gatys et al[4-8]used convolution neural network to separate the content feature representation and style feature representation of the image,and independently processed high-level abstract feature representation to realize image style transfer and obtain artistic effect.However,the edge of the transferred image was blurred,the foreground and background were not clear,and the image content was inconsistent.Li et al.[9]integrated the whitening and coloring transformation pair in the feedforward network to match the statistical distribution and correlation of the intermediate features of content and style,and the method showed a good effect in the transformation of arbitrary style.Ulyanov et al.[10-11]introduced a new learning method and replaced batch standardization with instance standardization modules.The new learning method samples as much as possible from the Julesz texture collection without bias,which improves the stylization speed,but the quality of forward texture synthesis and image stylization is similar to the quality of the image generated by optimization.Huang et al.[12]proposed the adaptive instance normalization (AdaIN)layer to align the input content with the mean and variance of style features and transmit feature statistics,which can quickly realize the real-time transfer of arbitrary style,but there are small particles on the generated image covering the semantic content.Mechrez et al.[13]proposed a loss function that does not need to be aligned in space.Compared with areas with similar semantics,it carries out feature similarity matching and ignores the spatial information of content images.This method has a good stylization effect on images with similar features,but a poor effect on images without similar features.Chuan et al.[14]proposed a Markovian generative adversarial networks (MGANs),which can capture the characteristic statistical information of Markovian fragments and directly generate the output of any dimension.Also it can directly decode photos into art paintings and improve the speed of image synthesis.However,the effect of facial transfer on two different people is poor.Liu et al.[15]combined a feed-forward transformation network with an additional depth loss function and an optimization-based method,using depth retention as an additional loss,retaining the semantic content and layout of the content image to a certain extent.However,the color of the generated image is generally dark,which does not conform to the style image.Johnson et al.[16]defined and optimized the perception loss function from the advanced features extracted from the pre-training network to improve the speed of style conversion.

    According to the above research,during the image transfer process,because the image layout is destroyed and the boundaries between the foreground,background,and other objects become blurred,resulting in not only limited retention of the semantic content and spatial layout of the image,but also distortion of the generated image and unsatisfactory visual effect.Therefore,a convolutional neural artistic stylization algorithm for suppressing image distortion is proposed to address the above problems.We constrained the image stylization process to local imitations in color space and constructed Laplacian matting matrix constrained stylized image on RGB channel,which is helpful to generate the images that retain their semantic content,thus preserving the coherence and spatial layout of the original content image and inhibiting distortion.

    1 Image matting

    Image matting matrix divides the image into foreground and background to extract the foreground.The image matting process returns a probability value indicating that the image area belongs to the foreground or background,and a gradual effect will occur in the foreground and background interaction area[17].A good matting algorithm for hair,fine hair and other details processing effect is more accurate,make matting more natural.

    The matting is expressed as a formulaIi=αRi+(1-α)Si,whereIiis the currently observableithpixel of the image;αis matte,Ris foreground pixel;andSis background pixel.The original image can be viewed as the foreground and background superimposed with a certain weight.Matte is locally represented as a linear combination of image color channels.For the windows with similar foreground and background colors,the matte has a strong normalized correlation with the image,which can be generated by multiplying one of the color channels by a scaling factor and adding a constant.When matte is constant throughout the window,matte is obtained by multiplying 0 in the three channels.Since the matte on most image windows is constant (0 or 1),the matte in these windows can be represented in a simple way as a linear function of the image.Constructing Laplacian image matting matrix on three channels of the image can preserve the semantic content of the original content image and restrain the distortion of the image.

    1.1 Gray matting

    We assumes that the local color distribution follows the color linear model,the color in the local window is represented as a linear combination of two colors[18],andRandSare approximate constants on the small window in the neighborhood of each pixel.

    αi≈xIi+y,?i∈ω,

    (1)

    whereiis pixels of imageI;ωis the small image window with the small window size for each pixel field of 3×3.Small windows will overlap so that the information between adjacent pixels overlaps.We need to findx,yandαto minimize the cost function.The smaller the cost function is,the more accurate the image matting will be.The cost function is

    whereεis the coefficient of the regularization term,ωjis the small window of pixeljneighborhood,In order to make the value of the equation more stable,regularization terms are added.Lis anN×Nmatrix,whose (i,j)th element is

    L(i,j)=

    (3)

    (4)

    1.2 Color matting

    Applying the cost function in the color image is to apply the gray cost function separately in each channel.the linear model of pictureIiis

    ?i∈ω,

    (5)

    wherecrepresents the color channel of the image.

    Usingthe linear model of Eq.(5),the image matting cost function of RGB image can be defined as

    (6)

    Similar to the gray image,the quadratic cost function about the unknownαis generated by

    (7)

    whereLis anN×Nmatrix,whose (i,j)th element is

    L(i,j)=

    (8)

    whereAkis a covariance matrix of 3×3,μkis a vector of windowωkcolor averages,andI3is a recognition matrix of 3×3.

    The matrixLof Eqs.(3)and (8)is called Laplace matting matrix.If ε=0 is used,the null space ofLalso includes each color channel of imageI,since each color channel can be represented as linear function of itself.The matting effect of Laplace matting matrix is shown in Fig.1.The standard linear system represented by the matrixLIof the input imageIcan be minimized by using the least square constraint function,and the semantic content constraint of the stylized image can be realized by using the matte to constrain the process of image style transfer.

    Fig.1 Matting effect

    2 Image stylization algorithm

    Image style transfer mainly starts from three aspects of color control,space constraint and efficiency to make them optimal.Our neural style transfer is based on the public VGG-19 network model,focusing on spatial constraints and color mapping[20].Deep convolutional classification networks have good feature extraction abilities,and the features extracted from different layers have different meanings.Every trained network can be regarded as a good feature extractor.The deep network is composed of layers of nonlinear functions,which can be regarded as complex multivariate nonlinear functions.This function completes the mapping from input image to output result.The trained deep network is used as a loss function calculator.

    The high-level features extracted from the VGG-19 network model are information about the object and layout of the input image,while the low-level features express the pixel information of the input image.The style transfer process usually preserves the semantic content and spatial layout of content images.The smaller the Euclidean distance between the extracted high-dimensional features,the more similar the contents of the generated images to the original content images.The feature expression of style representation in different layers has different visual effects.The fusion of multi-layer features will enrich the style representation and achieve the purpose of overall representation of style.

    2.1 Loss functions

    Gatys et al[4]laid the foundation for the neural artistic image stylization.He mainly separated and reconstructed the content and style of natural images.The error between the stylized image and the style image and the content image is the minimum to generate a new image of high perceptual quality.The main process of error calculation is as follows:In the feature map,each value comes from the convolution of the filter in a specific position and represents the strength of the feature.If layerlof the convolution layer hasNlfilters,Nlfeature map should be obtained.The total loss function of style transfer is given a certain weight and then added.

    Ltotal=αLc+βLs,

    (9)

    whereαrepresents the weight of content loss functionLcandβrepresents the weight of style loss functionLs.The total content loss function of content imageyand generated imagezis

    (10)

    The total style loss function of style imagex and generated imagezis

    (11)

    whereNwrepresents the width of feature map,Nhrepresents the height of feature map,Ncrepresents the number of feature maps incchannel,Z[O] represents the feature matrix of the output image,Y[I] represents the feature matrix of the input content image,X[I] represents the feature matrix of the input style image,iis theith filter of layerl,andjis thejth position of layerl.

    2.2 Semantic content constraint items

    We add the Laplace matting matrix constraint to the loss function of style transfer to retain the semantic content of the image and to balance the deviation and variance,the fitting ability and the generalization ability,the average loss function and the structural error,thus solve the problem of color distortion and space distortion in the process of neural artistic stylization.We combine the Laplace matting matrix on the local affine transformation of the image’s color space,and then respectively process the R,G and B color channels of pixels in the feature neighborhood.For each output block,the input image is mapped to the corresponding output position,so as to form the final constraint term of the Laplace matting matrix.

    The standard linear system represented by the matrixLIof the input imageIcan be minimized by using the least-squares constraint function.LIis the Laplace matting matrix and theN×Nsymmetric matrix.Rh[O] is theN×1 vector of the output image in channelh.The output of local affine transformation is constrained by the regular term

    (12)

    Then the total error function generated in the process of neural artistic style is the sum of these three parts.

    Ltotal=αLc+βLs+γLRe,

    (13)

    whereγrepresents the regularization ofLRe.

    The synthesized image is superimposed on the white noise image for back propagation to generate an image that matches the characteristic response of the original image.The total error function is iteratively optimized so that the smaller the value of the error function,the more similar the semantic content of the generated image to the original content image,the closer the style of the generated image to the original style image.

    As can be seen from Fig.2,different values given toγcan suppress the distortion of semantic content to different degrees.Whenγ=0,the image is severely distorted.The road surface,windows and so on cannot be identified,and the color distribution is not mapped from the input to the output.Whenγ=1,the constraint term is added,which playes a certain role,but the value is too small,and there is a certain degree of distortion.Whenγ=10,it has a good effect of suppressing distortion,and the scene boundary is relatively clear.Whenγ=102,it has an obvious effect of suppressing distortion,and the edges such as road surface and window are gradually clear,and the color mapping effect is better.Whenγ=103,the distortion of the image is smaller,the semantic content is clearly expressed,and the spatial layout conforms to the representation of the content image.Whenγ=104,the color mapping effect of the stylized image is good,and the boundary of the foreground and background is clear.When the value ofγcontinues to increase,some neurons of the neural network will lose their learning ability,resulting in a decline in the generalization ability of the neural network and the quality of image transfer.A large number of experiments show that the value changes within (1,104),which can inhibit the distortion of semantic content to varying degrees.

    Fig.2 Effect diagram of constraint weight change

    2.3 Image stylization

    We use the VGG-19 model to extract the feature maps of the input style images and content images,and perform style reconstruction and content reconstruction.Then we constrain the texture synthesis process in the local affine of color space,and combine the Laplacian matting matrix on the local affine of color space,so that the stylized image semantic content and color mapping can achieve texture synthesis in the matte constraint of the Laplacian matting matrix.For each output block,affine transformation maps the RGB value of the input image to the corresponding output and position.The Laplacian matting matrix is used to constrain the semantic content of the generated image,suppress the distortion of semantic content,make the stylized image content conform to the original content image,and improve the color mapping effect.Our algorithm flow chart is shown in Fig.3.

    Fig.3 Algorithm flow chart

    3 Experiment and analysis

    3.1 Experiment

    Our experiment was built under the framework of TensorFlow.The CPU of the computer is Intel I9 9900K 5.0 GHz and the RAM is 64 G.NVIDIA RTX 2080Ti graphics card is used to run the neural network VGG-19 framework to achieve GPU acceleration.The experimental computer software is configured as Python3.6+ anaconda3-5.1.0+CUDA 9.0+cuDNN7.3.1+tensorflow-gpu 1.12+PyCharm2019.2 community version.

    We use pre-trained VGG-19 as a feature extractor.High-dimensional features extracted from conv4_2 and conv5_2 of the convolutional layer are used for content presentation.The feature expression of style presentation on different layers has different visual effects,and the fusion of multi-layer features is adopted to enrich the style expression.conv1_1,conv2_1,conv3_1,conv4_1 and conv5_1 are selected.With random noise initialization,the code of Gatys[4]original TensorFlow framework is modified.The weight ratio of content loss function and style loss function is 103,and the weight of constraint item is104.

    3.2 Result analysis

    We combine the Laplacian matting matrix on the local affine transformation in the color space to constrain the image stylization process.The stylized results are compared with the stylized images of Gatys et al[4],Huang et al[12],Sheng et al[21]and Chen et al[22].The comparison shows that the method achieves better results.The experimental results are shown in Fig.4.The first behavior style image,the first column is the content image,and the rest are the stylized image.

    Fig.4 Our results

    3.2.1 Subjective analysis and comparison

    Huang’s method can quickly achieve arbitrary style transfer with high flexibility,but the stylized images have poor quality compared with the images in column (f)and (g)in Fig.5.Chen’s method matches each content fragment with the most matched style fragment and obtains less distortion of the image.However,the content image is not represented by the style image,and the effect of texture representation and color representation is poor.Therefore,the stylization effect is poor.Gatys’method can achieve any style of transfer,but the stylization speed is slow,the result of stylization is unstable,resulting in artifacts(Fig.5(3)(e)).Sheng’s method seamlessly recombines the style representation according to the semantic spatial distribution of the content image.The global tone and local stroke are better,and the stylized effect is better,but the semantic content of the stylized image is distorted (Fig.5(4)(f)).

    Fig.5 Comparison of stylized effect

    Our method stylizes the semantic content of the image with little distortion,and the content image is well represented by the texture and color of the style image.The stylized image has high quality,the global tones and local lines indicate good results,and there are no artifacts around the image,The image has good continuity,the global scene is fully displayed,and the visual effect is satisfactory.

    3.2.2 Objective analysis and comparison

    The image has a very high structure.There is a strong correlation between pixels,which carries important information about the object structure in the visual scene,and the image will be distorted after transformation.The human visual system can extract the structural information in the scene with high adaptability.The distortion of image is considered by comparing the change of image structure information,and the objective quality evaluation is obtained.We use local structural similarity (SSIM)[23-25]and root mean square error (RMSE)[26]to evaluate the degree of image distortion.The value range of SSIM is (0,1).The larger the value is,the more similar the structure of the two images will be.Since the statistical features of the image in space are unevenly distributed and the distortion varies in space,the measurement effect of the local SSIM index is better than that of the global one.RMSE compared the pixel difference between the stylized image and the original content image.The smaller the RMSE value,the smaller the image distortion.It is calculated as

    (14)

    wherepandqrepresent the original content image and the stylized image,respectively.

    SSIM measures image similarity from brightness,contrast and structure.The evaluation model of structural similarity is

    ISSIM(p,q)=l(p,q)α×c(p,q)β×s(p,q)γ,

    (15)

    (16)

    (17)

    (18)

    (19)

    wherec1=(k1L)2andc2=(k2L)2are constants used to maintain stability,k1=0.01,k2=0.03,andLis the dynamic range of pixel values.

    As can be seen from Table 1,the overall structure similarity of Chen’s method is relatively high,because the content image of his method is not represented by style image,and the effect of texture representation and color representation is poor,almost the same as the original content image.Huang et al.,Gatys et al.and Sheng et al.all realized the image stylization,but the structural similarity of the image is low.The stylized image structure of our method has high similarity and small error,and has improved semantic content and structure retention.The generated image is closer to the original content image and style image.

    Table 1 Structural similarity comparison

    4 Conclusions

    We propose a convolutional neural artistic stylization algorithm that suppresses image distortion.By combining the Laplacian matting matrix on the local affine in the color space,we realize the constraint on the stylization process,and preserve the semantic content of the image.Our method constrains the image layout to obtain clear the boundary between foreground and background and other objects as well as small color affine deviation.In addition,the proposed algorithm realizes the color mapping and space control of image style migration,so as to prevent the semantic content distortion of the generated image.Finally,the result of stylization is beautiful and satisfactory.

    精品久久久久久久毛片微露脸| 亚洲 国产 在线| 在线观看免费视频日本深夜| 免费在线观看影片大全网站| 久久欧美精品欧美久久欧美| 亚洲视频免费观看视频| 日韩三级视频一区二区三区| tocl精华| 国产精品亚洲av一区麻豆| 18禁美女被吸乳视频| 日本一区二区免费在线视频| 亚洲成国产人片在线观看| 中文字幕av电影在线播放| 国产亚洲精品av在线| 国产亚洲精品av在线| 国产高清视频在线播放一区| 美女大奶头视频| 成人免费观看视频高清| 在线观看午夜福利视频| 国产欧美日韩一区二区精品| 午夜免费鲁丝| 欧美乱色亚洲激情| 亚洲成人精品中文字幕电影| 免费高清视频大片| 嫩草影院精品99| 国产精品久久久久久人妻精品电影| 亚洲av日韩精品久久久久久密| 国产色视频综合| 免费在线观看亚洲国产| 精品卡一卡二卡四卡免费| 女性被躁到高潮视频| 国产视频一区二区在线看| 激情在线观看视频在线高清| 91字幕亚洲| 国产精品,欧美在线| 国产真人三级小视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 中文亚洲av片在线观看爽| 女人精品久久久久毛片| 亚洲精品国产色婷婷电影| 精品久久久久久久人妻蜜臀av | 99国产极品粉嫩在线观看| 十八禁网站免费在线| 国产精品自产拍在线观看55亚洲| 久久精品成人免费网站| 久久午夜综合久久蜜桃| 久久久久国产精品人妻aⅴ院| 精品人妻1区二区| 日韩欧美一区视频在线观看| 亚洲视频免费观看视频| 高清毛片免费观看视频网站| 女人被狂操c到高潮| 久久久久久久久中文| 日韩精品中文字幕看吧| 午夜精品国产一区二区电影| 欧美日韩中文字幕国产精品一区二区三区 | 后天国语完整版免费观看| 免费在线观看亚洲国产| 亚洲自偷自拍图片 自拍| 麻豆久久精品国产亚洲av| 18禁观看日本| 俄罗斯特黄特色一大片| 嫁个100分男人电影在线观看| 亚洲av美国av| av视频在线观看入口| 亚洲成av人片免费观看| 可以在线观看毛片的网站| 久久久久国产精品人妻aⅴ院| 巨乳人妻的诱惑在线观看| 19禁男女啪啪无遮挡网站| 亚洲色图 男人天堂 中文字幕| 最新在线观看一区二区三区| 搞女人的毛片| 最好的美女福利视频网| 丰满的人妻完整版| 一夜夜www| 一级,二级,三级黄色视频| 一进一出抽搐动态| 夜夜躁狠狠躁天天躁| 亚洲中文字幕日韩| 美女免费视频网站| 久久精品91无色码中文字幕| 人妻久久中文字幕网| 不卡av一区二区三区| 免费在线观看影片大全网站| 波多野结衣av一区二区av| 国产一卡二卡三卡精品| 欧美日韩乱码在线| 91麻豆av在线| 成人永久免费在线观看视频| 日韩欧美一区视频在线观看| 亚洲精品中文字幕一二三四区| 色精品久久人妻99蜜桃| 成年女人毛片免费观看观看9| 久久国产亚洲av麻豆专区| 午夜视频精品福利| 91精品三级在线观看| 99精品久久久久人妻精品| 国产激情久久老熟女| 久久久久久久久中文| 亚洲少妇的诱惑av| 亚洲av成人av| 老司机午夜十八禁免费视频| 免费在线观看日本一区| av中文乱码字幕在线| 天堂动漫精品| 99国产精品一区二区蜜桃av| 午夜福利成人在线免费观看| 啦啦啦观看免费观看视频高清 | 国产av一区二区精品久久| 久久亚洲真实| 国产亚洲欧美98| 精品午夜福利视频在线观看一区| 久久国产亚洲av麻豆专区| 精品不卡国产一区二区三区| 午夜福利,免费看| 国产高清有码在线观看视频 | 久久久国产成人免费| 极品人妻少妇av视频| 久久久久精品国产欧美久久久| 精品福利观看| 日韩免费av在线播放| 亚洲成人国产一区在线观看| 后天国语完整版免费观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美精品综合一区二区三区| 美女午夜性视频免费| 免费人成视频x8x8入口观看| 久久久久国产一级毛片高清牌| av天堂久久9| 色老头精品视频在线观看| 波多野结衣高清无吗| 俄罗斯特黄特色一大片| 久久久久国产一级毛片高清牌| www日本在线高清视频| 嫩草影视91久久| 88av欧美| 99久久国产精品久久久| 50天的宝宝边吃奶边哭怎么回事| 人人妻,人人澡人人爽秒播| 欧美黑人欧美精品刺激| 这个男人来自地球电影免费观看| 真人做人爱边吃奶动态| 精品人妻1区二区| 欧美老熟妇乱子伦牲交| x7x7x7水蜜桃| 一区二区三区国产精品乱码| 亚洲国产看品久久| 国内毛片毛片毛片毛片毛片| 嫁个100分男人电影在线观看| svipshipincom国产片| 91九色精品人成在线观看| 97人妻精品一区二区三区麻豆 | 淫妇啪啪啪对白视频| 一二三四在线观看免费中文在| 好看av亚洲va欧美ⅴa在| 丝袜在线中文字幕| 免费观看人在逋| 免费在线观看亚洲国产| 午夜激情av网站| 搡老岳熟女国产| 日本 欧美在线| 精品欧美一区二区三区在线| 精品国产亚洲在线| 国产私拍福利视频在线观看| 91精品三级在线观看| 亚洲人成伊人成综合网2020| 欧美最黄视频在线播放免费| 一a级毛片在线观看| 大陆偷拍与自拍| 亚洲精品久久国产高清桃花| 50天的宝宝边吃奶边哭怎么回事| ponron亚洲| 国产精品av久久久久免费| 久99久视频精品免费| 国产精品一区二区在线不卡| av中文乱码字幕在线| 亚洲人成77777在线视频| 如日韩欧美国产精品一区二区三区| 国产片内射在线| 国产精品乱码一区二三区的特点 | 欧美日韩一级在线毛片| 在线播放国产精品三级| 国产精品影院久久| 国产一区二区三区在线臀色熟女| 在线播放国产精品三级| 欧美亚洲日本最大视频资源| 中文字幕人妻丝袜一区二区| 可以免费在线观看a视频的电影网站| 欧美乱码精品一区二区三区| 免费少妇av软件| a在线观看视频网站| 国产av一区在线观看免费| 国产午夜福利久久久久久| 亚洲精品美女久久久久99蜜臀| 亚洲五月天丁香| 亚洲av电影不卡..在线观看| 老司机靠b影院| 亚洲精品美女久久久久99蜜臀| e午夜精品久久久久久久| 亚洲av片天天在线观看| 欧美日本亚洲视频在线播放| 波多野结衣一区麻豆| 黄色a级毛片大全视频| 久久人人97超碰香蕉20202| 19禁男女啪啪无遮挡网站| 别揉我奶头~嗯~啊~动态视频| 自拍欧美九色日韩亚洲蝌蚪91| 一级a爱视频在线免费观看| 日韩欧美一区二区三区在线观看| 国产色视频综合| av电影中文网址| 欧美日本亚洲视频在线播放| av超薄肉色丝袜交足视频| 人人澡人人妻人| 黄色 视频免费看| 中文字幕人妻丝袜一区二区| 免费不卡黄色视频| 色老头精品视频在线观看| 在线观看免费视频网站a站| 国产av又大| 我的亚洲天堂| 91字幕亚洲| 色精品久久人妻99蜜桃| 99精品在免费线老司机午夜| 美女免费视频网站| 大香蕉久久成人网| 亚洲国产精品合色在线| 国产又色又爽无遮挡免费看| 国产成人精品在线电影| aaaaa片日本免费| 一本综合久久免费| 在线免费观看的www视频| 精品欧美国产一区二区三| 黑人操中国人逼视频| 国产三级在线视频| 日韩欧美免费精品| 成人欧美大片| 日韩精品免费视频一区二区三区| 日韩一卡2卡3卡4卡2021年| 精品久久久精品久久久| 亚洲精品美女久久av网站| 久99久视频精品免费| 久久国产精品人妻蜜桃| 久久久久久人人人人人| av欧美777| 国产一区二区三区在线臀色熟女| 国产三级黄色录像| 精品一区二区三区视频在线观看免费| 亚洲全国av大片| 国产精品久久久久久精品电影 | 久久人人爽av亚洲精品天堂| 欧美日本视频| 亚洲三区欧美一区| 成人三级黄色视频| 巨乳人妻的诱惑在线观看| 少妇被粗大的猛进出69影院| 成在线人永久免费视频| 色播亚洲综合网| 香蕉国产在线看| 久久久国产成人免费| 欧美成人免费av一区二区三区| 精品无人区乱码1区二区| 欧美国产日韩亚洲一区| 丁香六月欧美| 九色亚洲精品在线播放| 巨乳人妻的诱惑在线观看| 亚洲成av人片免费观看| 国产精品亚洲美女久久久| 啦啦啦 在线观看视频| 日本撒尿小便嘘嘘汇集6| 国产在线精品亚洲第一网站| 波多野结衣高清无吗| tocl精华| 无限看片的www在线观看| 国产亚洲欧美在线一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 97碰自拍视频| 真人一进一出gif抽搐免费| 精品卡一卡二卡四卡免费| 亚洲精品美女久久久久99蜜臀| 免费在线观看亚洲国产| 色哟哟哟哟哟哟| 欧美日韩中文字幕国产精品一区二区三区 | 国产成人欧美在线观看| 国产视频一区二区在线看| 亚洲成av片中文字幕在线观看| 久久草成人影院| 好男人电影高清在线观看| 亚洲精品久久国产高清桃花| 国产精品国产高清国产av| 精品乱码久久久久久99久播| 一进一出抽搐动态| 国产av一区在线观看免费| 久久久国产欧美日韩av| 精品熟女少妇八av免费久了| 中文亚洲av片在线观看爽| 亚洲国产精品成人综合色| 在线观看舔阴道视频| 老熟妇仑乱视频hdxx| 午夜亚洲福利在线播放| 久久久久久亚洲精品国产蜜桃av| 欧美绝顶高潮抽搐喷水| 久热这里只有精品99| 亚洲五月婷婷丁香| 精品国产亚洲在线| 国产一区在线观看成人免费| 在线观看日韩欧美| 中文字幕色久视频| 亚洲精品在线美女| 亚洲中文av在线| 大码成人一级视频| 午夜免费鲁丝| 岛国视频午夜一区免费看| 在线观看免费午夜福利视频| 黄色成人免费大全| 久久香蕉国产精品| 久久伊人香网站| 色哟哟哟哟哟哟| 嫁个100分男人电影在线观看| 亚洲成国产人片在线观看| 侵犯人妻中文字幕一二三四区| 中文字幕人成人乱码亚洲影| 午夜精品久久久久久毛片777| 久久热在线av| av天堂在线播放| 1024视频免费在线观看| 看黄色毛片网站| 午夜福利欧美成人| 老司机午夜福利在线观看视频| 亚洲国产欧美日韩在线播放| 长腿黑丝高跟| 可以免费在线观看a视频的电影网站| 国产一级毛片七仙女欲春2 | 亚洲成av片中文字幕在线观看| tocl精华| 午夜激情av网站| videosex国产| 高清在线国产一区| 免费av毛片视频| 99香蕉大伊视频| 国产亚洲精品综合一区在线观看 | 久久性视频一级片| 99精品久久久久人妻精品| 欧美不卡视频在线免费观看 | 久久久国产欧美日韩av| 午夜福利在线观看吧| 欧美最黄视频在线播放免费| 国产欧美日韩一区二区三| 欧美成人免费av一区二区三区| 一进一出抽搐gif免费好疼| 欧美成狂野欧美在线观看| 精品国内亚洲2022精品成人| 一区福利在线观看| 午夜免费激情av| 亚洲成人免费电影在线观看| 免费在线观看完整版高清| 久久久久国产一级毛片高清牌| 少妇熟女aⅴ在线视频| 日韩三级视频一区二区三区| 最近最新中文字幕大全电影3 | 看片在线看免费视频| 99re在线观看精品视频| 亚洲人成伊人成综合网2020| 久久婷婷成人综合色麻豆| 欧美色视频一区免费| 女人爽到高潮嗷嗷叫在线视频| 国产91精品成人一区二区三区| 成年人黄色毛片网站| 老熟妇乱子伦视频在线观看| 一二三四社区在线视频社区8| www.www免费av| 看免费av毛片| 99久久久亚洲精品蜜臀av| 69av精品久久久久久| 亚洲人成电影免费在线| 亚洲 欧美 日韩 在线 免费| 99国产精品一区二区蜜桃av| 91九色精品人成在线观看| 亚洲av美国av| 国内精品久久久久精免费| 国产野战对白在线观看| av福利片在线| 黄色丝袜av网址大全| 人人妻人人澡欧美一区二区 | 欧美久久黑人一区二区| 精品久久久久久,| 男人操女人黄网站| 欧美大码av| 亚洲av五月六月丁香网| 深夜精品福利| 精品第一国产精品| 巨乳人妻的诱惑在线观看| 国产麻豆69| 黄网站色视频无遮挡免费观看| 女性生殖器流出的白浆| 亚洲午夜理论影院| 欧美激情极品国产一区二区三区| 国产单亲对白刺激| 日韩欧美一区视频在线观看| 成年人黄色毛片网站| 悠悠久久av| 久久精品91无色码中文字幕| 久久热在线av| 女生性感内裤真人,穿戴方法视频| 亚洲avbb在线观看| 97碰自拍视频| 亚洲五月婷婷丁香| 国产精品亚洲一级av第二区| 国产三级黄色录像| 成人永久免费在线观看视频| 人人妻人人爽人人添夜夜欢视频| 夜夜躁狠狠躁天天躁| 国产欧美日韩一区二区三区在线| 禁无遮挡网站| 成人av一区二区三区在线看| 十八禁人妻一区二区| 妹子高潮喷水视频| 满18在线观看网站| 91九色精品人成在线观看| 成人国产一区最新在线观看| 黄片大片在线免费观看| 熟妇人妻久久中文字幕3abv| 久久精品人人爽人人爽视色| 国产成人欧美在线观看| 精品人妻1区二区| 中出人妻视频一区二区| 欧美激情久久久久久爽电影 | 满18在线观看网站| av免费在线观看网站| 久久香蕉国产精品| 国产精品电影一区二区三区| 亚洲无线在线观看| 一级毛片高清免费大全| 黑丝袜美女国产一区| 午夜成年电影在线免费观看| 国产一区在线观看成人免费| www.熟女人妻精品国产| 国产精品香港三级国产av潘金莲| 亚洲午夜精品一区,二区,三区| 国产精品九九99| xxx96com| 国产乱人伦免费视频| 国产成人影院久久av| 熟妇人妻久久中文字幕3abv| 亚洲激情在线av| 久久影院123| 日韩欧美一区二区三区在线观看| 精品久久久久久久久久免费视频| 久久国产亚洲av麻豆专区| 国产精品影院久久| 在线观看日韩欧美| 亚洲国产精品sss在线观看| 久久精品成人免费网站| 免费无遮挡裸体视频| av在线天堂中文字幕| 久久国产亚洲av麻豆专区| 久久国产精品影院| 亚洲人成电影免费在线| 国产成人欧美| 18美女黄网站色大片免费观看| 身体一侧抽搐| 最近最新免费中文字幕在线| 91在线观看av| 免费av毛片视频| 午夜福利成人在线免费观看| 韩国精品一区二区三区| 亚洲成国产人片在线观看| av中文乱码字幕在线| 国产色视频综合| 丝袜在线中文字幕| 国产麻豆成人av免费视频| 日本欧美视频一区| 亚洲欧美激情综合另类| 国产主播在线观看一区二区| 桃色一区二区三区在线观看| 女人高潮潮喷娇喘18禁视频| 国产精品久久电影中文字幕| 亚洲精品久久成人aⅴ小说| xxx96com| 国产一卡二卡三卡精品| 国产精品亚洲av一区麻豆| 成人国产一区最新在线观看| 国产精品秋霞免费鲁丝片| 国产99久久九九免费精品| 欧美日本中文国产一区发布| 高潮久久久久久久久久久不卡| 久久精品国产清高在天天线| 久久国产亚洲av麻豆专区| av视频在线观看入口| 久久精品亚洲熟妇少妇任你| 久久人人97超碰香蕉20202| 欧美人与性动交α欧美精品济南到| 成人国产一区最新在线观看| 国产国语露脸激情在线看| 黄色 视频免费看| 香蕉国产在线看| 999久久久精品免费观看国产| 国产精品 国内视频| 亚洲色图av天堂| 99国产精品一区二区蜜桃av| 亚洲一区中文字幕在线| 搡老妇女老女人老熟妇| 中文字幕av电影在线播放| 久久精品影院6| 搡老熟女国产l中国老女人| 18禁国产床啪视频网站| 国产亚洲精品综合一区在线观看 | 黑人欧美特级aaaaaa片| 亚洲中文av在线| 亚洲av成人一区二区三| 国产成人精品久久二区二区91| 中出人妻视频一区二区| 男女下面进入的视频免费午夜 | 在线观看日韩欧美| 久久久久国产精品人妻aⅴ院| 精品欧美国产一区二区三| 精品一区二区三区视频在线观看免费| 夜夜夜夜夜久久久久| 麻豆一二三区av精品| 99国产精品一区二区蜜桃av| 免费观看精品视频网站| 国产一卡二卡三卡精品| 国产亚洲精品av在线| 丝袜美腿诱惑在线| 夜夜看夜夜爽夜夜摸| 大香蕉久久成人网| 色老头精品视频在线观看| 成人手机av| 亚洲精品在线美女| www国产在线视频色| 在线十欧美十亚洲十日本专区| av在线天堂中文字幕| 国产成人免费无遮挡视频| 十八禁网站免费在线| 老司机午夜十八禁免费视频| 色在线成人网| 亚洲成人国产一区在线观看| 人妻久久中文字幕网| 中文亚洲av片在线观看爽| 成在线人永久免费视频| 免费一级毛片在线播放高清视频 | www.熟女人妻精品国产| 成人永久免费在线观看视频| av网站免费在线观看视频| 超碰成人久久| 久久久久久久精品吃奶| 国产精品国产高清国产av| 变态另类丝袜制服| 国产精品电影一区二区三区| 亚洲欧美日韩另类电影网站| 亚洲av电影在线进入| 丰满人妻熟妇乱又伦精品不卡| 欧美久久黑人一区二区| 亚洲精品美女久久av网站| 精品欧美一区二区三区在线| 久热这里只有精品99| 99国产精品一区二区蜜桃av| 又黄又爽又免费观看的视频| 亚洲五月天丁香| 亚洲色图av天堂| 国内精品久久久久久久电影| 亚洲伊人色综图| 国产单亲对白刺激| 婷婷六月久久综合丁香| 国内久久婷婷六月综合欲色啪| 午夜免费观看网址| 国产欧美日韩综合在线一区二区| 男人舔女人下体高潮全视频| 国产欧美日韩综合在线一区二区| 91字幕亚洲| www国产在线视频色| 涩涩av久久男人的天堂| 久久人妻av系列| 999精品在线视频| 日韩有码中文字幕| 亚洲中文字幕一区二区三区有码在线看 | 成人国语在线视频| 精品国产一区二区三区四区第35| 国产成人av教育| 久久久久久免费高清国产稀缺| 黄频高清免费视频| 精品高清国产在线一区| www.999成人在线观看| 亚洲欧美精品综合久久99| 久久久久久久久免费视频了| 一级毛片精品| 一区二区日韩欧美中文字幕| 国产亚洲欧美98| 亚洲欧美精品综合一区二区三区| 亚洲九九香蕉| 国产高清videossex| 波多野结衣高清无吗| 99riav亚洲国产免费| 日韩中文字幕欧美一区二区| 日日干狠狠操夜夜爽| 亚洲中文日韩欧美视频| 一级a爱片免费观看的视频| 久久精品成人免费网站| 亚洲黑人精品在线| 美国免费a级毛片| 大型黄色视频在线免费观看| 一区在线观看完整版| 国产精品免费视频内射| 国产蜜桃级精品一区二区三区| 免费人成视频x8x8入口观看| 欧美日韩亚洲国产一区二区在线观看| 搞女人的毛片| 亚洲精品国产区一区二| 欧美日本亚洲视频在线播放| 在线免费观看的www视频| 黄片大片在线免费观看| 久热爱精品视频在线9| 最近最新中文字幕大全免费视频| 12—13女人毛片做爰片一|