孔子昂 徐秀鳳 任傳堯 賈海濤 王正云 周 強(qiáng) 黃永春
(1.浙江綠城建筑設(shè)計(jì)有限公司青島分公司,青島 266071;2.青島黃海學(xué)院建筑工程學(xué)院,青島 266427;3.青島杰地建筑設(shè)計(jì)有限公司,青島 266071)
柱下獨(dú)立基礎(chǔ)的沖切破壞和剪切破壞都是比較危險(xiǎn)的脆性破壞,但兩者的受力機(jī)理不一樣,沖切破壞是在集中反力作用下,在板內(nèi)產(chǎn)生正應(yīng)力和剪應(yīng)力,在柱頭四周形成較大的主拉應(yīng)力,導(dǎo)致沿柱頭四周出現(xiàn)斜裂縫,并向下擴(kuò)展形成破壞錐體;剪切破壞類(lèi)似于單向板和梁斜截面破壞。另外,兩者的破壞形式也不一樣,剪切破壞具有平面特征,破壞面為貫穿整個(gè)構(gòu)件的平面;而沖切破壞呈現(xiàn)空間特征,基礎(chǔ)在集中力作用區(qū)域發(fā)生與其他區(qū)域相互脫離的現(xiàn)象,脫離體一般呈截頭錐體。
為避免柱下獨(dú)立基礎(chǔ)發(fā)生沖切和剪切破壞,各國(guó)規(guī)范均要求驗(yàn)算沖切、剪切承載力,但驗(yàn)算方法不盡相同。本文對(duì)中國(guó)、美國(guó)、歐洲和日本四個(gè)世界上主要國(guó)家和地區(qū)的相關(guān)規(guī)定進(jìn)行了總結(jié),從基礎(chǔ)驗(yàn)算條件、控制截面位置、承載力驗(yàn)算公式以及沖切錐底面的形狀等方面對(duì)比了各國(guó)規(guī)范的異同。并選取了8個(gè)軸心受壓的獨(dú)立基礎(chǔ)試驗(yàn),通過(guò)各國(guó)規(guī)范計(jì)算得到的軸力設(shè)計(jì)值與試驗(yàn)值的比較,進(jìn)一步分析了各國(guó)規(guī)范在計(jì)算結(jié)果上的差異。最后采用MSC.Marc有限元軟件在已有試驗(yàn)的基礎(chǔ)上對(duì)縱筋配筋率對(duì)基礎(chǔ)沖切、剪切承載力的影響進(jìn)行了分析。
《建筑地基基礎(chǔ)設(shè)計(jì)規(guī)范》(簡(jiǎn)稱(chēng)GB 50007)[1]將獨(dú)立基礎(chǔ)的驗(yàn)算分為兩種情況,其驗(yàn)算判別條件見(jiàn)表1。
表1 基礎(chǔ)驗(yàn)算條件Table 1 The check conditions of bases
美國(guó)規(guī)范ACI318-19[2]、歐洲混凝土規(guī)范Eurocode2[3](簡(jiǎn)稱(chēng)EU2)及日本混凝土結(jié)構(gòu)標(biāo)準(zhǔn)技術(shù)規(guī)范[4](簡(jiǎn)稱(chēng)JGC15)規(guī)定:基礎(chǔ)的抗剪承載力由單向受力的梁模式與雙向受力的板模式中較嚴(yán)格的條件所控制。梁模式和板模式的驗(yàn)算方法分別類(lèi)似于GB 50007中受剪切和受沖切承載力驗(yàn)算。
國(guó)內(nèi)外規(guī)范的一個(gè)顯著的不同是,國(guó)外規(guī)范板模式采用的是“整體破壞模式”,即其破壞面圍繞柱子在空間上形成截頭圓錐或棱錐體;而中國(guó)規(guī)范在沖切承載力驗(yàn)算時(shí)采用的是“局部破壞模式”,驗(yàn)算的是沖切錐最不利側(cè)斜截面的沖切承載力。另外,JGC15指出由于獨(dú)立基礎(chǔ)的受力行為接近于深梁,在剪切驗(yàn)算時(shí),當(dāng)?shù)鼗戳Φ暮狭χ行木嚯x支座表面的距離a與基礎(chǔ)有效高度d之比小于2時(shí),應(yīng)采用剪壓承載力作為基礎(chǔ)的受剪承載力;當(dāng)a/d≥2時(shí),應(yīng)采用線性構(gòu)件的受剪承載力作為基礎(chǔ)的受剪承載力。
各國(guó)規(guī)范均規(guī)定應(yīng)在支座表面及變階處進(jìn)行剪切及沖切承載力驗(yàn)算,但控制截面選取的位置各有不同,如表2所示。
表2 控制截面距離柱邊或變階處的距離Table 2 The distance between control section and column edge or change steps
從表2可知,僅中國(guó)規(guī)范將剪切控制截面取在柱邊或變階處,這意味著在抗剪驗(yàn)算時(shí),中國(guó)規(guī)范具有最大的受荷面積。在沖切方面,歐洲規(guī)范的沖切破壞角最小,因此其沖切面位置距柱邊最遠(yuǎn)。
GB 50007中基礎(chǔ)剪切承載力驗(yàn)算公式為
式中:Vs為剪力設(shè)計(jì)值;ft為混凝土軸心抗拉強(qiáng)度設(shè)計(jì)值;βhs為截面高度影響系數(shù);A0為驗(yàn)算截面處的有效截面面積;h0為基礎(chǔ)有效高度。
基礎(chǔ)沖切承載力驗(yàn)算公式為
式中:Fl為沖切力設(shè)計(jì)值;βhp為截面高度影響系數(shù);am為沖切破壞錐體最不利一側(cè)計(jì)算長(zhǎng)度;at和ab分別為沖切破壞錐體最不利一側(cè)斜截面的上邊長(zhǎng)和下邊長(zhǎng)。
ACI318-19規(guī)定,基礎(chǔ)的抗剪承載力為
且Vc應(yīng)滿(mǎn)足:
式中:λ為考慮輕骨料混凝土強(qiáng)度折減系數(shù),對(duì)于普通混凝土取1.0;f'c為圓柱體強(qiáng)度特征值,單位為psi;bw和d分別為基礎(chǔ)寬度和有效高度,單位為in;φ為強(qiáng)度折減系數(shù),取0.75;ρw=As/dbw,As為受壓區(qū)邊緣以上基礎(chǔ)總高度2/3范圍內(nèi)穿過(guò)關(guān)鍵截面的縱向鋼筋的總和;λs為尺寸效應(yīng)修正系數(shù),按式(5)計(jì)算,在獨(dú)立基礎(chǔ)設(shè)計(jì)時(shí),可取1。
ACI318-11[5]中剪切承載力的計(jì)算公式為。對(duì)比可知,新版規(guī)范增加了尺寸效應(yīng)和配筋率的影響,當(dāng)配筋率ρ>1.65%時(shí)ACI318-19計(jì)算結(jié)果較大,否則ACI318-11計(jì)算結(jié)果較大。
基礎(chǔ)的沖切承載力按式(6)計(jì)算:
式中:d取兩個(gè)方向的基礎(chǔ)平均高度;b0為臨界截面周長(zhǎng);β為柱截面長(zhǎng)邊與短邊之比,對(duì)于非矩形加載面,其定義為有效加載面內(nèi)的最長(zhǎng)尺寸與垂直方向的最長(zhǎng)尺寸之比;αs為柱位置系數(shù),內(nèi)柱、邊柱和角柱分別取40、30和20。與ACI318-11相比,ACI318-19增加了尺寸效應(yīng)的影響。
當(dāng)基礎(chǔ)和柱之間需要通過(guò)剪應(yīng)力來(lái)傳遞不平衡彎矩時(shí),計(jì)算得到的最大剪應(yīng)力設(shè)計(jì)值不應(yīng)超過(guò)沿臨界周長(zhǎng)的平均剪應(yīng)力φVc/b0d。除ACI318-19規(guī)定的不平衡彎矩分配系數(shù)在滿(mǎn)足一定條件時(shí)可進(jìn)一步調(diào)整外,最大剪應(yīng)力的計(jì)算方法與GB 50007第8.4.7-1條及附錄P中規(guī)定的內(nèi)容完全相同。
EU2中基礎(chǔ)的抗剪承載力按下式計(jì)算:
式中:bw為基礎(chǔ)寬度;ρ1為受拉縱筋配筋率,ρ1≤0.02;系數(shù)≤2.0;CRd,c取0.18/γc,γc為材料分項(xiàng)系數(shù),取1.5;fck為混凝土圓柱體抗壓強(qiáng)度標(biāo)準(zhǔn)值。
同時(shí),EU2還規(guī)定,可以將距離支座較近的荷載對(duì)剪力設(shè)計(jì)值的貢獻(xiàn)進(jìn)行折減,即距離支座邊在0.5d≤av≤2d之間的荷載,其對(duì)于控制截面處剪力的貢獻(xiàn)可以乘以折減系數(shù)av/2d,對(duì)于av≤0.5d的情況,取av=0.5d。
驗(yàn)算基礎(chǔ)沖切時(shí),EU2按下式進(jìn)行設(shè)計(jì):
式中,νEd和νRd,c分別為所選控制截面處的沖切剪應(yīng)力設(shè)計(jì)值和抗沖切剪應(yīng)力設(shè)計(jì)值。
基本控制面處的抗沖切剪應(yīng)力由下式確定:
基本控制面以?xún)?nèi)的控制截面,其抗沖切應(yīng)力由下式?jīng)Q定:
式中:a為控制截面到柱邊的距離;ρ1取兩個(gè)方向柱寬加每側(cè)3d范圍內(nèi)的截面縱向受拉鋼筋配筋率乘積的平方根,且小于或等于0.02;d為兩個(gè)方向柱邊的平均有效高度。
νEd由下式?jīng)Q定:
式中:VEd,red為扣除控制周長(zhǎng)內(nèi)反力后的基底凈反力之和;MEd為控制截面?zhèn)鬟f的不平衡彎矩;u為所選控制截面的周長(zhǎng);W為對(duì)應(yīng)于控制截面的幾何常量;k為通過(guò)剪應(yīng)力傳遞不平衡彎矩的分配系數(shù),可按表3進(jìn)行取值。
表3 矩形柱的k值Table 3 The k for the rectangular column
對(duì)于矩形內(nèi)柱,基本控制面處的W可按下式計(jì)算:
式中,c1和c2分別為垂直和平行于彎矩方向的柱子邊長(zhǎng)。
對(duì)于矩形內(nèi)柱,可采用下式近似計(jì)算β:
式中,by和bz分別為控制截面邊長(zhǎng);ey和ez分別為對(duì)應(yīng)的偏心距。
當(dāng)a/d≥2時(shí),基礎(chǔ)的剪切承載力為
或
式中:fcd′為混凝土抗壓強(qiáng)度設(shè)計(jì)值,其值等于fck′/1.3,fck′為圓柱體抗壓強(qiáng)度標(biāo)準(zhǔn)值;bw為基礎(chǔ)寬度;d為柱根處的基礎(chǔ)有效高度;pv為縱向受拉鋼筋配筋率;γb為構(gòu)件因子,取1.3;M0為在實(shí)際軸壓作用下使受拉區(qū)邊緣應(yīng)力為零的彎矩,對(duì)于獨(dú)基一般有M0=0,Mud為純彎狀態(tài)下截面的抗彎承載力。
當(dāng)a/d<2時(shí),基礎(chǔ)的剪壓承載力為
當(dāng)支座遠(yuǎn)離基礎(chǔ)自由邊且無(wú)彎矩時(shí),獨(dú)基的沖切承載力為
式中:p為兩個(gè)方向受拉鋼筋配筋率的平均值;u為有效加載面的周長(zhǎng);up為臨界截面周長(zhǎng)。
當(dāng)基礎(chǔ)受到彎矩和扭矩作用時(shí),應(yīng)將抗沖切承載力乘以系數(shù)1/α,α為
式中:ex,ey分別為x方向和y方向的偏心距;bx,by分別為臨界截面x方向和y方向的邊長(zhǎng)。
GB50007、ACI318-19、EU2及JGC15中規(guī)定的沖切錐底面如圖1-圖4所示。對(duì)比可知,中、美、日規(guī)范沖切錐底面距離有效加載面的距離均為d,而歐洲規(guī)范中為2d,這導(dǎo)致其沖切錐斜截面與基礎(chǔ)底面的夾角θ不再是45°,而是26.6°,如圖5所示。同時(shí),根據(jù)EU2的規(guī)定,當(dāng)階形基礎(chǔ)的階寬高比小于2或錐形基礎(chǔ)的坡角大于26.6°時(shí),無(wú)須進(jìn)行沖切承載力驗(yàn)算。因此,某些根據(jù)我國(guó)規(guī)范需要驗(yàn)算沖切的基礎(chǔ),根據(jù)EU2的規(guī)定不再需要驗(yàn)算。除此之外,中、美規(guī)范在沖切錐底面角點(diǎn)處采用棱角,EU2和日本規(guī)范采用圓角,前者可以簡(jiǎn)化設(shè)計(jì)過(guò)程,同時(shí)也更容易配置抗沖切鋼筋,后者則更符合試驗(yàn)的破壞形態(tài)。
圖1 GB 50007規(guī)定的沖切錐底面形狀Fig.1 The bottom shape of punching cone in GB 50007
圖4 JGC15定義的沖切錐底面形狀Fig.4 The bottom shape of punching cone in JGC15
圖5 EU2定義的沖切錐Fig.5 The punching cone defined by EU2
圖2 ACI318-19規(guī)定的沖切錐底面Fig.2 The bottom shape of punching cone in ACI318-19
圖3 EU2規(guī)定的沖切錐底面的形狀Fig.3 The bottom shape of punching cone in EU2
各國(guó)規(guī)范在剪切、沖切承載力計(jì)算時(shí)均考慮了混凝土強(qiáng)度的影響,但各公式中對(duì)混凝土強(qiáng)度的定義不盡相同,中國(guó)規(guī)范采用混凝土軸心抗拉強(qiáng)度設(shè)計(jì)值ft,該值由150 mm立方體抗壓強(qiáng)度標(biāo)準(zhǔn)值考慮混凝土實(shí)體強(qiáng)度與立方體試件強(qiáng)度的差異、棱柱體強(qiáng)度與立方體強(qiáng)度之比、混凝土的脆性折減系數(shù)和材料分項(xiàng)系數(shù)換算得到[6],美、歐、日規(guī)范采用的是直徑6英寸(152 mm)、高12英寸(305 mm)的圓柱體的抗壓強(qiáng)度f(wàn)c′(ACI、EU2和JGC15分別對(duì)應(yīng)于符號(hào)fc′、fck和fck′),對(duì)于C60以下的混凝土,圓柱體抗壓強(qiáng)度f(wàn)c′和立方體抗壓強(qiáng)度標(biāo)準(zhǔn)值fcu,k之間的關(guān)系為fc′=0.79fcu,k[7]。由于美國(guó)規(guī)范和中國(guó)規(guī)范的混凝土材料保證率不一樣,所以美國(guó)的fc′=0.79fcu,k是近似計(jì)算結(jié)果,其精確計(jì)算結(jié)果參見(jiàn)文獻(xiàn)[8]。ACI318-19中沒(méi)有材料強(qiáng)度“設(shè)計(jì)值”的概念,在設(shè)計(jì)時(shí)直接采用材料特征值fc′,同時(shí)引入了考慮多種因素的強(qiáng)度折減系數(shù)φ;EU2、JGC15和GB 50007則均在計(jì)算公式中直接或間接地考慮了材料分項(xiàng)系數(shù)。各國(guó)C20~C50混凝土材料特征值與我國(guó)混凝土強(qiáng)度等級(jí)的對(duì)應(yīng)關(guān)系見(jiàn)表4。
表4 各國(guó)規(guī)范混凝土強(qiáng)度對(duì)應(yīng)關(guān)系Table 4 The concrete strength conversion relation of each country standardizes N/mm2
在剪切承載力計(jì)算時(shí),我國(guó)規(guī)范考慮了基礎(chǔ)有效高度、基礎(chǔ)寬度及截面高度影響系數(shù)三個(gè)參數(shù);除以上參數(shù)外,美國(guó)、日本和歐洲規(guī)范均考慮了受拉縱筋配筋率的影響,另外,ACI318-19指出允許不考慮由基礎(chǔ)高度變化引起的尺寸效應(yīng)的影響,EU2允許對(duì)離支座較近范圍內(nèi)的外力對(duì)剪力的貢獻(xiàn)進(jìn)行折減,JGC15根據(jù)上述比值a/d,將承載力分為兩種情況進(jìn)行計(jì)算,在按深梁計(jì)算時(shí),考慮參數(shù)a/d的影響。
在計(jì)算沖切承載力時(shí),我國(guó)規(guī)范沖切影響因素與剪切一致,與我國(guó)規(guī)范相比,美國(guó)規(guī)范還考慮了臨界截面周長(zhǎng)、加載面尺寸、柱的位置、尺寸效應(yīng)四個(gè)參數(shù),其中尺寸效應(yīng)的影響允許忽略;歐洲規(guī)范考慮了縱筋配筋率和尺寸效應(yīng)的影響,對(duì)于位于基本控制截面以?xún)?nèi)的控制截面,可考慮承載力放大系數(shù)2d/a;日本規(guī)范考慮了縱向鋼筋配筋率、加載面周長(zhǎng)和尺寸效應(yīng)等三個(gè)參數(shù);另外,當(dāng)基礎(chǔ)通過(guò)剪應(yīng)力傳遞不平衡彎矩時(shí),美國(guó)和歐洲規(guī)范通過(guò)系數(shù)β考慮不平衡彎矩的影響,日本規(guī)范通過(guò)α對(duì)沖切承載力進(jìn)行折減。
為進(jìn)一步分析各國(guó)規(guī)范的異同,選取了文獻(xiàn)[9]中8個(gè)軸心受壓柱下獨(dú)立基礎(chǔ)試驗(yàn),基礎(chǔ)高220 mm,保護(hù)層厚度為20 mm,柱截面尺寸均為250 mm×250 mm,基礎(chǔ)長(zhǎng)度均為1 450 mm。試驗(yàn)表明,JC3、JC4、JC7、JC8發(fā)生沖切破壞,JC1、JC2、JC5、JC6發(fā)生剪切破壞。通過(guò)基礎(chǔ)承載力設(shè)計(jì)值與外力相等的條件,可以反算得到對(duì)應(yīng)的軸力設(shè)計(jì)值,將其與試驗(yàn)值進(jìn)行對(duì)比,如表5所示。
表5 軸力設(shè)計(jì)值與試驗(yàn)值之比Table 5 Ratio of axial force design value to test value
續(xù)表
從表5可知,各國(guó)規(guī)范計(jì)算得到的軸力設(shè)計(jì)值與試驗(yàn)值之比(簡(jiǎn)稱(chēng)軸力比)在0.32~0.76,各國(guó)規(guī)范均較為保守,其中ACI-19的計(jì)算結(jié)果最為保守,這是由于其在剪切計(jì)算時(shí)引入了配筋率的影響,計(jì)算表明,在配筋率小于1.65%時(shí),其計(jì)算結(jié)果均小于ACI-11,由于本文選取的試驗(yàn)基礎(chǔ)配筋率為0.36%和0.6%,均較小,使得ACI-19的計(jì)算結(jié)果最為保守;對(duì)于同一基礎(chǔ),按不同規(guī)范驗(yàn)算得到的破壞模式不盡相同,其中ACI-19均由剪切承載力控制,由于EU2定義的沖切錐角較小,導(dǎo)致按歐洲規(guī)范設(shè)計(jì)時(shí)均由剪切承載力控制,同時(shí)由于a/d<2,按JGC15計(jì)算的受剪承載力總是由剪壓承載力控制,導(dǎo)致設(shè)計(jì)值由沖切承載力控制,而中國(guó)規(guī)范控制驗(yàn)算模式與實(shí)際破壞情況吻合最好;通過(guò)JC3與JC7、JC4與JC8、JC1與JC5、JC2與JC6的對(duì)比可知,美國(guó)規(guī)范ACI318-19、歐洲規(guī)范和日本規(guī)范雖然考慮了縱筋配筋率的影響,配筋率提高時(shí)設(shè)計(jì)值有所增加,但軸力比反而減小,說(shuō)明規(guī)范對(duì)縱筋的有利影響考慮的不夠充分。
由于中國(guó)規(guī)范在沖切、剪切承載力驗(yàn)算時(shí)未考慮縱筋配筋率的影響,而美國(guó)、歐洲、日本規(guī)范雖考慮了縱筋影響,但考慮的不夠充分,因此本文以文獻(xiàn)[9]中的矩形柱下擴(kuò)展基礎(chǔ)剪切試驗(yàn)JC2(配筋率0.36%)、JC6(配筋率0.6%),沖切試驗(yàn)JC3(配筋率0.36%)、JC7(配筋率0.6%)為研究對(duì)象,采用MSC.Marc有限元軟件對(duì)其進(jìn)行數(shù)值模擬及改變配筋率的參數(shù)分析。建模時(shí)混凝土結(jié)構(gòu)為實(shí)體單元,鋼筋為T(mén)russ單元,模型的尺寸及配筋情況與試驗(yàn)保持一致,鋼筋和混凝土之間的黏結(jié)運(yùn)用Links功能實(shí)現(xiàn)?;炷潦軌罕緲?gòu)采用E.Hognestad[10]本構(gòu)模型,受拉段通過(guò)定義開(kāi)裂應(yīng)力、軟化模量來(lái)模擬,當(dāng)混凝土開(kāi)裂后考慮裂縫面咬合作用,混凝土只能傳遞部分剪力,因此通過(guò)剪力傳遞系數(shù)對(duì)剪切模量進(jìn)行折減,剪力傳遞系數(shù)的取值范圍從0到1,0表示不傳遞剪力,1表示完全傳遞剪力,對(duì)于普通鋼筋混凝土梁,該系數(shù)可取0.5,鋼筋混凝土深梁取0.25,而對(duì)于剪切行為明顯的剪力墻可取0.125[11],本文模型中剪力系數(shù)取0.25,混凝土屈服準(zhǔn)則采用Buyukozuturk準(zhǔn)則。鋼筋采用雙線性本構(gòu)模型[11],采用Von Mises屈服準(zhǔn)則,具體建模過(guò)程見(jiàn)文獻(xiàn)[12],有限元模型如圖6所示。
圖6 有限元模型圖Fig.6 The finite element model
數(shù)值模擬及試驗(yàn)得到的荷載-撓度曲線對(duì)比如圖7所示。從圖7可知當(dāng)模擬荷載增加至528 kN、650 kN、733 kN和948 kN時(shí)JC2、JC6、JC3和JC7的曲線出現(xiàn)明顯拐點(diǎn),代表基礎(chǔ)已經(jīng)發(fā)生破壞,這與試驗(yàn)得到的JC2、JC6分別加載至490 kN和688 kN發(fā)生剪切破壞及JC3、JC7加載至750 kN和914 kN發(fā)生沖切破壞[9]較為接近。圖8-圖11分別為JC2、JC6、JC3和JC7最終破壞形態(tài)的對(duì)比,可知數(shù)值模擬得到的基礎(chǔ)最終破壞形態(tài)與試驗(yàn)結(jié)果基本一致,因此可以此數(shù)值模型為基礎(chǔ)對(duì)其進(jìn)行改變配筋率的參數(shù)分析。
圖7 數(shù)值模擬與試驗(yàn)荷載-撓度曲線對(duì)比Fig.7 Comparison between numerical simulation and test load-deflection curves
圖8 數(shù)值模擬和試驗(yàn)得到的基礎(chǔ)JC2剪切破壞對(duì)比Fig.8 Comparison of shear failure between numerical simulation and experiment of JC2
圖11 數(shù)值模擬和試驗(yàn)得到的基礎(chǔ)JC7沖切破壞對(duì)比Fig.11 Comparison of punching failure between numerical simulation and experiment of JC7
在數(shù)值模型其他參數(shù)不變的情況下將基礎(chǔ)的配筋調(diào)整為φ10@200、φ10@150和φ14@100,所對(duì)應(yīng)的配筋率分別為0.18%、0.25%和0.82%,以考察基礎(chǔ)配筋率對(duì)剪切和沖切承載力的影響。此三種模型計(jì)算得到的荷載-撓度曲線與配筋率為0.36%及0.60%的基礎(chǔ)模型的對(duì)比情況如圖12所示。從圖12可知,配筋率增加時(shí)基礎(chǔ)的剪切、沖切承載力均有所提高,但由于數(shù)值模擬基礎(chǔ)底面的加載模式采用的是文獻(xiàn)[9]實(shí)測(cè)得到的基底壓力,當(dāng)配筋率增加至0.82%時(shí),基礎(chǔ)未發(fā)生破壞,因此未得到配筋率大于或等于0.82%時(shí)的完整模擬結(jié)果。表6給出了不同配筋率的基礎(chǔ)剪切和沖切承載力,配筋率為0.25%、0.36%、0.6%時(shí)的剪切承載力分別是配筋率為0.18%的基礎(chǔ)的1.14倍、1.36倍、1.71倍,配筋率為0.25%、0.36%、0.6%時(shí)的沖切承載力分別是配筋率為0.18%的基礎(chǔ)的1.25倍、1.43倍、1.88倍。承載力的提高倍數(shù)與配筋率的關(guān)系如圖13所示,從圖12可知,配筋率每增加0.2%剪切承載力提高0.334倍,沖切承載力提高0.4倍,配筋率對(duì)沖切承載力的貢獻(xiàn)略大于剪切承載力。
圖12 不同配筋率下基礎(chǔ)的荷載-撓度曲線對(duì)比Fig.12 Load deflection curves of bases with different reinforcement ratio
圖13 承載力隨配筋率的變化情況Fig.13 The variation of bearing capacity with reinforcement ratio
表6 不同配筋率下基礎(chǔ)的承載力Table 6 Bearing capacity of bases with different reinforcement ratio
通過(guò)本文的分析,得到如下主要結(jié)論:
(1)對(duì)獨(dú)立基礎(chǔ)設(shè)計(jì)時(shí),美、歐、日規(guī)范要求同時(shí)驗(yàn)算剪切和沖切承載力,按最不利進(jìn)行設(shè)計(jì),而我國(guó)規(guī)范通過(guò)B和b+2h0的大小關(guān)系,決定是按沖切或剪切承載力進(jìn)行設(shè)計(jì)。
圖9 數(shù)值模擬和試驗(yàn)得到的基礎(chǔ)JC6剪切破壞對(duì)比Fig.9 Comparison of shear failure between numerical simulation and experiment of JC6
(2)對(duì)于沖切承載力驗(yàn)算,我國(guó)規(guī)范采用驗(yàn)算最不利側(cè)斜截面的沖切承載力的“局部破壞模式”,美、歐、日規(guī)范驗(yàn)算臨界控制截面的“整體破壞模式”。
(3)控制截面位置不同。對(duì)于剪切控制截面,我國(guó)規(guī)范取柱邊處,美、歐規(guī)范取距柱邊1倍基礎(chǔ)有效高度d處,日本規(guī)范取距柱邊0.5倍基礎(chǔ)截面高度h處;對(duì)于沖切控制截面,中、美、日規(guī)范均取距柱邊0.5d處,歐洲規(guī)范取距柱邊2d處。
(4)沖切錐斜截面與底面夾角不同。中、美、日規(guī)范該夾角為45°,歐洲規(guī)范為26.6°。因此,某些根據(jù)我國(guó)規(guī)范需要驗(yàn)算的控制截面,根據(jù)EU2的規(guī)定可能不需要進(jìn)行驗(yàn)算。
(5)沖切錐底面的形狀不同。歐、日規(guī)范將其定義為距離有效加載面最近點(diǎn)等于規(guī)定距離的曲線,與真實(shí)破壞狀態(tài)較為接近。中國(guó)和美國(guó)規(guī)范則有所簡(jiǎn)化,將其定義為由平行于有效加載面直線段圍城的多邊形,以便于設(shè)計(jì)和配置抗沖切鋼筋。
圖10 數(shù)值模擬和試驗(yàn)得到的基礎(chǔ)JC3沖切破壞對(duì)比Fig.10 Comparison of punching failure between numerical simulation and experiment of JC3
(6)各規(guī)范沖、剪承載力影響參數(shù)不同,例如美、歐、日規(guī)范考慮了配筋率的影響,而中國(guó)規(guī)范未考慮等。
(7)通過(guò)算例分析可知,我國(guó)規(guī)范的計(jì)算破壞模式與試驗(yàn)吻合最好;當(dāng)基礎(chǔ)配筋率小于1.65%時(shí),ACI318-19小于ACI318-11的計(jì)算結(jié)果。另外,當(dāng)配筋率較大時(shí),各國(guó)設(shè)計(jì)結(jié)果更加保守,說(shuō)明美、歐、日規(guī)范雖考慮了配筋率的影響,但考慮得不夠充分,使得設(shè)計(jì)結(jié)果留有更大的余地。此外,對(duì)于同一基礎(chǔ),按不同規(guī)范計(jì)算得到的破壞模式不盡相同。
(8)通過(guò)MSC.Marc有限元軟件對(duì)配筋率對(duì)基礎(chǔ)沖切、剪切承載力的影響進(jìn)行了參數(shù)分析,結(jié)果表明,當(dāng)縱筋配筋率不大于0.6%時(shí),配筋率每增加0.2%,剪切承載力提高0.334倍,沖切承載力提高0.4倍。